欢迎来到学术参考网
当前位置:发表论文>论文发表

除尘系统毕业论文

发布时间:2023-03-13 02:54

除尘系统毕业论文

百度 河北除尘机械设备公司 有个技术文章和除尘技术 看这里面内容自己写吧

布袋除尘器的毕业设计

布袋除尘器作为一种高效除尘设备,目前已广泛应于各工业部门。近年来,随着国民经济的发展以及愈来愈严格的环境保护要求,布袋除尘器在产量上有了相当大的增长,品种也日渐增多。因此,在设计工作中合理地选定布袋除尘器的基本参数,正确地进行除尘系统设计,不仅对于控制污染、保护环境有重要作用,而且对于提高设备处理含尘气体的能力,降低设备投资从而减少工程造价,也具有极重要的经济意义。本文就布袋除尘系统设计实践中常遇到的两个问题,试图从设计的角度并结合笔者的工作实践作一探讨。
1 过滤风速问题
过滤风速的选取,对保证除尘效果,确定除尘器规格及占地面积,乃至系统的总投资,具有关键性的作用。近年来,在工程项目除尘系统设计中,对过滤风速的选取有越来越偏低的现象究其原因可能是:
(1)有些设计者认为过滤风速取低一些,可以提高除尘效率,增强清灰能力,延长清灰周期,从而延长滤袋使用寿命;
(2)过去有些文献或专著特别强调过滤风速不能取得太高,以免阻力增大,运行费用提高;
(3)目前国产的布袋除尘(小型布袋除尘机组除外)产品样本规定的过滤风速,大都在2.5 m/min以下,较为普遍的是在1.0~1.5 m/min范围,对于大布袋则在1.0 m/min以下,即使是采用压缩空气喷吹清灰的脉冲袋式除尘器,其过滤风速最高也只是在3.0 m/min左右,超过4 m/min的较为少见。于是,设计者往往易于在产品样本推荐的过滤风速下,再降低一定的数值来确定过滤面积,从而导致过滤风速取值偏低。
基于上述原因,设计工作中过滤风速取低0.1~0.25 m/min的现象大量存在。
应该说,上述理由并非毫无道理。但是,如果轻易地降低过滤风速,即使降低的绝对值较小,如0.1~0.25 m/min,由此将使过滤面积增加约10%,设备投资也将增加近10%,处理的风量越大,增加的投资必然越多,设备的占地面积亦相应加大。显然,这是不经济的;此外,孤立地看待上述理由,也是不合适的。
那么,如何正确地选定过滤风速呢?实际上这是一项较复杂的工作,它与粉尘性质、含尘气体的初始浓度、滤料种类、清灰方式有密切的关系。然而,从设计角度讲,应该也可以抓住主要问题进行分析。这是因为,目前国内产品中可供选择的滤料种类及其清灰方式相对讲不是很多,滤料及其清灰方式相应地易于确定;至于初始尘浓,除了工艺提供资料外,或经实测取得一手数据,或按设计者的经验确定。这就是说,影响过滤风速的尘浓、滤料及清灰方式三个因素相对的说较易合理地确定。
所以,笔者认为,正确选择过滤风速的关键,首先在于弄清粉尘及含尘气体的性质,其次要正确理解和认识过滤风速与除尘效率、过滤阻力、清灰性能三者之间的关系。
对于粉尘及含尘气体的性质,应最大限度地掌握以下几点。
第一,要弄清粉尘的粒径分布。粉尘的粒径是它的基础特性,它是由各种不同粒径的粒子组成的集合体,单纯用平均粒径来表征这种集合体是不够的。
第二,要弄清粉尘的粘性。粘性是粉尘之间或粉尘与物体表面分子之间相互吸引的一种特性。对布袋除尘器,粘性的影响更为突出,因为除尘效率及过滤阻力在很大程度上取决于从滤料上清除粉尘的能力。
第三,应弄清粉尘的容重或堆积比重,即单位体积的粉尘重量。其中的单位体积包括尘粒本身体积、尘粒表面吸附的空气体积、尘粒本身的微孔、尘粒之间的空隙。弄清粉尘的容重,对通风除尘具有重要意义,因为它与粉尘的清灰性能有密切的联系。
第四,应弄清含尘气体的物理、化学性质,如温度、含湿量、化学成份及性质。这些参数的确定与除尘附加处理措施、过滤风速的选择有着直接间接的关系。如有的含尘气体含有氯化物等化学成份,一般氯化物易于“吸潮”,如不采取附加的措施,可能导致“糊袋”。
应该承认,要全面准确地收集上述四方面的数据,从我国目前的设计实践看,客观上还有一定的困难。但是,作为设计师,至少应对其有定性的了解。
对于过滤风速与除尘效率、过滤阻力、清灰性能三者之间的关系,可以从下述三方面来进行分析。
第一,除尘效率方面。我们知道,从除尘机理上说,有惯性效应(包括碰撞、拦截)和扩散效应。对粉尘粒径而言,按Friediander的理论,对滤料单一纤维的除尘效率为
式中 KD、KI———由烟气温度、粘度、密度确定的常
数;
dF———单一纤维直径;
dp———粉尘粒径;
VS———过滤风速。
由上式可知,若dp为1μm以下的微尘,借助扩散效应能有效地捕集,适当降低VS可以提高除尘效率η;若dp为5~15μm以内的粉尘,借助惯性效应能有效地捕集,提高VS可以提高η。实践证明,对一般性烟尘,提高过滤风速VS对除尘效率η影响甚微。
第二,过滤阻力方面。过滤阻力随滤料上粉尘量的增大而增大,滤料不同,单位滤料面积上容尘量也不同,但从工程角度讲,其差异必竟较小,一般仅从粉尘粒度来考虑滤料的容尘负荷,对粒径大的即粗粉尘取300~1000 g/m2,对微细粉尘取100~300g/m2。国内在80年代初就有专著介绍过对水泥粉尘的滤尘量、过滤风速、过滤阻力三者关系的实测数据,见表1。
从上表数据可以看出:当滤尘量一定时,过滤风速增加1倍,阻力增加25%~50%;即使过滤风速增加2倍,阻力增加亦不到80%,而且过滤风速越低,阻力增加的百分比越小;反过来说,当滤尘量一定,过滤风速降低1倍时,阻力降低不到30%。可见,过滤风速的增减与过滤阻力的增减并不成正比,如果简单地用降低过滤风速的办法来达到降低过滤阻力从而降低运行费用的目的是欠妥的。
第三,清灰性能方面。粉尘的清灰性能与粉尘的性质,即粘性、粒度、容重有极大的关系。粉尘的粘性大、粒度小、容重小,清灰困难,过滤风速应取低一些,反之可取高一些。国内有人做过实验,对于滑石粉类中细滑爽尘,在所有工况条件下,仅需一次反吹清灰,滤袋阻力即可恢复原值,二次积尘几乎全被吹落,滤袋再生较好,反吹风量比率仅需25%~30%;而对于氧化铁类超细粘性尘,通常需要连续多次反吹清灰,才能有效降低滤袋阻力,还难以复回原值,反吹风量比率高达50%~70%。这就证明,对某一确定的布袋除尘器,粉尘的清灰性能主要取决于粉尘及其含尘气体的性质,并不是所有的粉尘,只要过滤风速取低些,就可增强清灰能力。
此外,在滤料确定的情况下,降低过滤风速可以延长清灰周期,但是滤袋的寿命并不完全取决于清灰周期。因为当确定了某个过滤风速时,滤袋的不同地方过滤风速也不同,国外做过的实验发现,在一条滤袋上的局部过滤速度相差可达4倍,甚至超过4倍!
综上所述,可以得出这样的结论:盲目地降低过滤风速并不完全能保证提高除尘效率,也不一定能相应地降低过滤阻力,还可能造成不必要的经济损失。只有在充分了解粉尘性质及系统特性,正确理解过滤风速与除尘效率、过滤阻力、清灰性能之间的关系,并在这两者的结合上有一个清晰的认识后,才可能合理地确定过滤风速。
2 大气反吹布袋除尘器的反吹风压问题
大气反吹布袋除尘器国内生产厂家、型号比较多,国外引进工程中采用这种设备的也不少。反吹风清灰的空气可以取自大气,也可以取自经过本设备净化后的“烟气”。这种除尘器以其维护管理简便,在处理大流量含尘气体时占地面积小的优点而被广泛采用。但是,近年来我们通过一些实地调查和测定,发现有些设计者对反吹风清灰的风压考虑不周,有的甚至在设计大气反吹布袋除尘系统时,还没意识到必须认真考虑反吹风压这个问题,因而投入运行后不久,由于滤袋积灰得不到有效清理而使滤袋阻力上升,当积灰达到某一厚度时,反吹效果几乎为零,导致除尘器不能正常工作,吸尘点粉尘大量外逸。更有甚者,有的设计者在现场处理这样的问题时,不去认真找出系统设计中的问题,而是简单地采取加大风机电机功率以增加风压的办法,以致白白地增加能耗及噪声污染。
笔者曾对西安某厂抛丸除尘系统进行了现场测定。该厂在系统中选用HBF-XⅣ/Ⅱ型横扁袋反吹式除尘器,过滤面积420 m2,系统的简图如图1。
该系统中,设计者从尽可能减少除尘系统管路阻力的原则出发,除尘器入口前管路计算阻力为800 Pa,初始尘浓度计算值为30 g/m3,实测为27.8g/m3,采用沉降室加布袋两级除尘,选用风机G4-73-11No10D,风量61 600~33 100 m3/h,风压为2296~3 237 Pa,从粉尘及含尘气体性质看,系统配置尚属合理,测定结果见表2。
从图1及表2的测定值可以看出,对本系统而言,清灰后滤袋阻力下降较小,除尘器反吹清灰时,反吹风压仅为736~834 Pa时,它实际上等于除尘器入口处的全压。
按一般的理解,除尘器前管路的阻力应该越小越好,但对于选用大气反吹除尘器的系统,这种理解就不全面了。
如图2,反吹风布袋除尘器清灰时,首先关闭滤袋室的出口阀门M,并打开反吹风管阀门N,由于其它各室内部都处于负压,大气通过反吹风管路进入滤袋室进行反吹清灰,清灰后的气体与含尘气体一起进入邻室净化后排出。因此,含尘气体和反吹风汇合处(图2中的A点)的压力与除尘器前管路系统的起始点C(即吸尘罩口)的压差在数值上应该等于A点的压力与反吹风管路进口处(图2中B点)的压差,而A点与B点的压差基本上就是反吹风压。所以,如果除尘器入口前管路总阻力小于反吹风管路(包括反吹风管道、阀门、一层滤袋)的总阻力,这时要么反吹风量降低而使反吹风压减小,要么反吹风根本不能穿透需清灰的滤袋。显然,反吹风量减小意味着反吹风透过滤袋的强度减小。
现场实测时发现,该系统由于反吹风压太小,清灰次数又不可能过于频繁,因此运行不久,滤袋积灰越来越厚,反吹效果越来越差,以致系统阻力上升,吸尘点风量减小,粉尘大量外逸,不仅岗位尘浓大大超过卫生标准,刮压时还造成严重的环境污染。
同样的负压反吹风布袋除尘器,当反吹风压满足要求时,则系统清灰顺利,运行正常,除尘效果就相当好。笔者在贵阳某厂沥青干燥系统、贮仓出料系统的实测数据充分说明了这点。这两个除尘系统,根据粉尘性质及系统特性,设备选型大体恰当。详见表3。
由表3数据可见,对沥青干燥系统,反吹风压在数值上约为3000 Pa;对贮仓出料系统约为2 140 Pa。显然,这个数值是够高的,故两个系统的清灰效果十分突出。
通过以上的实测数据及其分析,可见选用反吹风布袋除尘器的除尘系统,设计时必须保证除尘器前管路阻力达到一定值,这个值必须大于反吹风管路(包括阀门)的阻力与一层滤袋的阻力之和。当然,为了加大反吹风压而人为地加大除尘系统中除尘器前的管路阻力,或有意地加大系统风机的风压,从而增加不必要的能耗,这是极不可取的,这也就失去了选用反吹风布袋除尘器的本来意义。

环境工程毕业论文5000字

随着科学技术的进步和社会生产力的发展,人类文明进程得到前所未有的发展,但是与此同时,人类社会也面临着一系列重大环境与发展问题。因此,发展环境工程意义重大。下文是我为大家搜集整理的关于环境工程5000字 毕业 论文的内容,欢迎大家阅读参考!

浅谈环境工程中的工艺 方法

摘 要:环境工程作为一种现代城市建设的工程,不仅对城市的环境有着非常重要的影响,还关系到城市居民的健康问题。所以,在城市环境工程的建设过程中,有关部门应该加强对工艺方法的选择和研究。

关键词:环境工程工艺;工程法;类比法;对称法;应用分析

随着我国经济的发展,我国的城市环境也有了明显的改善,这种情况下无论是环境工程的质量还是规模都有所变化,所以,为了更好的实现对环境工程的管理,有关部门应该加强对环境工程的工艺和方式的研究,以便更好的实现对现阶段的环境工程的优化。下文中笔者将结合现阶段几种常见的环境工程的施工工艺和技术,对该问题进行分析。

1 价值工程法的现实应用和分析

目前来看,在环境工程的施工过程中,价值工程作为一种非常重要的常见工程技术,对于环境工程的施工质量和效果有着非常重要的影响。尤其是在环境工程的经济效益实现的过程中以及相关的环境工程的产品设计形式的表达上,有着非常重要的作用。一般来说,这些作用可以概括为以下几点:

1.1 环境工程中的价值工程法可以有效的在工程中避免功能过剩的问题。即在现代的环境工程的施工过程中,有关部门可以通过对工程的价值的比较和分析,来实现对环境工程的有效评估,所以,有关部门可以通过价值工程法来实现对环境工程的各种职能的优化和删除,这样就可以将环境工程最大的合理化控制,有助于环境工程的价值的发挥和实现。

1.2 环境工程的价值工程法可以有效的避免价值短缺的现象,也就是说在环境工程的价值分析的过程中,可以根据现有工程的实际情况,对工程的总体成本进行控制,可以有效的平衡工程的成本,避免不必要的功能支出导致的成本增加,因为环境工程的复杂性决定了各种职能之间可能存在相互冲突的状况。所以,采用价值工程法可以有效的规避这种问题。

2 类比法的实际应用和分析

所谓类比法,就是指在环境工程的过程中,对现有的环境工程的各种 实施方案 进行类别,也就是说对有共同点的各种环境工程质检的前提和方式进行分析,这样就可以更好的实现对环境工程的各种具体项目的判断。一般来说,我国的环境工程的类比法的应用主要体现在以下几个方面:

2.1 环境工程中的废气/废水处理工艺类比,指的是在环境工程的开发过程中,应该对各种工程中的废水和废气进行类比,也就是说要实现对其成分和处理的方法进行严格的控制。一般来说,主要体现在以下几个方面:①膜分离技术分析:即在对现有的环境工程的废水和废气进行处理的过程中,要对现有的膜分离技术进行全面的分析,不仅要对其进行盐水淡化处理,还要对其进行严格的废水除盐等技术的使用。这种方式的最大的特点在于能够实现对能源的节约,可以实现施工过程中的有效环保,还能够实现对各种相变反应的有效控制。②吸附技术分析:即在对现有的环境工程进行管理和控制的过程中,还应该要通过类比法来实现对一些特定的流体和固体的分离,也就是说在工程过程中,可以根据具体的环境需要对环境进行有效的处理,这种方式广泛的应用在石油工业废水处理以及相关的大气污染处理中,因为在这种环境工程的操作过程中,会运用到相关的分离性比较高的设备。

2.2 环境工程中垃圾预测的类比法运用:

在环境工程中,常会遇到对生活垃圾的处理问题,因为城市的生活垃圾产生的环境影响是不容忽视的,由于城市生活垃圾的产生量是非常大的,所以如果可以对生活垃圾进行一个全面的预测,就可以事前做好相关的处理方案的设计。一般来说,在采用类比法对现有的环境工程中的垃圾预测时,应该注意以下几个方面的问题:①类比指标的选取:即选择合适的环境工程的对比方案,对现有的各种城市生活垃圾产生的因素进行对比分析,以便更好的实现对该区域的地域性的垃圾产生问题进行分析。②类比城市的选取:在对城市垃圾的预测分析的过程中,应该注意的是要选择一些具有典型的可参考数据的城市作为类比对象和参考对象。③类比方法的实施:即对类比城市生活垃圾人均日产生量的变化发展规律作出合理研究与分析,进而对其进行有效预测。

3 环境工程中的对称法应用分析

对称法可以说是研究环境工程工艺的最基本性方法,它能够针对客观事物的基本属性及性质、结构运动特征,在事物内部构件一一对应的交互关系,从而在相类似事物当中找到相似点所在。从其在环境工程工艺中的应用角度上来说,对称法的应用可以分为内部对称与外部对称这两个方面,具体而言可作如下归纳。

3.1 内部对称法在环境工程中的应用分析:在当前技术条件支持下,内部对称法在环境工程中的应用价值主要体现在以下几个方面:①首先,是氧化与还原反应。我们可利用还原剂自身的还原特性对固体废弃物进行处置作业,并对城市工业建设中所产生的各类废气与废水进行净化处理;与此同时,我们还可以借助于氧化剂自身的氧化特性同样实现上述相关处理目的,以此缓解环境压力;②其次,是上浮与沉淀反应。

我们知道,大部分存在于废水水体当中的杂质在密度分布与大小参数上均有着较为显著的差异,对于那部分密度部分高于水体且尺寸较大的杂质而言,我们可采取重力沉降的方式对其进行去除处理,而对于那部分密度低于水体且尺寸较小的杂质而言,可利用杂质本身的上浮反应达到去除杂质的目的。现阶段上浮处理工艺方法广泛应用于餐饮废水的处理以及污泥原材的浓缩工作当中,而沉淀处理工艺方法则多适用于工业及生活污水/废水的处理工作当中;③最后,是好氧与厌氧反应。好氧微生物与厌氧微生物差异性的反应特征决定了其在环境工程中不同的应用价值。对于好氧微生物而言,其在氧气含量充分的条件下发挥处理特性,在氧化分解与沉淀处理的配合作用之下将废水/污水中大量的有机污染物物质进行去除处理。

3.2 外部对称法在环境工程中的应用分析:在现阶段技术条件支持下,外部对称法在环境工程中的应用价值主要体现在以下几个方面:①旋风除尘器及沉砂池装置:物体在高速旋转的过程当中会产生一定的离心力,进而导致物体气固相分离。上述两种装置基于流体力学对称性特征进行应用,除尘效果显著;②生物法:现阶段城市工业废水及生活污水的处理多以生物法方式进行,配合相应的脱硫与脱氮技术确保环境工程质量的稳定性。

4 结束语

综上所述,环境工程不仅关系到城市的发展和建设,也对城市居民的健康和城市的定位和规划问题有着非常重要的影响。环境工程的核心在于防治环境污染,提高环境质量。在人类活动不断深化发展的背景作用之下,环境污染形势的日益研究要求环境工程对其做出控制与改善。如何将环境工程相关职能发挥到最大限度,确保环境质量提升的高效性与稳定性,已成为现阶段相关工作人员最亟待解决的问题之一。

参考文献

[1]张燕,陈进.水环境保护工程的经济评价方法[J].水利经济,2003.21.(05).46-47.

[2]王虎虎.加强环境保护推进科学发展的思考[J].品牌,2011.(08).43.

[3]王晓晶.环境保护工程[J].黑龙江科技信息,2010.(03).201.

试论房屋建筑工程施工与环境保护

摘要:随着科学技术的进步和社会生产力的发展,人类文明进程得到前所未有的发展,但是与此同时,人类社会也面临着一系列重大环境与发展问题。人口剧增、资源过度消耗、气候变异、环境污染和生态破坏等问题威胁着人类的生存与发展。在严峻的现实面前,人们逐渐认识到,人类本身是自然系统的一部分,与环境息息相关。在房屋建筑工程施工过程中,我们必须优先考虑生态环境问题,并将其置于与经济和社会同等重要的地位上才能实现社会繁荣。

关键词:建筑工程 施工与环保 环保 措施

现代建筑是一种过分依赖有限能源的建筑。能源对于那些大量使用人工照明和机械空调的建筑意味着生命,而高能耗、低效率的建筑,不仅是导致能源紧张的重要因素,并且是使之成为制造大气污染的元凶。为了减少对不可再生资源的消耗,环保建筑主张调整或改变现行的设计观念和方式,使建筑由高能耗方式向低能耗方向转化,依靠节能技术,提高能源使用效率以及开发新能源,使建筑逐步摆脱对传统能源的过分依赖,实现一定程度上能源使用的自给自足。

1 房屋建筑施工的技术组织措施

1.1 平面管理

总平面管理是针对整个施工现场监理的管理,其最终要求是:严格按照各施工阶段的施工平面布置图规划和管理,具体表现在:

①施工平面图规划具有科学性、方便性、施工现场严格按照文明施工的有关规定管理。

②在明显的地方设置工程概况、施工进度计划、施工总平面图、现场管理制度、防火安全保卫制度等标牌。

③供电、给水、排水等系统的设置严格遵循平面图的布置。

④所有的材料堆场、小型机构的布设均按平面图要求布置,如有调整将征得现场监理或业主的同意。

⑤在做好总平面管理工作的同时,经常检查执行情况,坚持合理的施工顺序,不打乱仗,力求均衡生产。

1.2 文明施工管理

1.2.1 在过往行人和车辆密集的路口施工时,与当地交警部门协商制定交通示意图,并做好公示与交通疏导,交通疏导距离一般不少于50m。封闭交通施工的路段,留有特种车辆和沿线单位车辆通行的通道和人行通道。

1.2.2 因施工造成沿街居民出行不便的,设置安全的便道、便桥;施工中产生的沟、井、槽、坑应设置防护装置和警示标志及夜间警示灯。如遇恶劣天气应设专人值班,确保行人及车辆安全。

1.2.3 在进行地下工程挖掘前,向施工班组进行详细交底。施工过程中,与管线产权单位提前联系,要求该单位在施工现场设专人做好施工监护。并采取有效措施,确保地下管线及地下设施安全。

如因施工需要停水、停电、停气、中断交通时,采取相应的措施,并提前告之沿线单位及居民,以减少影响和损失。

2 房屋建筑工程施工环境保护措施

为了保护和改善施工现场的生活环境,防止由于建筑施工造成的作业污染,保障施工现场施工过程的良好生活环境是十分重要的。切实做好建筑施工现场的环境保护工作,主要采取以下措施:

2.1 建筑垃圾及粉尘控制的技术措施

①对施工现场场地进行硬化和绿化,并经常洒水和浇水,以减少粉尘污染。

②装卸有粉尘的材料时,要洒水湿润或在仓库内进行。

③建筑物外脚手架全封闭,防止粉尘外漏。

④严禁向建筑物外抛掷垃圾,所有垃圾装袋运出。现场主出入口外设有洗车台位,运输车辆必须冲洗干净后方能离场上路行驶;对装运建筑材料、土石方、建筑垃圾及工程渣土的车辆,派专人负责清扫及冲洗,保证行驶途中不污梁道路和环境。

⑤严格执行工程所在地有关运输车辆管理的规定。

2.2 噪音控制的技术措施

①施工中采用低噪音的工艺和施工方法。

②建立定期噪音监测制度,发现噪音超标,立即查找原因,及时进行整改。

③建筑施工作业的噪音可能超过建筑施工现场的噪音限值时,应在开工前向建设行政主管部门和环保部门申报,核准后再施工。

④调整作业时间,混凝土搅拌及浇筑等噪音较大的工序禁止夜晚作业。

2.3 施工期间振动污染的防治措施

①在可供选择的施工方案中尽量选用振动小的施工艺及施工机械。

②将振动较大的机械设备布置在运离施工红线的位置,减少对施工红线外振动的影响。

③对振动较大的施工机械,在中午(12时~14时)及夜间(20时~次日7时)休息时间内停机,以免影响附近居民休息。

2.4 施工期间水污染(废水)的防治措施

①加强对施工机械的维修保养,防止机械使用的油类渗漏进入地下水中或市政下水道。

②施工人员集中居住点的生活污水、生活垃圾(特别是粪便)要集中处理防治污染水源,厕所需设化粪池。③冲洗集料或含有沉淀物的操作用水,应采取过滤沉淀池处理或其他措施,使沉淀物不超过施工前河流、湖泊的随水排入的沉淀物量。

2.5 施工期间固体废物的防治措施

①注意环境卫生,施工项目用地范围内的生活垃圾应倾倒至围墙内的指定堆放点,不得在围墙外堆放或随意倾倒,最后交环保部门集中处理。

②对施工期间的固体废弃物应分类定点堆放,分类处理。

③施工期间产生的废钢材、木材,塑料等固体废料应予回收利用。

④严禁将有害废弃物用作土方回填料。

2.6 施工现场周围的环境保护

施工过程中积极对现场周围的环境进行保护。在整个工程的施工过程中特别是土方工程施工阶段对进出现场的车辆进行冲洗,严防污染路面。施工时如果现场出现古树、文物等阻碍施工情况时,应立即停止施工并采取隔离措施,报有关单位治理完后再恢复施工。

2.7 其他环保措施

①建立环境保护管理小组,由项目经理主管,成员由专业骨干组成,做好日常环境管理,并建立环保管理资料。

②建立健全环境工作管理条例,施工组织设计中应有相应环保内容。

③对地下管线应妥善保护,不明管线应事先探明,不允许野蛮施工作业。施工中如发现文物应及时停工,采取有效封闭保护措施,并及时报请业主处理,任何人不得隐瞒或私自占有。

④建立公众投诉电话,主动接受群众监督。

⑤施工期间应防止水土流失,做好废料石的处理,做到统筹规划、合理布置、综合治理、化害为利。

3 房屋建筑施工环境保护的意义

3.1 保护和改善施工环境是保证人们身体健康和社会文明的需要

采取专项措施防止粉尘、噪声和水源污染,保护好作业现场及其周围的环境,是保证职工和相关人员身体健康、体现社会总体文明的一项利国利民的重要工作。

3.2 保护和改善施工现场环境是消除对外部干扰保证施工顺利进行的需要

随着人们的法制观念和自我保护意识的增强,尤其在城市中,施工扰民问题反映突出,应及时采取防治措施,减少对环境的污染和对市民的干扰,也是施工生产顺利进行的基本条件。

3.3 保护和改善施工环境是现代化大生产的客观要求

现代化施工广泛应用新设备、新技术、新的生产工艺,对环境质量要求很高,如果粉尘、振动超标就可能损坏设备、影响功能发挥,使设备难以发挥作用。

3.4 节约能源、保护人类生存环境、保证社会和企业可持续发展的需要

人类社会即将面临环境污染和能源危机的挑战。为了保护子孙后代赖以生存的环境条件,每个公民和企业都有责任和义务来保护环境。良好的环境和生存条件,也是企业发展的基础和动力。

参考文献:

[1]张建国.建筑施工的环境影响分析[J].中国住宅设施,2009,(04).

[2]熊士斌.建筑施工中的环境保护措施分析[J].现代商贸工业,2008,(11).

[3]刘岩.建筑行业环境保护与绿色施工[J].内蒙古环境科学,2007,(02).

[4]张健.建筑施工环境因素分析及污染防治[J].低温建筑技术,2007,(05).

[5]吴柏松.试论建筑施工的环境保护[J].重庆环境科学,1988,(03).

急求有关除尘器的英语论文?

Experimental study of electrostatic precipitator
performance and comparison with existing
theoretical prediction models
S.H. Kim, K.W. Lee*
Kwangju Institute of Science and Technology, Department of Environmental Science and Engineering,
1 Oryong-dong, Puk-gu, Kwangju 500-712, South Korea
Received 1 February 1999; received in revised form 21 May 1999; accepted 2 June 1999
Abstract
A laboratory-scale single-stage electrostatic precipitator (ESP) was designed, built and
operated in a wind tunnel. As a "rst step, a series of experiments were conducted to seek the
operating conditions for increasing the particle collection e$ciency by varying basic operating
parameters including the wire-to-plate spacing, the wire radius, the air velocity, the turbulence
intensity and the applied voltage. As the diameter of the discharging wires and the wire-toplate
spacing are set smaller, the higher collection e$ciency has been obtained. In the
single-stage multiwire ESP, there exists an optimum wire-to-wire spacing which provides
maximum particle collection e$ciency. As the air velocity increases, the particle collection
e$ciency decreases. The turbulent #ow is found to play an important role in the relatively low
electric "eld region. In the high electric "eld region, however, particles can be deposited on the
collection plates readily regardless of the turbulence intensity. The experimental results were
compared with existing theories and Zhibin and Guoquan (Aerosol Sci. Technol. 20 (1994)
169}176) was identi"ed to be the best model for predicting the ESP performance. As the second
step, the in#uence of particle contamination at the discharging electrode and at the collection
plates were experimentally measured. The methods were sought for keeping the high collection
e$ciency of ESP over elapsed time by varying the magnitude of rapping acceleration, the time
interval between raps, the types of rapping system (hammer/vibrator) and the particle reentrainment.
The rapping e$ciency and the particle re-entrainment were increased with
increasing magnitude of rapping acceleration and time interval between raps. However, when
the thickness of deposited #y ash layer is su$ciently high, the concentration of re-entrained
particles starts decreasing abruptly due to the agglomeration force which can interact among
0304-3886/99/$ - see front matter ( 1999 Elsevier Science B.V. All rights reserved.
PII: S 0 3 0 4 - 3 8 8 6 ( 9 9 ) 0 0 0 4 4 - 3
deposited particles. The combined rapping system is found more e!ective for removing
deposited particles than the hammer rapping system only. ( 1999 Elsevier Science B.V. All
rights reserved.
Keywords: Electrostatic precipitation; Turbulent #ow; Rapping; Particle re-entrainment; Collection e$-
ciency; Negative corona
1. Introduction
Electrostatic precipitators (ESPs) are one of the most commonly employed
particulate control devices for collecting #y ash emissions from boilers, incinerators
and from many other industrial processes. They can operate in a wide range of
gas temperatures achieving high particle collection e$ciency compared with mechanical
devices such as cyclones and bag "lters. The electrostatic precipitation process
involves several complicated and interrelated physical mechanisms: creation
of a non-uniform electric "eld and ionic current in a corona discharge, ionic
and electronic charging of particles moving in combined electro- and hydrodynamic
"elds, and turbulent transport of charged particles to a collection
surface.
Generally, the collection e$ciency of ESP decreases as the discharging electrode
and collection plates are contaminated with particulates. Thus, a rapping system is
needed for removing the collected particulates periodically. While there have been
numerous theoretical and experimental studies on particle collection characteristics of
electrostatic precipitators, a relatively small number of the studies addressed the
e!ects of particle accumulation both at the discharging electrodes and at the collection
plates. Both phenomena are known to in#uence adversely the performance of
electrostatic precipitators. Many researchers, such as Deutsch [1], Cooperman [2],
Leonard et al. [3], Khim et al. [4], Zhibin and Guoquan [5], and Kallio and Stock
[6], conducted particle collection measurements of ESP. However, they concentrated
mostly on the e!ects of both turbulent mixing and secondary wind in multiwire
single-stage electrostatic precipitators. Speci"cally, Cooperman [2] considered reentrainment
and longitudinal turbulent mixing e!ects, Leonard et al. [3] the "nite
di!usivity, and Zhibin and Guoquan [7] the non-uniform air velocity pro"le. Among
them, only Zhibin and Guoquan [7] measured the collection e$ciency of a singlestage
ESP covering a wide particle size range. Even though their experimental data
are considered to be practical and useful, their experimental conditions were not
identi"ed clearly.
In the present study, well-de"ned collection e$ciency data for an ESP are presented
covering the particle size range of 0.1}100 lm. The particles used in the present study
came from the Bo-Ryung power plant in Korea. In addition, the ESP performance
was evaluated in terms of optimum operating conditions. Finally, the optimum
rapping conditions were sought under which the rapping e$ciency increases and the
particle re-entrainment decreases.
4 S.H. Kim, K.W. Lee / Journal of Electrostatics 48 (1999) 3}25
Fig. 1. Schematic diagram of the wind tunnel for the eight wired single-stage ESP performance test.
2. Review of theoretical models
2.1. Particle charging
Fig. 1 shows the laboratory-scale electrostatic precipitator. The particle charging
system consists of discharge wires with diameter (D8) and two grounded parallel
plates of length (¸). A high negative voltage (<8) is applied to the corona discharge
wires, and suspended particles of diameter (d1) #ow with air between the plates at
a velocity (;) in the y-direction. In the whole range of particle sizes, both "eld
charging and di!usion charging mechanisms contribute to signi"cant charges [8,9].
In these theoretical analyses, it is nearly correct to sum the rates of charging from the
two mechanisms and then solve for the particle charging as follows:
dq1
dt
"q4
q A1!q
q4B2#d21
eN
0
4 S8k¹p
m
expA! 2qe
d1k¹B (1)
where q1 is the particle charge, q4 is the saturation charge,N
0 is the average number of
molecules per unit volume, e is the electronic charge ("1.6]10~19 C), b is the ion
mobility ("1.4]10~4 m2/V s), e0 is the permittivity of free space ("8.85]
10~12 F/m), d1 is the diameter of particle, k is the Boltzmann constant ("1.38]
10~23 J/K), ¹ is the absolute temperature ("293 K), m is the mass of a particle
("(p/6)d31
o1), and o1 is the particle density ("2.25]103 kg/m3).
2.2. Theoretical models of particle collection ezciency
Theoretical models of ESPs were provided by Deutsch [1], Cooperman [2],
Leonard et al. [3], Zhibin and Guoquan [7] and others. The Deutsch model for
S.H. Kim, K.W. Lee / Journal of Electrostatics 48 (1999) 3}25 5
calculating the particle collection in an ESP assumes complete mixing by turbulent
#ow and thereby uniform concentration pro"les. In order to improve the drastic
assumption of in"nite di!usivity in the Deutsch model, many researchers tried to
develop "nite di!usivity models by dealing with the convective-di!usion equation
with various boundary conditions.
Cooperman [2] developed a theory which modi"es the Deutsch model to account
for the e!ects of turbulence and particle turbulent di!usion. The major limitations of
the Cooperman model lie absence of a general method to estimate the re-entrainment
factor and the particle di!usivity. Leonard et al. [3] developed a more complicated
two-dimensional model using the method of the separation of variables from the
convective-di!usion equation. He assumed uniformity of velocity components of
charged particles and particle di!usivity. This assumption fails to adequately describe
the particle di!usivity near the collection plates, where it is governed mainly by the
molecular transport and, therefore, the di!usivity near the wall is signi"cantly lower
than the di!usivity in the turbulent core. Zhibin and Guoquan [7] suggested a new
model for the single-stage ESP which takes into account the e!ect of turbulence
mixing by electric wind. Predicted collection e$ciencies of the above theoretical
models are summarized as follows:
gDe"1!exp(!De), (2)
gCoo"1!expC;¸
2D
!SG A;¸
2DB2#(1!R)PeA¸
=B2HD, (3)
gLeo"1!P1
0
PA m!De
J2De/PeBdm, (4)
gZhi"1!S Pe
4pDeP1
0
expC!Pe
4De
(m!De)2Ddm, (5)
where <t is the migration velocity ("q1EC#/3pkd1), C# is the slip correction factor
("1#(2/Pd1)[6.32#2.01 exp(!0.1095Pd1)]), P is the absolute pressure
("76 cm Hg), E is the electric "eld intensity ("<8/=),= is the width of wire-toplate,
De is the Deutsch number ("<t¸/;=), Pe is the electric Peclet number
("<t=/D1), D1 is the particle di!usivity, and P(z) in Eq. (4) is the Gaussian probability
distribution function given by
P(z)" 1
J2pPz
~=
expA!B2
2 BdB. (6)
In order to evaluate the particle di!usivity for the calculation of De and Pe, the #ow
is assumed to be a fully developed turbulent channel #ow. The related physical
quantities are speci"ed like below [10]
1
f 1@2
"!1.8 log10A6.9
ReB, ;q
"Sf;2
8
,
D5"0.12;q=, DB"k¹C#
3pkd1
, D1"D5#DB (7)
6 S.H. Kim, K.W. Lee / Journal of Electrostatics 48 (1999) 3}25
Fig. 2. Comparison of measured fractional number of particles with existing theoretical predictions.
Experimental conditions: D8"1 mm, <8"50 kV, Sx"150 mm, Sy"37.5 mm, ;"1 m/s, ¹6"12%.
where f is the friction factor, Re is the Reynolds number ("2;=/v), ;q is the friction
velocity, D5 is the turbulent di!usivity, and D
B is the Brownian di!usivity.
With the measured data of fractional number of particles at the inlet of the
single-stage ESP, measured fractional number of particles at the outlet of the singlestage
ESP was compared with calculated results of each theoretical prediction model
as shown in Fig. 2. The grade e$ciency is computed over the particle size range
0.1}100 lm, and then integrated the grade e$ciency to obtain the overall mass
e$ciency, where the particle size distribution function is assumed to be lognormal.
The size distribution of most polydisperse aerosols is found very close to the lognormal
distribution. Thus, this assumption is quite reasonable. The lognormal particle
size distribution function is given by Herdan [11]:
f (d)" 1
d ln p'(2p)0.5
expC!(ln d!ln d')2
2 ln2 p' D (8)
where :=
0
f (d)dd"1, the geometric mean diameter d'"5.03 lm and the geometric
standard deviation p'"1.73 from the measured data. The fraction number of each
particle size at the outlet of ESP can be described by this particle size distribution
function. Finally, the theoretical overall collection e$ciency is calculated for comparison
with the experimental results.
S.H. Kim, K.W. Lee / Journal of Electrostatics 48 (1999) 3}25 7
Table 1
The dimensions and operating conditions for the present eight wire single-stage ESP
Dimensions and operating conditions Values
Diameter of discharge wire, D8 (mm) 1, 2, 3, 4
Wire-to-plate spacing, Sx (mm) 50}200
Wire-to-wire spacing, Sy (mm) 12.5}50
Length of collection plate, ¸ (m) 0.75
Height of collection plate, H (m) 0.3
Air #ow velocity, ; (m/s) 0.8}2.5
Applied voltage on wires, <8 (kV) 10}70
Turbulence intensity, ¹6 (%) 12, 15, 18
Air temperature, ¹ (K) 293
Air pressure, P (atm) 1
3. Experimental procedure
The experimental apparatus used in this study consisted of six components: an
aerosol generation system, a wind tunnel, a laboratory-scale ESP, a rapping system,
an aerosol sampling system, and a particle concentration measurement system. The
ESP was 30 mm (=)]500 mm (H)]750 mm (¸) in size and was equipped with eight
discharge wires. The schematic diagram of the ESP is shown in Fig. 1. The basic
operating conditions of the ESP and the parameters used are shown in Table 1. The
single-lane wind tunnel was made of plexiglas and operated at the ambient temperature.
It can provide air velocities ranging from 0.1 to 6 m/s. A thermo-anemometer
(Model 8525, Alnor Instrument Company) was used to measure the air velocity. The
air "ltered with a high e$ciency particulate "lter (HEPA) was supplied with a turbulence
intensity of about 12% and at a "xed mean velocity of 1 m/s. The #y ash
particles which came from the Bo-Ryung electric power plant in Korea were dispersed
using a microdust feeder (Model MF-2, Sibata Scienti"c Technology Ltd.). The #y ash
was analyzed using chemical, physical and electrical methods and the analysis results
are shown in Table 2. The microdust feeder utilizes a variable-speed turntable to
transport #y ash at a constant rate to the test section in the wind tunnel. The
laboratory-scale single-stage ESP described previously was installed in the test section
as shown in Fig. 1. For aerosol sampling, an isokinetic sampling tube was used to
measure the concentration and the size distribution of the #y ash particles. The
measuring points were positioned at the center of the cross-sectional area of the wind
tunnel. Measurements of the particle concentrations upstream and downstream were
made by Aerosizer (Model Mach II and LD, API) which is capable of measuring
individually the size of particles in the range of 0.2}200 lm regardless of the particle
shapes. Finally, the overall collection e$ciency, g%91, was evaluated with the mass
loading of the particles measured at inlet and outlet of the ESP:
g%91"[(m)*/-%5!(m)065-%5]
(m)*/-%5
, (9)
8 S.H. Kim, K.W. Lee / Journal of Electrostatics 48 (1999) 3}25
Table 2
Results of chemical, physical, and electrical analysis of #y ash
Classi"cation Values
Chemcial components of #y ash SiO2 (46.47 wt%)
Al
2
O
3
(24.48 wt%)
Fe2O3 (15.28 wt%)
CaO (4.06 wt%)
MgO (1.56 wt%)
Na2O (0.35 wt%)
K2O (1.17 wt%)
SO
3
(4.20 wt%)
TiO2 (1.18 wt%)
Measurement of particle size distribution GMD 5.03 m
GSD 1.73
d1)4.23 lm
d1'4.23 lm
Electrical resistivity 4.3]109 () m)
where (m)*/-%5 is the mass loading of particles at the ESP inlet. (m)065-%5 is the mass
loading of particles at the ESP outlet.
Presently, two philosophies are prevalent with regard to removal and transfer of the
particulate from the collection plates.

毕业论文题目

  化学化工环境
  1. 喜树发根培养及培养基中次生代谢产物的研究
  2. 虾下脚料制备多功能叶面肥的研究
  3. 缩合型有机硅电子灌封材料交联体系研究
  4. 棉籽蛋白接枝丙烯酸高吸水性树脂合成与性能研究
  5. 酶法双甘酯的制备
  6. 硅酸锆的提纯毕业论文
  7. 腐植酸钾/凹凸棒/聚丙烯酸复合吸水树脂的合成及性能研究
  8. 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究
  9. 铝合金阳极氧化及封闭处理
  10. 贝氏体白口耐磨铸铁磨球的研究
  11. 80KW等离子喷涂设备的调试与工艺试验
  12. 2800NM3/h高温旋风除尘器开发设计
  13. 玻纤增强材料注塑成型工艺特点的研究
  14. 年处理30万吨铜选矿厂设计
  15. 年处理60万吨铁选厂毕业设计
  16. 广东省韶关市大宝山铜铁矿井下开采设计
  17. 日处理1750吨铅锌选矿厂设计
  18. 6000t/a聚氯乙烯乙炔工段初步工艺设计
  19. 年产50万吨焦炉鼓冷工段工艺设计
  20. 年产25万吨合成氨铜洗工段工艺设计
  21. PX装置异构化单元反应器进行自动控制系统设计
  22. PX装置异构化单元脱庚烷塔自动控制系统设计
  23. 金属纳米催化剂的制备及其对环己烷氧化性能的影响
  24. 高温高压条件下浆态鼓泡床气液传质特性的研究
  25. 新型纳米电子材料的特性、发展及应用
  26. 发达国家安全生产监督管理体制的研究
  27. 工伤保险与事故预防
  28. 氯气生产与储存过程中危险性分析及其预防
  29. 无公害农产品的发展与检测
  30. 环氧乙烷工业设计
  31. 年产 21000吨 乙醇 水精 馏装置 工艺设计
  32. 年产26000吨乙醇精馏装置设计
  33. 高层大厦首层至屋面消防给水工程设计
  34. 某市航空发动机组试车车间噪声控制设计
  35. 一株源于厌氧除磷反应器NL菌的鉴定及活性研究
  36. 一株新的短程反硝化聚磷菌的鉴定及活性研究
  37. 广州地区酸雨特征及其与气象条件的关系
  38. 超声协同硝酸提取城市污泥重金属的研究
  39. 脱氨剂和铁碳法处理稀土废水氨氮的研究
  40. 稀土 超磁致 伸缩 材料 扬声器 研制
  41. 纳米氧化铋的发展
  42. 海泡石TiO2光敏催化剂的制备及其研究
  43. 超磁致伸缩复合材料的制备
  44. 钙钛矿型无铅压电陶瓷的制备和性能研究毕业论文
  45. APCVD法在硅基板上制备硅化钛纳米线
  46. 浅层地热能在热水系统中的利用初探及其工程设计
  47. 输配管网的软件开发

上一篇:知网大学论文范文

下一篇:毕业论文结尾引用