二次函数毕业论文
二次函数毕业论文
学理科东西学会求本质 做类推
二次函数都是抛物线函数(它的函数轨迹就像平推出去一个球的运动轨迹,当然这个不重要) 因此 把握它的函数图像就能把握二次函数
在函数图像中 注意几点(标准式y=ax^2+bx+c,且a不等于0):
1、开口方向与二次项系数a有关 正 则开口向上 反之反是。
2、必有一个极值点,也是最值点。如果开口向上,很容易想象这个极值点应该是最小点 反之反是。且极值点的横坐标为-b/2a。极值点很容易出应用题。
3、不一定和x轴有交点。当根的判定式Δ=b^2-4ac<0时,没有交点,也就是ax^2+bx+c=0这个方程式“没有实数解”(不能说没有解!具体你上高中就知道了)如果
Δ=0 那么正好有一个交点,也就是我们说的x轴与函数图像向切。对应的方程有唯一实数解。Δ>0时,有两个交点,对应方程有2个实数解。
4、不等式。如果你把上面3点搞清楚了 参考函数图像 不等式你就一定会解了。
高一二次函数论文1000字
在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射�0�6:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为�0�6(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知�0�6(x)= 2x2+x+2,求�0�6(x+1)这里不能把�0�6(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设�0�6(x+1)=x2-4x+1,求�0�6(x)这个问题理解为,已知对应法则�0�6下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。�0�6(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得�0�6(x)=x2-6x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而�0�6(x)= x2-6x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x-1|-1
(2)y=|x2-1|
(3)= x2+2|x|-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ设�0�6(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:�0�6(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=�0�6(t)=t2-2t-1当t<0时,g(t)=�0�6(t+1)=t2-2 t2-2, (t<0) g(t)= -2,(0≤t≤1) t2-2t-1, (t>1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:类型Ⅴ:设二次函数�0�6(x)=ax2+bx+c(a>0)方程�0�6(x)-x=0的两个根x1,x2满足0<x1<x2<。(Ⅰ)当X∈(0,x1)时,证明X<�0�6(x)<x1。(Ⅱ)设函数�0�6(x)的图象关于直线x=x0对称,证明x0< 。解题思路:本题要证明的是x<�0�6(x),�0�6(x)<x1和x0< ,由题中所提供的信息可以联想到:①�0�6(x)=x,说明抛物线与直线y=x在第一象限内有两个不同的交点;②方程�0�6(x)-x=0可变为ax2+(b-1)x+1=0,它的两根为x1,x2,可得到x1,x2与a.b.c之间的关系式,因此解题思路明显有三条①图象法②利用一元二次方程根与系数关系③利用一元二次方程的求根公式,辅之以不等式的推导。现以思路②为例解决这道题: (Ⅰ)先证明x<�0�6(x),令�0�6(x)=�0�6(x)-x,因为x1,x2是方程�0�6(x)-x=0的根,�0�6(x)=ax2+bx+c,所以能�0�6(x)=a(x-x1)(x-x2)因为0<x1<x2,所以,当x∈(0,x1)时, x-x1<0, x-x2<0得(x-x1)(x-x2)>0,又a>0,因此�0�6(x) >0,即�0�6(x)-x>0.至此,证得x<�0�6(x)根据韦达定理,有 x1x2= ∵ 0<x1<x2<,c=ax1x2<x=�0�6(x1), 又c=�0�6(0),∴�0�6(0)<�0�6(x1), 根据二次函数的性质,曲线y=�0�6(x)是开口向上的抛物线,因此,函数y=�0�6(x)在闭区间[0,x1]上的最大值在边界点x=0或x=x1处达到,而且不可能在区间的内部达到,由于�0�6(x1)>�0�6(0),所以当x∈(0,x1)时�0�6(x)<�0�6(x1)=x1,即x<�0�6(x)<x1b24a(Ⅱ) ∵�0�6(x)=ax2+bx+c=a(x+-)2+(c- ),(a>0)函数�0�6(x)的图象的对称轴为直线x=- ,且是唯一的一条对称轴,因此,依题意,得x0=-,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-,∵x2-<0,∴x0=-=(x1+x2-)<,即x0=。二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。
一元二次方程和二次函数的论文怎么写
初三 就写 论文 厉害 佩服啊
你可以 按这个 模式 写一下
一、目的要求
从一元二次方程、一元二次不等式与二次函数的关系出发,掌握利用二次函数图象求解一元二次不等式的方法。
二、内容分析
1.本小节首先对照学生已经了解的一元一次方程、一元一次不等式与一次函数的关系,利用二次函数的图象,找出一元二次方程、一元二次不等式与二次函数的关系,进而得到利用二次函数图象求解一元二次不等式的方法。然后,说明一元二次不等式可以转化为一元一次不等式组,由此又引出了简单的分式不等式的解法。
2.本节课学习一元二次不等式的解法,这是这小节的重点,关键是弄清一元二次方程、一元二次不等式与二次函数的关系。
三、教学过程
复习提问:
1.当x取什么值的时候,3x-15的值
(1)等于0;(2)大于0;(3)小于0。
(这是初中作过的题目)
2.你可以用几种方法求解上题?
新课讲解:
像3x-15>0(或<0)这样的不等式,常用的有两种解法。
(1)图象解法:利用一次函数y=3x-15的图象求解。
注:①直线与x轴交点的横坐标,就是对应的一元一次方程的根。
②图象在x轴上面的部分表示3x-15>0。
(2)代数解法:用不等式的三条基本性质直接求解。
注这个方法也是对比一元一次方程的解法得到的。
复习提问:
画出函数的图象,利用图象回答:
(1)方程的解是什么;
(2)x取什么值时,函数值大于0;
(3)x取什么值时,函数值小于0。
(这也是初中作过的题目)
新课讲解:
1.结合二次函数的对应值表与图象(表、图略),可以得出,方程的解是x=-2,或x=3;
当x<-2,或x>3时,y>0,即;
当-2<x< 3时,y< 0,即。<3时,Y<0,即。< p>
经上结果表明,由一元二次方程数的解是x=-2,或x=3,结合二次函数图象,就可以知道一元二次不等式的解集是
{x|x<-2,或x>3};
一元二次不等式的解集是
{x|-2<3}。< p>
提出问题:
一般地,怎样确定一元二次不等式与的解集呢?
组织讨论:
从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:
(1)抛物线与x轴的相关位置的情况,也就是一元二次方程的根的情况
(2)抛物线的开口方向,也就是a的符号。
新课讲解:
1.总结讨论结果:
(1)抛物线(a>0)与x轴的相关位置,分为三种情况,这可以由一元二次方程的判别式三种取值情况(Δ>0,Δ=0,Δ<0)来确定。因此,要分二种情况讨论。
(2)a<0可以转化为a>0。
2.分Δ>O,Δ=0,Δ<0三种情况,得到一元二次不等式与的解集。(见教科书)
3.讲解教科书例1--例4。
4.归纳解一元二次不等式的步骤。
(1)把二次项系数化成正数;
(2)解对应的一元二次方程;
(3)根据一元二次方程的根,结合不等号的方向,写出不等式的解集。
课堂练习:
教科书1.5节第一个练习第1~3题。
(第3题相当于求函数的定义域,下一章将学习函数)
归纳总结:
(可以让学生自行归纳,可参考教科书“小结与复习”中的表)
拓广引申:
例 对任何实数x,不等式都成立,求k的取值范围。
解:当k=0时,原不等式化为2x>0,不是对任何实数x都成立。
当k<0时,抛物线开口向下,不等式也不是对任何实数x都成立。
因此,我们有
故当时,不等式恒成立。
四、布置作业
1.教科书习题1.5第1、3、6、7题。
2.选作:对任何实数x,不等式都成立,求k的取值范围。(k>1)
上一篇:指导毕业论文总结
下一篇:艺术求美主题论文