欢迎来到学术参考网
当前位置:发表论文>论文发表

机械视觉检测论文

发布时间:2023-03-13 15:01

机械视觉检测论文

之前也是为论文苦恼了半天,网上的范文和能搜到的资料,大都不全面,一般能有个正文就不错了,而且抄袭的东西肯定不行的,关键是没有数据和分析部分,我好不容易搞出来一篇,结果还过不了审。

还好后来找到文方网,直接让专业人士帮忙,效率很高,核心的部分帮我搞定了,也给了很多参考文献资料。哎,专业的事还是要找专业的人来做啊,建议有问题参考下文方网吧

下面是之前文方网王老师发给我的题目,分享给大家:

基于深度学习的无人机地面小目标算法研究

基于视觉的智能汽车面向前方车辆的运动轨迹预测技术研究

模拟射击训练弹着点检测定位技术研究

基于深度卷积神经网络的空中目标识别算法的研究

基于可见光图像的飞行器多目标识别及位置估计

无人驾驶车辆手势指令识别研究与实现

车载毫米波雷达目标检测技术研究

基于多传感融合的四足机器人建图方法

中老年人群跌倒风险评估的数据采集系统

基于深度学习的视觉SLAM闭环检测方法研究

真实图片比较视觉搜索任务的年龄效应及对策研究

室内复杂场景下的视觉SLAM系统构建与研究

基于双目内窥镜的软组织图像三维重建

学习资源画面色彩表征影响学习注意的研究

毫米波雷达与机器视觉双模探测关键技术的研究

语义地图及其关键技术研究

多重影响因素下的语音识别系统研究

基于卷积神经网络的自主空中加油识别测量技术研究

基于视觉语义的深度估计、实例分割与重建

重复视觉危险刺激——本能恐惧反应的“二态型”调控机制研究

低成本视觉下的三维物体识别与位姿估计

面向非规则目标的3D视觉引导抓取方法及系统研究

基于物体识别地理配准的跨视频行人检测定位技术研究

基于结构光的非刚体目标快速三维重建关键技术研究

基于机器视觉的动物交互行为与认知状态分析系统

关于单目视觉实时定位与建图中的优化算法研究

动态场景下无人机SLAM在智慧城市中的关键技术研究

面向视觉SLAM的联合特征匹配和跟踪算法研究

基于深度学习的显著物体检测

基于平面波的三维超声成像方法与灵长类动物脑成像应用研究

基于物体检测和地理匹配的室内融合定位技术研究

基于多模态信息融合的人体动作识别方法研究

基于视觉惯性里程计的SLAM系统研究

基于语义信息的图像/点云配准与三维重建

基于种子点选取的点云分割算法研究

基于深度学习的场景文字检测与识别方法研究

基于运动上下文信息学习的室内视频烟雾预警算法研究

基于深度学习的垃圾分类系统设计与实现

面向手机部件的目标区域检测算法的设计与实现

电路板自动光照检测系统的设计与实现

基于机器视觉的工件识别与定位系统的设计与实现

基于深度学习的物件识别定位系统的设计与实现

基于视觉四旋翼无人机编队系统设计及实现

基于视觉惯导融合的四旋翼自主导航系统设计与实现

面向城市智能汽车的认知地图车道层生成系统

基于深度学习的智能化无人机视觉系统的设计与仿真

基于知识库的视觉问答技术研究

基于深度学习的火灾视频实时智能检测研究

结构化道路车道线检测方法研究

基于机器视觉的带式输送机动态煤量计量研究

基于深度学习的小目标检测算法研究

基于三维激光与视觉信息融合的地点检索算法研究

动态环境下仿人机器人视觉定位与运动规划方法研究

瓷砖铺贴机器人瓷砖空间定位系统研究

城市街景影像中行人车辆检测实现

基于无线信号的身份识别技术研究

基于移动机器人的目标检测方法研究

基于深度学习的机器人三维环境对象感知

基于特征表示的扩展目标跟踪技术研究

基于深度学习的目标检测方法研究

基于深度学习的复杂背景下目标检测与跟踪

动态扩展目标的高精度特征定位跟踪技术研究

掩模缺陷检测仪的图像处理系统设计

复杂场景下相关滤波跟踪算法研究

基于多层级联网络的多光谱图像显著性检测研究

基于深度结构特征表示学习的视觉跟踪研究

基于深度网络的显著目标检测方法研究

基于深度学习的电气设备检测方法研究

复杂交通场景下的视频目标检测

基于多图学习的多模态图像显著性检测算法研究

基于面部视频的非接触式心率检测研究

单幅图像协同显著性检测方法研究

轻量级人脸关键点检测算法研究

基于决策树和最佳特征选择的神经网络钓鱼网站检测研究

基于深度学习的场景文本检测方法研究

RGB-D图像显著及协同显著区域检测算法研究

多模态融合的RGB-D图像显著目标检测研究

基于协同排序模型的RGBT显著性检测研究

基于最小障碍距离的视觉跟踪研究

基于协同图学习的RGB-T图像显著性检测研究

基于图学习与标签传播优化模型的图像协同显著性目标检测

姿态和遮挡鲁棒的人脸关键点检测算法研究

基于多模态和多任务学习的显著目标检测方法研究

基于深度学习的交通场景视觉显著性区域目标检测

基于生物视觉机制的视频显著目标检测算法研究

基于场景结构的视觉显著性计算方法研究

精神分裂症患者初级视觉网络的磁共振研究

基于fMRI与TMS技术研究腹侧视觉通路中结构优势效应的加工

脑机接口游戏神经可塑性研究

基于YOLOV3算法的FL-YOLO多目标检测系统

基于深度与宽度神经网络显著性检测方法研究

基于深度学习的零件识别系统设计与研究

基于对抗神经网络的图像超分辨算法研究

基于深度学习复杂场景下停车管理视觉算法的研究与实现

镍电解状态视觉检测与分析方法研究

跨界训练对提升舞者静态平衡能力的理论与方法研究

施工现场人员类型识别方法的研究与实现

基于深度学习的自然场景文字检测方法研究

基于嵌入式的交通标志识别器的设计

基于视觉感知特性与图像特征的图像质量评价

机器视觉论文好写吗

这样的主题论文还是比较好写的,首先必须要抓住论文的中心,确立文章的思想内涵,然后分几个不同的角度进行有效的论证。

iccv论文是什么级别

ICCV论文是计算机视觉领域最高级别的会议论文。

计算机视觉是使用计算机及相关设备对生物视觉的一种模拟。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样。

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。

CVPR录用标准

CVPR有着较为严苛的录用标准,会议整体的录取率通常不超过30%,而口头报告的论文比例更是不高于5%。而会议的组织方是一个循环的志愿群体,通常在某次会议召开的三年之前通过遴选产生。CVPR的审稿一般是双盲的,也就是说会议的审稿与投稿方均不知道对方的信息。

通常某一篇论文需要由三位审稿者进行审读。最后再由会议的领域主席(area chair)决定论文是否可被接收。

机器视觉的论文中处理图像时经常提到ground truth代表什么意思呢?

ground truth指地面实况。

地面实况表示在地球表面所做的关于遥感研究的观测,通常用地面实况来检验通过传感器数据所做出的判读的准确性。

例如若用传感器数据来鉴定农业土地利用,为了能够确定这种鉴定精确性的百分比,就必须了解农田抽样全域的实际地面情况。

地面实况收集地区的选择,可以根据一系列准则来决定。这包括研究目的、满足统计用的样本大小、实验研究的重复性与连续性、到研究地区的通道、该地区现有数据的可用性、人员、装备来源,以及航天站台的轨道特性等。

扩展资料:

地面实况监测的目的:

地面数据收集的主要目的,是在成象时候提供同时发生的地面情况的记录。实际上,对于几个以上的小地区或选择的采样点,难以取得同步的数据。

不过目的却是在获得传感器数能得据的短时间以内,到采样的地面实况数据。在计划地面数据收集时,应对观测的变量的变化速率予以特别注意。

这些变量可以分为瞬变的或非瞬变的。记录瞬变特征的数据(例如作物生长阶段、落叶层、风速、表面水分)必须是近于同步的。

非瞬变特征的记录(例如坡度、方位、土壤质地)可以在执行感应任务之前或以后去进行。

参考资料来源:百度百科-ground truth

寻求一篇有关机器人的论文(5000字左右)

数字化家庭是未来智能小区系统的基本单元。所谓“数字化家庭”就是基于家庭内部提供覆盖整个家庭的智能化服务,包括数据通信、家庭娱乐和信息家电控制功能。 数字化家庭设计的一项主要内容是通信功能的实现,包括家庭与外界的通信及家庭内部相关设施之间的通信。从现在的发展来看,外部的通信主要通过宽带接入。intenet,而家庭内部的通信,笔者采用目前比较具有竞争力的蓝牙(bluetootlh)无线接入技术。 传统的数字化家庭采用pc进行总体控制,缺乏人性化。笔者根据人工情感的思想设计一种配备多种外部传感器的智能机器人,将此智能机器人视作家庭成员,通过它实现对数字化家庭的控制。 本文主要就智能机器人在数字化家庭医疗保健方面的应用进行模型设计,在智能机器人与医疗仪器和控制pc的通信采用蓝牙技术。整个系统的成本较低,功能较为全面,扩展应用非常广阔,具有极大的市场潜力。2 智能机器人的总体设计 2.1 智能机器人的多传感器系统 机器人智能技术中最为重要的相关领域是机器人的多感觉系统和多传感信息的集成与融合[1],统称为智能系统的硬件和软件部分。视觉、听觉、力觉、触觉等外部传感器和机器人各关节的内部传感器信息融合使用,可使机器人完成实时图像传输、语音识别、景物辨别、定位、自动避障、目标物探测等重要功能;给机器人加上相关的医疗模块(ccd、camera、立体麦克风、图像采集卡等)和专用医疗传感器部件,再加上医疗专家系统就可以实现医疗保健和远程医疗监护功能。智能机器人的多传感器系统框图如图1所示。 2.2 智能机器人控制系统 机器人控制系统包含2部分:一是上位机,一般采用pc,它完成机器人的运动轨迹规划、传感器信息融合控制算法、视觉处理、人机接口及远程处理等任务;二是下位机,一般采用多单片机系统或dsp等作为控制器的核心部件,完成电机伺服控制、反馈处理、图像处理、语音识别和通信接口等功能。 如果采用多单片机系统作为下位机,每个处理器完成单一任务,通过信息交换和相互协调完成总体系统功能,但其在信号处理能力上明显有所欠缺。由于dsp擅长对信号的处理,而且对此智能机器人来说经常需要信号处理、图像处理和语音识别,所以采用dsp作为智能机器人控制系统的控制器[2]。 控制系统以dsp(tms320c54x)为核心部件,由蓝牙无线通信、gsm无线通信(支持gprs)、电机驱动、数字罗盘、感觉功能传感器(视觉和听觉等)、医疗传感器和多选一串口通信(rs-232)模块等组成,控制系统框图如图2所示。 (1)系统通过驱动电机和转向电机控制机器人的运动,转向电机利用数字罗盘的信息作为反馈量进行pid控制。 (2)采用爱立信(ericsson)公司的rokl01007型电路作为蓝牙无线通信模块,实现智能机器人与上位机pc的通信和与其他基于蓝牙模块的医疗保健仪器的通信。 (3)支持gprs的gsm无线通信模块支持数据、语音、短信息和传真服务,采用手机通信方式与远端医疗监控中心通信。 (4)由于tms320c54x只有1个串行口,而蓝牙模块、gsm无线模块、数字罗盘和视觉听觉等感觉功能传感器模块都是采用rs一232异步串行通信,所以必须设计1个多选一串口通信模块进行转换处理。当tms320c54x需要蓝牙无线通信模块的数据时通过电路选通;当t~ms320c54x需要某个传感器模块的数据时,关断上次无线通信模块的选通,同时选通该次传感器模块。这样,各个模块就完成了与1~ms320c54x的串口通信。3 主要医疗保健功能的实现 智能机器人对于数字化家庭的医疗保健可以提供如下的服务: (1)医疗监护 通过集成有蓝牙模块的医疗传感器对家庭成员的主要生理参数如心电、血压、体温、呼吸和血氧饱和度等进行实时检测,通过机器人的处理系统提供本地结果。 (2)远程诊断和会诊 通过机器人的视觉和听觉等感觉功能,将采集的视频、音频等数据结合各项生理参数数据传给远程医疗中心,由医疗中心的专家进行远程监控,结合医疗专家系统对家庭成员的健康状况进行会诊,即提供望(视频)、闻、问(音频)、切(各项生理参数)的服务[3]。 3.1机器人视觉与视频信号的传输 机器人采集的视频信号有2种作用:提供机器人视觉;将采集到的家庭成员的静态图像和动态画面传给远程医疗中心。 机器人视觉的作用是从3维环境图像中获得所需的信息并构造出环境对象的明确而有意义的描述。视觉包括3个过程: (1)图像获取。通过视觉传感器(立体影像的ccd camera)将3维环境图像转换为电信号。 (2)图像处理。图像到图像的变换,如特征提取。 (3)图像理解。在处理的基础上给出环境描述。 通过视频信号的传输,远程医疗中心的医生可以实时了解家庭成员的身体状况和精神状态。智能机器人根据医生的需要捕捉适合医疗保健和诊断需求的图像,有选择地传输高分辨率和低分辨率的图像。在医疗保健的过程中,对于图像传送有2种不同条件的需求: (1)医生观察家庭成员的皮肤、嘴唇、舌面、指甲和面部表情的颜色时,需要传送静态高清晰度彩色图像;采用的方法是间隔一段时间(例如5分钟)传送1幅高清晰度静态图像。 (2)医生借助动态画面查看家庭成员的身体移动能力时,可以传送分辨率较低和尺寸较小的图像,采用的方法是进行合理的压缩和恢复以保证实时性。 3.2机器人听觉与音频信号的传输 机器人采集的音频信号也有2种作用:一是提供机器人听觉;二是借助于音频信号,家庭成员可以和医生进行沟通,医生可以了解家庭成员的健康状况和心态。音频信号的传输为医生对家庭成员进行医疗保健提供了语言交流的途径。 机器人听觉是语音识别技术,医疗保健智能机器人带有各种声交互系统,能够按照家庭成员的命令进行医疗测试和监护,还可以按照家庭成员的命令做家务、控制数字化家电和照看病人等。 声音的获取采用多个立体麦克风。由于声音的频率范围大约是300hz一3400hz,过高或过低频率的声音在一般情况下是不需要传输的,所以只用传送频率范围在1000hz-3000hz的声音,医生和家庭成员就可以进行正常的交流,从而可以降低传输音频信号所占用的带宽,再采用合适的通信音频压缩协议即可满足实时音频的要求。智能机器人的听觉系统如图3所示。3.3各项生理信息的采集与传输 传统检测设备通过有线方式连到人体上进行生理信息的采集,各种连线容易使病人心情紧张,从而导致检测到的数据不准确。使用蓝牙技术可以很好地解决这个问题,带有蓝牙模块的医疗微型传感器安置在家庭成员身上,尽量使其不对人体正常活动产生干扰,再通过蓝牙技术将采集的数据传输到接收设备并对其进行处理。 在智能机器人上安装1个带有蓝牙模块的探测器作为接收设备,各种医疗传感器将采集到的生理信息数据通过蓝牙模块传输到探测器,探测器有2种工作方式:一是将数据交给智能机器人处理,提供本地结果;二是与internet连接(也可以通过gsm无线模块直接发回),通过将数据传输到远程医疗中心,达到医疗保健与远程监护的目的。视频和音频数据的传输也采用这种方式。智能机器人的数据传输系统如图4所示。 4 蓝牙模块的应用 4.1蓝牙技术概况 蓝牙技术[4]是用于替代电缆或连线的短距离无线通信技术。它的载波选用全球公用的2.4ghz(实际射频通道为f=2402 k×1mhz,k=0,1,2,…,78)ism频带,并采用跳频方式来扩展频带,跳频速率为1600跳/s。可得到79个1mhz带宽的信道。蓝牙设备采用gfsk调制技术,通信速率为1mbit/s,实际有效速率最高可达721kbit/s,通信距离为10m,发射功率为1mw;当发射功率为100mw时,通信距离可达100m,可以满足数字化家庭的需要。 4.2蓝牙模块 rokl01007型蓝牙模块[5]是爱立信公司推出的适合于短距离通信的无线基带模块。它的集成度高、功耗小(射频功率为1mw),支持所有的蓝牙协议,可嵌入任何需要蓝牙功能的设备中。该模块包括基带控制器、无线收发器、闪存、电源管理模块和时钟5个功能模块,可提供高至hci(主机控制接口)层的功能。单个蓝牙模块的结构如图5所示。 4.3主,从设备硬件组成 蓝牙技术支持点到点ppp(point-t0-point pro-tocol)和点对多点的通信,用无线方式将若干蓝牙设备连接成1个微微网[6]。每个微微网由1个主设备(master)和若干个从设备(slave)组成,从设备最多为7台。主设备负责通信协议的动作,mac地址用3位来表示,即在1个微微网内可寻址8个设备(互联的设备数量实际是没有限制的,只不过在同一时刻只能激活8个,其中1个为主,7个为从)。从设备受控于主设备。所有设备单元均采用同一跳频序列。 将带有蓝牙模块的微型医疗传感器作为从设备,将智能机器人上的带有蓝牙模块的探测器作为主设备。主从设备的硬件主要包括天线单元、功率放大模块、蓝牙模块、嵌入式微处理器系统、接口电路及一些辅助电路。主设备是整个蓝牙的核心部分,要完成各种不同通信协议之间的转换和信息共享,以及同外部通信之间的数据交换功能,同时还负责对各个从设备的管理和控制。 5 结束语 随着社会的进步,经济的发展和人民生活水平的提高,越来越多的人需要家庭医疗保健服务。文中提出的应用于数字化家庭医疗保健服务的智能机器人系统的功能较为全面,且在家用智能机器人、基于蓝牙技术的智能家居和数字化医院等方面的拓展应用非常广阔,具有极大的市场潜力。 更多论文请到文秘杂烩网

采纳哦

上一篇:论文文献怎么排列

下一篇:毕业论文期中答辩