欢迎来到学术参考网
当前位置:发表论文>论文发表

药物快速检测论文

发布时间:2023-03-13 07:15

药物快速检测论文

药品生物测定的发展趋势 作者:吕会成 【关键词】 生物测定;药理;药品 [摘要] 生物测定是经典的药品检测专业之一,现代仪器分析的广泛应用,给其带来了极大的挑战和机遇,面对目前的基本状况,阐明了生物测定专业在中药开发、新药研制、药物安全性评价及微生物限度检查方面的应用和发展趋势。 [关键词] 生物测定;药理;药品 药品是特殊商品,药品质量直接关系到用药者的安全和疗效。药品检测方法和检测水平随着制药工业的发展不断改进提高。由于现代科学技术的发展,相邻学科之间的相互渗透,分析化学的发展经历了三次巨大的变革,使分析化学发展成为以仪器分析为主的现代分析化学。面对生命科学中复杂的分离分析任务,发展了色谱分析方法。结构分析、价态分析、晶体分析等方面的研究又促进了光谱分析的发展。以计算机应用为主要标志的信息时代的来临,仪器分析迅速发展,为药物检测提供各种非常灵敏、准确而快速的分析方法[1]。生物测定受到了极大的挑战,其发展前景令我们从事药品生物测定工作者所关注。 1 药品生物的特点与业务范围 1.1 药品生物测定的定义与特点 药品生物测定(简称生测)是利用药品(或药品中的有害杂质)对生物(或离体器官及组织)所引起的反应来测定药品的含量或安全性的一种方法。 生测法的优点是测定的结果与医疗要求基本一致,能直接反映药品的效果或毒副作用,这是其他物理学方法或化学方法所不能达到的。因此,目前各国药典仍大都采用这一方法。 生测法的缺点是检验周期长,微生物有生长繁殖过程,动物有生理代谢过程,观察分析时间一般在2~7天,有些试验会更长。影响因素多,有生物差异性,也有系统操作误差和环境条件等造成的影响。用品用具、动物质量、仪器设备都会对结果产生影响[2]。所以,以生测主检的品种在中国药典中逐版减少。 1.2 药品生物测定的业务范围 中国药典是法定的药品标准,它将药品质量控制项目归为四类:性状、鉴别、检查和含量。生测的业务主要涉及到中西药品的检查类和含量类。 其中作为药品安全性检查项目最多,包括:无菌、热原、细菌内毒素、异常毒性、安全试验、急性全身毒性、过敏物质、刺激性、溶血、降压物质、微生物限度等。含量(或效价)测定包括:抗生素微生物检定法,胰岛素、硫酸鱼精蛋白、缩宫素、卵泡刺激素、黄体生成素、升压素等生物检定法。 2 药品生物测定的现状 由于现代化检测仪器的广泛应用,药品生物测定的品种和范围,方法和要求,也发生了很大变化。 2.1 品种和范围的变化 抗生素的含量测定,最初大部分抗生素用微生物法测定含量。随着制药工业发展,提纯方法不断改进,有效组分更加明确,许多品种检测方法不断改为仪器测定和化学测定。例如:2000年版中国药典收载约219个抗生素品种,其中有15个原料药及其制剂从1995年版的化学法和微生物法改为高效液相色谱法(简称HPLC),使该法达到97种,微生物法仅有24个,其中9个品种是新增加的。有人预计本世纪初,HPLC法会发展成为中国药典使用频率最高的一种仪器分析法[3]。规定取消抗生素过期检验,抗生素微生物效价测定的业务工作量更是明显减少。 药品注射剂的热源检查。1942年美国首先将家兔法收入药典,相继世界各国药典均规定用该法。中国药典从1953年开始收载。自1973年以来,鲎试剂被证明是一种检测细菌内毒素(热原)存在的灵敏试剂。用鲎试剂要比家兔试验迅速、经济,所需样品量少,操作过程工作量小,每天可进行许多样品检测。1980年美国药典20版首载“细菌内毒素检查法”,1985年USP21版收载5种注射用水及40种放射性药品。1991年11月执行的USP22版第五增补版公布了185种药品删除家兔法,用细菌内毒素检查法代替。1995年USP23版注射剂的热源项几乎都被细菌内毒素检查法代替[4]。 我国从20世纪70年代开始研究制备鲎试剂,1988年卫生部颁布细菌内毒素检查法,1993年中国药典第二增补本收载该法,但未涉及任何品种,1995年中国药典二部正式收载,并规定了注射用水、氯化钠注射液和二十多种放射性药品并删除热源检查,以内毒素代替。2000年版中国药典进一步扩大到68种。预计2005年版中国药典还要继续增加品种,热源项都将被内毒素代替。动物试验改为生化试验。 2.2 实验动物 生测离不开实验动物,在实验中,为了减少生物差异,提高动物反应敏感性,以最少的动物达到最满意的结果。国家非常重视实验动物,1988年国务院颁布了《实验动物管理条件》,对实验动物的饲管、管理、使用等做出了明确规定,实行达标认证制度,严格管理。按微生物控制程度把实验动物分为四级:普通动物、清洁动物、无特殊病原体动物和无菌动物[5]。一般动物实验必须达到清洁动物标准,种系清楚,不杂乱,无规定指出的疾病。动物级别越高,饲养管理条件越严,设施投资越大。实验动物是实验研究的活试剂,既要有纯度,也要有数量,背景明确,来源清楚,符合要求才能使用。(随着药品纯度的提高,凡是有准确的化学和物理方法或细胞学方法能取代动物实验,进行药品和生物制品质量检测,应尽量采用,以减少动物的使用。) 2.3 药品生物测定在方法上的改进与变化 为了缩短操作时间,减少实验误差,近年来生测方面也研制并投入使用了部分仪器设备,如:抗生素抑菌圈测定仪、微机热原测温仪、集菌仪、细菌数测定仪等,减轻了工作强度,提高了工作效率,检测结果更加准确可靠。 3 药品生物测定的发展趋势 生测作为经典方法沿用至今,表明它有其他方法不能替代的特点,在药品检验中发挥了重要作用。不少老产品改为其他方法控制质量,也会不断有新产品离不开生测法,我们应当充分发挥它的优点,尽量克服它的不足,开拓新的业务范围。 3.1 微生物限度检查工作量大 为了控制药品染菌限度,1975年美国药典19版首载微生物限度检查,1980年英国药典收载,我国在1990年由卫生部颁布了药品卫生标准及检验方法,1995年版中国药典正式收载[6]。2000年版中国药典按剂型规定了微生物限度标准,执行范围除注射剂和中药饮片外几乎包括中西药的所有制剂和原料。该项检查成为药典品种适用最多的检查项目,占当前地市级药品检验所生测室业务工作量的80%以上。在这项检查中,有大量的业务技术需要我们进一步研究,改进试验条件,使数据准确,探讨快速检测的新方法。药包材的检查,国家药监局已经发布试行标准,业务范围将更加扩大,这是我们进一步做好工作,努力探讨研究的新领域。 3.2 药品生物测定在中药开发中的作用 我国是中药王国,2000年版中国药典一部共收载920种,其中中成药398种。有含量测定的157种,仅占总数的17%,中药成分多,杂质和干扰物质很多。复方制剂,尤其大复方制剂专属性的检出处方中所含药材很困难,有大量的研究工作需要做。中成药中的杂质如重金属、残留农药等达到一定水平会产生毒副作用,影响药物安全性[7]。要让中药制剂打进国际市场,我们在检查类的控制项目和含量类的方法探讨方面有大量工作要做,生物测定可以在毒理、药理方面进行研究、探讨,逐步完善质量控制标准,提高制剂质量发挥更大的作用。 3.3 新药研制开发与安全性评价 新药研制开发是多学科合作的系统工程。在获得一个具有生物活性的化合物后,研究开发组织者要在生物医学领域进行药物评价研究,首先必须组织药理学、毒理学、病理学、兽医学、遗传学、生物化学、药代动力学方面的专家进行合作研究,按药物非临床研究管理规范GLP进行管理。组织药理、毒理(包括一般毒理和特殊毒理)、病理、药代动力学和毒代动力学、药物分析、临床化学、实验动物、生物统计、质量保证等部门有关人员进行讨论,分阶段做出评价[8]。生测在这方面可以参加开发研究或进行技术指导。 综上所述,药品生物测定是药物分析的重要组成部分,是不可缺的检测专业,现代仪器的大量使用,不仅不会影响其发展,而是如虎添翼,让药品生物测定展示出新的前景。 [参考文献] 1 倪坤义,田颂九,丁丽霞.21世纪药物分析学的发展趋势.中国药学杂志,2000,35(12):798

急需生物制药类论文(5000字以上)

摘要:现代生物技术制药工业始于1971年,现已创造出35个重要治疗药物,全球大约有2500多家公司,

主要产品有重组蛋白质药品、重组疫苗和诊断、治疗用的单克隆机体三大类。我国自80年代开始进行现

代生物技术药品的研究和开发,到1998年7月底,我国已有近200多个现代生物技术制药企业,已有14种

现代生物技术药品和疫苗投产,已经批准进入临床的有近10种药,正在进行临床前研究的有10多种。在

采用现代生物技术改造传统生物技术制药产业方面已取得初步成果。但我国生物技术诊断试剂、酶工程

、动植物细胞工程医药产品、现代生物技术支撑技术、后处理技术和制剂技术等方面与国外还存在差距

。其中不重视中试放大过程是影响我国生物技术产业化发展的一个很重要的原因。

关键词:生物技术制药 生物技术的应用 生物技术发展 生物药物研究进展

生物技术药物(biotech drugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进

技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子

生物、生物物理等基础学科的突破为后盾形成的产业。现在,世界生物制药技术的产业化已进入投资收

获期,生物技术药品已应用和渗透到医药、保健食品和日化产品等各个领域,尤其在新药研究、开发、

生产和改造传统制药工业中得到日益广泛的应用,生物制药产业已成为最活跃、进展最快的产业之一。

有些学者认为,20世纪的科学技术是以物理学和化学的成就占主导地位,而21世纪的科学技术是以生物

学的成就占主导地位。无论这种说法是否得到普遍的认同,生物技术是当今高技术中发展最快的领域似

乎是不争的事实。 科学家预测,生命科学到2015年会取得革命性进展。这些进展可以帮助人类解决很多

目前无法医治的疾病的治疗问题,彻底消除营养不良,改善食品的生产方式,消除各种污染,延长人类

寿命,提高生命质量,为社会安全和刑侦提供新的手段。有些成果还可以帮助人类加速植物和动物的人

工进化以及改善生态环境对人类的影响等。产生新的有机生命的研究也会取得进展。

1.生物制药现状

目前生物制药主要集中在以下几个方向:

1 肿瘤 在全世界肿瘤死亡率居首位,美国每年诊断为肿瘤的患者为100万,死于肿瘤者达54.7

万。用于肿瘤的治疗费用1020亿美元。肿瘤是多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综

合手段治疗。今后10年抗肿瘤生物药物会急剧增加。如应用基因工程抗体抑制肿瘤,应用导向IL-2受体

的融合毒素治疗CTCL肿瘤,应用基因治疗法治疗肿瘤(如应用γ-干扰素基因治疗骨髓瘤)。基质金属蛋白

酶抑制剂(TNMPs)可抑制肿瘤血管生长,阻止肿瘤生长与转移。这类抑制剂有可能成为广谱抗肿瘤治疗剂

,已有3种化合物进入临床试验。

2 神经退化性疾病 老年痴呆症、帕金森氏病、脑中风及脊椎外伤的生物技术药物治疗,胰岛素生长

因子rhIGF-1已进入Ⅲ期临床。神经生长因子(NGF)和BDNF(脑源神经营养因子)用于治疗末稍神经炎,肌

萎缩硬化症,均已进入Ⅲ期临床。

美国每年有中风患者60万,死于中风的人数达15万。中风症的有效防治药物不多,尤其是可治疗不

可逆脑损伤的药物更少,Cerestal已证明对中风患者的脑力能有明显改善和稳定作用,现已进入Ⅲ期临

床。Genentech的溶栓活性酶(Activase重组tPA)用于中风患者治疗,可以消除症状30%。

3 自身免疫性疾病 许多炎症由自身免疫缺陷引起,如哮喘、风湿性关节炎、多发性硬化症、

红斑狼疮等。风湿性关节炎患者多于4000万,每年医疗费达上千亿美元,一些制药公司正在积极攻克这

类疾病。如 Genentech公司研究一种人源化单克隆抗体免疫球蛋白E用于治疗哮喘,已进入Ⅱ期临

床;Cetor′s公司研制一种TNF-α抗体用于治疗风湿性关节炎,有效率达80%。Chiron公司的β-干扰素用

于治疗多发性硬化病。还有的公司在应用基因疗法治疗糖尿病,如将胰岛素基因导入患者的皮肤细胞,

再将细胞注入人体,使工程细胞产生全程胰岛素供应。

4 冠心病 美国有100万人死于冠心病,每年治疗费用高于1 170亿美元。今后10年,防治冠心

病的药物将是制药工业的重要增长点。Centocor′s Reopro公司应用单克隆抗体治疗冠心病的心绞痛和

恢复心脏功能取得成功,这标志着一种新型冠心病治疗药物的延生。
基因组科学的建立与基因操作技术的日益成熟,使基因治疗与基因测序技术的商业化成为可能,正在达

到未来治疗学的新高度。转基因技术用于构造转基因植物和转基因动物,已逐渐进入产业阶段,用转基

因绵羊生产蛋白酶抑制剂ATT,用于治疗肺气肿和囊性纤维变性,已进入Ⅱ,Ⅲ期临床。大量的研究成果

表明转基因动、植物将成为未来制药工业的另一个重要发展领域。

2.生物制药展望

今后10年生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成

新领域。目前热门的药物生物技术如下:

表1 热门药物生物技术

技 术 新颖性 技 术 新颖性
组合化学 成熟领域 前导物综合鉴定技术 新生技术
药学基因组科学 发展领域 核糖酶 新生技术
蛋白质工程 发展领域 抗体酶 新生技术
基因治疗 发展领域 药物设计与人工智能 新生技术
糖类治疗剂 发展领域 功能抗原 新生技术

表2 正在研究开发的生物技术药物类型

领 域 开发药物品种 领 域 开发药物品种
单克隆体 78 人生长激素 5

疫苗 62 组织纤溶酶原激活剂 4
基因治疗 28 凝血因子 3
白介素 11 集落细胞刺激因子 3
干扰素 10 促红细胞生成素 2
生长因子 10 SOD 1
重组可溶性受体 6 其他 56
反义药物 6 总数 284

生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向,

例如微机电系统、材料科学、图像处理、传感器和信息技术等。尽管生物技术的高速发展使人们难以作

出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面

的进展正在加快。
除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人

体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可

以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。
除了解决传统的细菌和病毒问题之外,人们正在开发解决化学不平衡和化学成分积累的新疗法。例如,

正在开发之中的抗体可以攻击体内的可卡因,将来可以用于治疗成瘾问题。这种方法不仅有助于改善瘾

君子的状况,而且对于解决全球性非法毒品贸易问题具有重大影响。

各种新技术的出现有助于新药物的开发。计算机模拟和分子图像处理技术(例如原子力显微镜、质

量分光仪和扫描探测显微镜)相结合可以继续提高设计具有特定功能特性的分子的能力,成为药物研究和

药物设计的得力工具。药物与使用该药物的生物系统相互作用的模拟在理解药效和药物安全方面会成为

越来越有用的工具。例如,美国食品药物管理局(FDA)在药物审批的过程中利用Dennis Noble的虚拟心

脏模拟系统了解心脏药物的机理和临床试验观测结果的意义。这种方法到2015年可能会成为心脏等系统

临床药物试验的主流方法,而复杂系统(例如大脑)的药物临床试验需要对这些系统的功能和生物学进行

更为深入的研究。

到下世纪初生物技术药物的种类数目尚不会超过一般药物的总数,但生物技术制药公司总数将超过

前10年的6倍。目前主要生物技术公司多分布在美国,如Amgen,Genetics institute,Genzyme,Genentech

和Chiron,还有Biogen也发展较快。1987年尚没有一种重组DNA药物进入世界药品销售额排名前列表,但

到1996年已有多种生物工程药物榜上有名。经上市的生物技术药物主要含3大类,即重组治疗蛋白质、重

组疫苗和诊断或治疗用的单克隆抗体。

药物的研究开发成本目前已经高到难以为继的程度,每种药物投放市场前的平均成本大约为6亿美

元。这样高的成本会迫使医药工业对技术的进步进行巨大的投资,以增强医药工业的长期生存能力。综

合利用遗传图谱、基于表现型的定制药物开发、化学模拟程序和工程程序以及药物试验模拟等技术已经

使药物开发从尝试型方法转变为定制型开发,即根据服药群体对药物反应的深入了解会设计、试验和使

用新的药物。这种方法还可以挽救过去在临床试验中被少数患者排斥但有可能被多数患者接受的药物。

这种方法可以改善成功率、降低试验成本、为适用范围较窄的药物开辟新的市场、使药物更加适合适用

对症群体的需要。如果这种技术趋于成熟,可以对制药工业和健康保险业产生重大影响。

值得注意的是,制药工业的知识产权保护在世界各地是不平衡的。某些地区(例如亚洲)会继续以生

产专利过期药物为主,有些地区(如美国和欧洲)除了继续生产低利润的药物外会不断开发新的药物。

总之,综合多学科的努力,通过新技术的创立可以大大拓宽发明新药的空间,增加发明新药的机遇

与速度。因为这些手段可以寻找快速鉴定药物作用的靶,更有效地发现更多新的先导物化学实体,从而

为发明新药提供更加广阔的前景。

N M R技术在体内药物分析中的应用

摘要NMR技术的迅速发展,使其在药学领域中从新药的化学结构的预测扩展到对体液、组织中药物及其代谢物的分析。本文综述了近年发展的几种NMR模式在体内药物分析中的应用。与其它分析方法相比,NMR技术在体内药物分析中具有简便、无损伤、动态等特点。并且指出了该技术在应用中存在的问题和解决办法,展望了应用前景。

  关键词NMR技术体内药物分析代谢物

  体内药物分析是对生物体内药物及其代谢物的分析。由于体内样品有这样一些特点:药物及其代谢物在大量的体液中浓度很低;存在着内源性干扰物质;取样量受限制;样品具有不重复性。因此体内药物分析对分析方法的选择有较高的要求。近20年来,NMR技术的发展使其在药物领域中的应用由鉴定体外药物的化学结构扩展到对体液、组织中药物及其代谢物的分析。与其它分析方法相比,NMR方法具有:

  (1)简便性无需对样品进行繁杂的提取或衍生化,减少了由此带来的误差;

  (2)无损伤性对取样量有限的生物样品经NMR分析后还可用于其它处理,甚至可对生物整体进行无损伤分析;

  (3)连续性NMR可对整体生物系统进行动态监测而不扰乱生物体内的各种平衡,实现药物的在体分析;

(4)高分辨性 NMR谱线为Hz量级,

  能提供分子水平的结构信息;

  (5)多目标性无需进行分析条件摸索,可在同一物理条件下检测药物及其多种代谢物。

  由于NMR技术具有以上特点,而使其在体内药物分析中的应用日益增多。

  把NMR引进体内药物分析时遇到灵敏度低的问题,所以增强NMR的灵敏度一直是NMR发展中被关注的焦点之一。70年代后,多种脉冲技术如:傅立叶变换技术(PTF)、自旋回波脉冲序列、不灵敏核极化转移增益(INEPT)、无畸变极化转移增益(DEPT)、双量子谱等新技术的发展,高磁场、计算机处理系统的应用,使NMR灵敏度提高了若干个数量级。目前体内药物分析中常用的是高磁场强度的脉冲(300~800Hz)傅立叶变换NMR谱仪。

  在体内药物分析中,NMR技术可用于药物及其代谢物的结构鉴定、代谢途径归属、定量分析以及药物与内源性物质相互作用的研究。研究手段主要是检测药物及其代谢物的核磁矩核素,如1H、13C、19F、31P等。所用生物样品可为传统的血浆、尿液、唾液、胆汁、切除的组织、灌流器官液等,也可为整体生物系统。本文主要介绍几种NMR模式在体内药物分析中的应用。

  11H-NMR

  目前各国药典在药物分析方法中均收载了有关1H-NMR法。美国药典中亚硝酸异戊酯及其吸入剂,英国药典中庆大霉素C皆用1H-NMR进行质量控制。但在体内药物分析中使用1H-NMR遇到了难题:体液主要成分是水,由于水的质子浓度远高于待测物浓度,使待测信号难以检出。80年代提出了水峰压制技术、冷冻干燥技术,使上述问题得以克服,1H-NMR已广泛用于体内药物分析。已报道的有:氨苄青霉素、布洛芬、硝苯地平、硫氮卓酮、阿司匹林、美西律等的体内样品分析。

  H-NMR主要用于含有孤立甲基、乙基、乙酰基的药物及其代谢物的分析。检测限为10μmol/ml,样品处理一般经冷冻干燥后重水溶解即可。Connor等[1]用高分辨1H-NMR(400MHz)研究了大鼠静注羟氨苄青霉素后24h内尿样中药物的代谢情况。实验用自旋回波技术,消除内源性物质的干扰,增强了测定的灵敏度。尿样中共振信号在0.5~1.7ppm范围内的两组峰为青霉素结构噻唑环C2上的一对偕甲基信号,分辨清晰,测得主要代谢物为5R,6R和5S,6R青霉素与二酮哌嗪。该项研究首次发现了羟氨苄青霉素与内源性碳酸氢盐存在着相互作用。Jaroszewski等用水峰压制H-NMR快速测定了人尿样中枸橼酸碳酰胺嗪(DEC)的量。尿样用10%的D2O混合即可。以DEC上弛豫时间为1s的N-三乙基为检测基团,检测限低于10μg/ml,精密度、准确度良好,实验中未检测出DEC的N-氧化物,药物基本以原型消除。Keire等[3]用自旋回波脉冲序列1H-NMR(500MHz)研究了含硫基药物(RSH)青霉胺和卡托普利代谢过程中与血浆白蛋白(ALBBSC)的相互作用。最初青霉胺(PSH)的血浆样品谱显示1.562ppm和1.464ppm尖锐的两组单峰信号为PSH的两个甲基信号,12小时后血浆样品谱两组甲基信号被显著削弱,且1.562ppm处信号被代谢生成的双硫化物(PSSP)和药物-半胱氨酸(PSSC)复合物覆盖。卡托普利和血浆白蛋白的作用与青霉胺相似,只是更为复杂。药物与血浆蛋白的结合直接影响药物在体内的效用。Maschke[4]用1H-NMR快速检测尿样中的三甲胺来诊断fish-odour综合征。Ko-dama[5]用1H-NMR确认了治疗肝豆状核变性的三乙烯羟化四甲胺(TRIEN)的N-乙酰化代谢物,药物TRIEN在体内易与铜、铁、锌离子结合使活性降低。

  219F-NMR

  F-NMR在体内药物分析中可检测浓度高于10μmol/ml、化学位移范围在-20ppm~50ppm的含氟药物及其代谢物。对于单氟原子药物谱图中每一组峰即代表一种含氟物质。19F-NMR对传统生物样品中药物的研究已有许多报道,如尿样中氟氯西林代谢研究;尿样、肝脏、肿瘤中5-氟尿嘧啶(5-FU)代谢及5-FU灌流心脏的心脏毒性研究;尿样中氟比洛芬代谢途径归属等。Tan-don等[6]用19F-NMR对小鼠腹腔注射抗病毒药物三氟胸苷(F3TdR)后的尿样、血浆、肝脏进行分析,检测出三种代谢物:5-三氟胸腺嘧啶(F3T)(12.02ppm)、5-三氟甲基-5,6-二氢胸腺嘧啶(DHF3T)(8.19ppm)和5-三氟甲基-5,6-双羟基胸腺嘧啶(DOHF3T)(-0.53ppm)。其中后两种代谢物为首次检测,这就为F3TdR的体内过程提供了进一步的解释。

近年来NMR谱技术发展到对整体生物系统进行体内药物分布、代谢监测。由于内源性含氟物质的浓度极低,背景干扰小,使19F-NMR优于其它磁核谱技术而首先应用于整体生物分析。Murphy等[7]用质子去偶及NOE增益 F-NMR监测接受化疗病人的肝脏中5-FU及其代谢物(FBAL)。Campbell等[8]利用NMR无损伤特性及表面线圈技术,测定了不同剂量抗菌素3-氟甲基青霉素V衍生物在活体SD大鼠体内的药物浓度。将静脉注药后的麻醉鼠置于表面线圈中,用19F-NMR测定鼠膀胱内尿样及胸内药物浓度。Jynpe等[9]用19F-NMR分析了给药后24h内抗菌素氟罗沙星在正常人肝脏及肌肉中的分布。上述研究为无损伤测定生物活体内药物提供了例证,且为药代动力学研究提供了一种动态测定研究的方法。

  313C-NMR和31P-NMR

C核天然丰度低,其谱峰强度仅为质子峰的1/63,因而13C-NMR灵敏度远低于氢谱。NMR的迅速发展将信号累加平均(CAT)、质子噪声去偶、偏共振去偶、PFT、NOE、DEPT等新技术与 C-NMR结合,使C-NMR也能用于体内药物分析。C-NMR一大特点为化学位移范围很宽(约300ppm),相当于氢谱化学位移范围的20倍。因此不同化学环境的13C共振峰重叠机会甚少,分辨率优于氢谱,实践中常将二者互补使用。已报道过用13C-NMR研究布洛芬[10]、雷尼替丁枸橼酸铋[11]、脱氧青蒿素[12]的体内过程。Ogiso等[13]用13C-NMR探讨了脂肪酸对普萘洛尔透皮吸收的影响。实验结果表明:与月桂酸酰胺及甲酯化合物相比,月桂酸对普萘洛尔透皮吸收的增强作用显著。普萘洛尔制剂中加入月桂酸后,血浆中普萘洛尔浓度明显提高。Copeland等[14]用13C-NMR和H-NMR共同确认了免疫抑制剂环孢霉素G的两种代谢途径:羟基化和去甲基化。其代谢物药理活性均低于原型药。

  含31P的药物较少,因此31P-NMR在体内药物分析中应用不多。已有过对环磷酰胺(CP)代谢研究的有关报道。体内的酶活性,药物的水合作用及合用地塞米松皆影响CP的分布[15]。此外Bishop等[16]用31P-NMR研究了醚酯类抗肿瘤药物十六烷基磷酰胆盐(HPC)在小鼠肝脏中的代谢。结果表明:HPC在体内被磷脂酶D分解代谢,酶的作用位点在烷基磷酯和胆盐之间。

N M R技术在体内药物分析中的应用_62医药论文投稿网_药学论文在线投稿_医药论文范文

上一篇:山师信工毕业论文

下一篇:核心论文期刊代发