铸造缺陷检测论文
铸造缺陷检测论文
我有一篇原创的论文,请参考。
桑拿天气对冲天炉熔炼的影响及预防措施
摘要:高温潮湿闷热天气使冲天炉熔炼不正常,熔化率下降,铸件气孔缺陷增加。采用调整鼓风机风量及炉料比例、加强炉料管理及炉前脱气处理等措施,取得了明显效果。
关键词:高温;潮湿;气孔;脱气;风量
山东省临沂市风机厂生产的冲天炉专用鼓风机具有风压高、流量变化小、重量轻、结构简单、耗电少、噪音低等特点,广泛应用于冲天炉熔炼等强制鼓风场合,深得用户好评。进入夏天后,很多用户来检修风机并反映:与春节期间相比冲天炉熔化率降低、熔化不正常、铸件气孔增加、废品率上升,而各方面都未变化(如风口、炉料、操作),鼓风机经检修又无问题,令人百思不得其解。无独有偶,我厂铸造车间(冲天炉为4t/h二排大间距冷风、配套45kW的HTD85-21鼓风机)亦出现了上述问题,熔化率由4t/h降至3t/h,生产的轴承箱体部分出现了气孔,这在以前是从未有过的事情。
1 原因分析
1.1 熔化率下降的原因分析
1.1.1 风量的影响
夏季气温高、空气体积膨胀大,空气密度比冬天低约10%,而粘度系数则是冬天的1.25倍。夏天同样的进风量其重量要比冬天少约10%,即氧气量少了;同时粘度系数增加,导致进风速度下降。进气量不足,造成底焦燃烧不充分,导致熔化率降低,铁液温度下降,使铁液中的气体、氧化物、硫化物等杂质进入型腔而造成气孔或渣气孔。进风量是影响焦炭燃烧、熔化率的一个重要因素。
1.1.2 风压的影响
风机的压力与空气的温度有如下关系(忽略大气压力的变化):
P1/P2=(T+t2)/(T+t1)
式中 P1——气温为t1时的压力
P2——气温为t2时的压力
T=273℃
例如:在冬天气温为-10℃,夏天为38℃工作的一台鼓风机,它的压力变化:P1=0.845P2,即在夏天时鼓风机的压力要比冬天低。
风压低不利于克服沿途的各种阻力,气流不能射入炉心,炉膛断面供风不均匀,不能改善中心焦炭的燃烧,不利于提高铁液温度,同时也致使熔化率下降。
1.2 产生气孔的原因分析
送风湿度与铸造缺陷有密切关系,夏天空气湿度比冬天高,空气中的水汽进入炉内分别与赤热的焦炭、铁液接触相互作用,产生大量H2,发生吸热反应,故降低炉温。
产生大量H2会大幅增加铁液的吸气程度,铁液中的H2量超过3.6ppm时,铁液在型内冷却过程中,H2来不及排出,会在铸件表皮下形成1~3mm的气孔。
炉温降低会加重铁液氧化,FeO含量增多,炉内Mn、Si等元素烧损加大,这样的铁液白口倾向严重、凝固快、流动性差、质量不好,浇注的铸件极易产生氧化性气孔。
铁液温度随送风湿度增大而呈线性降低,过高的湿度除影响铁液温度外,还影响冲天炉的熔化率、铸件化学成分和白口深度。
2 预防措施
为减轻高温潮湿天气对铁液质量的不利影响,提高铁液温度是关键,即常说的“高温治百病”。除避开雨雾湿热极端天气熔炼外,我们还采取了一些措施,熔炼达到正常,使铁液温度稳定在1420—1440℃,废品率明显下降。
2.1 调整鼓风机风量
遇桑拿天气应增大送风量12%,打开进风调节闸门,适当加大电机电流,但不得超过电机的额定电流,防止烧坏电机。若电机已达额定电流、鼓风机满负荷工作,在无法直接加大送风量的情况下,可适当降低料柱高度或缩小风口区的直径。
2.2 调整炉料比例
增加底焦高度和层焦量约10%,适当降低废钢用量,尽量不用铁屑饼,以减轻炉内氧化性气氛和铁液吸气量。
2.3 加强炉前脱气处理
在出铁槽随流加入0.3%的稀土合金,对铁液进行脱氧去硫,净化铁液;扒净铁液表面的浮渣后,用烘干好的覆盖剂盖严包面,减少二次氧化、吸气。
2.4 严格炉料管理
将炉料室内存放,保持干燥;万不得已露天存放时,遇雨雾潮湿天必须苫盖,特别是生铁、焦炭;筛选焦炭,大小相差不宜过分悬殊,即块度均匀、适中;破碎回炉料,减小炉料块度,清除干净炉料的杂质(如芯砂);孕育剂、覆盖剂、铁合金等使用前必须充分烘烤,去除水分;出铁槽、炉衬、包衬烘烤至暗红色。
2.5 规范操作
当天造好的铸型当天浇注,减少吸潮,避免铸型长时间停放;严格配料、称量,保持适当高度的料柱;按规程操作,确保不出现事故,只有保持“四稳”(炉膛尺寸稳定、底焦高度稳定、风量控制稳定、合格炉料稳定)、“三通”(保持风口、渣口、出铁口明亮、通畅、干净),才能熔化稳定,铁液优良。
3 结束语
采取相应措施后,冲天炉熔炼正常,铁液质量稳定,熔化率恢复到正常水平,铸件气孔废品率下降8%-10%,为用户解决了技术难题,为企业赢得了经济效益和社会效益。
关于铸造方面的最新论文
铸造生产的统计过程控制
摘要:本文讨论统计过程控制和数据收集带来的好处,它们能够提高各种铸件的质量和降低成本。许多人错误地认为SPC实施困难,既费时、费力和费钱又回报得益不多。实际情况并非如此,SPC和数据收集的实施很容易,而且回报远远超过投资。本文将提供经验判断对质量的影响,并与采用统计方法作比较。本文将回顾SPC的历史和基本原理,数据收集的必要性,以及如何确定最适合每个工序运作的方法。本文还探索可用的简单有效的实施方法,以及提高数据收集过程自动化和效率的基本途径。
关键词:SPC,过程控制,质量,数据收集,铸造生产
1 前言
面对今天竞争激烈的市场,质量既是确定的又是有差异的。说它是确定的,因为任何人不能为客户提供质量好的产品将很快从业界消失。但是,质量同样能够让你从竞争对手区分开。结构良好和实施质量管理系统可降低返修量和废品,达到节约成本和得到更低报价。对铸造企业来说,这就需要重新考虑现行的质量和实现质量的最佳方法。
2 旧的质量控制方法与新的质量控制方法
2.1旧的质量控制方法
对许多铸造企业来说,质量可简单地用以下方式表示(以熔化为例):
1)按工序制造过程产品(配料、熔化铁水);
2)检查产品缺陷(化验);
3)需要时返工(一次成分不合格,调整);
4)检验返工产品(重复化验);
5)进入下一工序(浇注);
6) 回到第一步,重复操作第1到第5步。
这种方式可认为是质量控制的“检验法”。对于利用这种最基本的质量控制系统的企业来说,它们以昂贵的费用:“检验”产品质量,但无助于改正引起产品缺陷的根本原因。我们经常做的事情,就是采用收集基本缺陷数据的方式,这是一种主要将缺陷的产生推回到操作人员的做法。这种错误概念来自认为操作人员通常是产生质量问题的起因。它不能找到产生缺陷的真正原因,而只在缺陷已经产生之后才检验出质量不好的产品,即事后把关。
这种方式同样非常依赖于本身就缺少一致性和准确性的经验判断。经验判断经常会让漏检的缺陷进入下一道工序,如果在组芯中或下芯时发现砂芯缺陷,则返工成本更可观,此时组合砂芯可能要额外的拆卸更换有缺陷的砂芯。更糟糕的是不合格的铸件产品可能引起汽车零部件使用寿命缩短,并失去良好的客户信誉。无论在哪里检验出缺陷,返修和报废的材料都增加了产品的生产成本。
2.2 新的质量控制方法
更好的方法是采用统计过程控制(SPC)法实时监控在铸造生产过程中最容易产生铸件缺陷的关键工序。这里含有用于预防代替检验的概念,并且减少对经验判断的依赖。经验仍然在总体质量方法中起作用,有助于在FEMA分析中由现有过程导致的一贯性缺陷。这使得过程控制首先注意到最能够实施“防犯于未然”的区域,最终检验员不再是查找缺陷的“警察”,而变为帮助工作人员防止缺陷发生的同事。
这种方法同样考虑到生产过程的各个方面,包括人、机、料、法和环境,并且清楚地认识到人只是过程中众多资源之一。这个方法把防止不良质量放在首位,以便减少废品和浪费,最终达到生产率和收益的增加。
3 工业与质量历史回顾
19世纪初期,美国工业正在寻找提高生产率的方法来降低成本和增加收益,但没有想到质量对这种关系的冲击力。此时最广泛采用的是1911年泰勒(Fredrick Taylor)在他的著作《科学管理的原理》中提及的技巧。作为一名工业工程师和顾问,他以顾问身份服务于早期的工业家,如亨利•福特等人。他不断寻求提高机器和工人工作效率的方法,他使用的基本假定是大部分工人又笨又懒,金钱是他们主要的动力来源,因而在工人与管理之间应有严格的区分。他观察到工人会放慢他们的作业,害怕工作太有效而变成失业。他相信可以利用工人以金钱作为工作的动力来克服他们的惧怕和提高生产率。基于这种信念,他创立了“计件”工资制,对工人支付定量生产件数的基本工资,对超过定量的生产件数付给额外奖金。
现今还有一部分行业使用这种体制。工人被当作机器,他们很快变得疏远和不满足。产品的生产主要根据数据量而不是质量,管理采用“胡萝卜加大棒”的办法来降低成本和增加利润。
到19世纪20年代,得益于休哈特(Walter Schewart)博士的工作和努力,质量变成公司降低成本的整体计划的组成部分。他作为西方电气公司工程部的著名科学家,被誉为统计过程控制之父。在1924年他计划了一种抽样图表,“设计用来指示在给定类型的缺陷部件中观察到的变化百分比,这是很有意义的,亦即指出对产品是否满意”。他认为产生缺陷的原因可分为“偶然原因”(生产过程中固有的可预测的变化,现在经常称为“普遍原因”)和“异常原因”(由特殊的不可预测的原因或事件引起的变化,现在经常称为“特殊原因”)。据此应该着重研究和消除异常原因,以便改进质量,但不必浪费资源去解决对整个过程和生产质量影响不大的偶然原因。这种方法亦可用来确定某一工序的固有能力,此时“控制界限”可作为一个工序的合格率的控制线。
当贝尔实验室科学家将休哈特的概念付诸实施时,他的方法使几项废品降低了50%,和节省西方电气公司几百万美元的开销和材料。利用他的统计技术证明通过质量改进能够节约成本和增加利润,并且引起许多大型工业公司的注意。管理部门开始认识到人不能生产出工序所允许的更多的产品和更好的质量。在他1931年的著作《控制产品质量的经济检验》中全文述他的统计抽样方法的研究结果,并且这个结果仍然是现代统计过程控制的基础。
一位西方电气公司的同事戴明(Edware Deming)在参加美国作战部和后来在日本讲授质量基本原理时,将休哈特的成果加以扩展。戴明在他的“管理的14项职责”中将统计过程控制和质量论述为管理哲学,并把它作为一种工具使工人参与搞好机构的活动。他采用这种统计工具和管理哲学去鼓励工人负责在他们控制下的工序的质量。休哈特的实践和戴明的哲学相结合至今还在不断提高美国工业的质量和生产率。
4 SPC的基础——各种控制图
过程控制图可分为两大类别:用于测量变量的图表和用于测量属性的图表。根据监控的过程和收集数据的来源,它们的用途各不相同。
变量图的实例:监控型砂紧实率。两碾砂之间通常会出现紧实率的少量变化。比照控制允许值来跟踪这种变化可以确定工序是否在合格范围之内,或者在不合格紧实率的型砂出现能迅速指出那些需要检查或改正的,因“特殊原因”而产生的事件。
属性图的实例:在制芯操作中跟踪有缺陷的砂芯数目,计算在一个班次砂芯成品率。跟踪与控制范围有关的数据可以保证前面各工序的总体质量,或者在下一个缺陷砂芯产生之前指出需要检查和改正芯盒或制芯工艺参数设置。
变量控制图:
最常用的变量控制图表是X控制图和R控制图,它们经常一起使用。X控制图用来监控工序的位置或者工序的计量值,而R控制图用来监控工序的范围或者分布。在正常运用中,获取一个样本的多个读数,然后相加及求平均值后产生绘在图上的数据点。任何落在上控制限(UCL)或下控制限(LCL)之外的数据点表示由于特殊原因引起的不合格的工序变化,在进行下一步生产之前需要检查和改正。
除了数据点超出UCL或LCL表示有特殊原因之外,还有其他规律可指出在没有超出UCL或LCL时存在的特殊原因。这些规律的依据是变量的统计概率,并可以对很快失控的工艺过程作出预先提示。这样就能够在生产出有缺陷产品之前进行检查和改正。一些常用的实例包括:
●2个以上接近UCL或LCL的连接续点
● 6个增加或降低的连续点
●8个在中间值一边的连续点
● 14中间值两边交替出现的连续点
还有其他限制更多的规律,由控制图的特殊区域来决定,而且对于刚开始SPC计划的铸造厂来说还不需要这些规律。这些规律随工序的不同而有差别。应该记住,过多规律可能产生大量的“伪报警”,但规律太少又可能在生产过程中漏检有关的问题。
当第一次建立一个生产工序的X控制图或R控制图时,UCL、LCL和中值数控线必须确定下来而不是随意规定。这就需要实时运行和测量,然后采用测量值计算出UCL、LCL和中间值。为确保计算值为有效性,工序的生产过程必须是稳定的和可重复的,否则所提数据有偏移,在以后可能对生产过程产生错误的反馈。采用著名的平方律可从读数值来验证生产过程的稳定性,具有“钟形曲线”的正态分布即表明生产过程是稳定的。用于生产过程控制的步聚和计算在本文提及的参考书中有许多介绍,当首次建立图表时必须遵守这些文献。
属性控制图:
属性图用于不可计量的特性的控制。这些特性通常用“好”或“不好”等来表达,正如在化妆品检验或测试运行中所遇到的情况那样。这种特性称为属性,用简单的计数数据来制表。属性图表有三种主要类型:
● P图,测量某批产品中缺陷部件的百分比
● np图,测量某批产品中缺陷部件的数目
● C图,监控某批产品中缺陷部件的总数
对于X直方图和R曲线图的控制界限要建立在对稳定运行的工艺过程的初始计算上。这是一个连续生产产品的过程,所有的缺陷来自工艺过程内部的固有的普遍原因,而不是由需要检查和改正的特殊原因所引起来。在某些例子中,例如铁素体球铁Mn的含量,可以规定一个控制上限,当材质缺陷达到不可接受的水平生产时过程必须中断。
其他数据收集方法:
虽然统计过程管理可用来减少,甚至可能取消中间经验判断的操作,但是所有实施的经验判断应尽量收集和编制最有意义的数据。如前所述,当需要建立工序控制点时,这些数据对首先应在何处加强控制提供了巨大的帮助。同时它也提供了与SPC图表、数据相关的反馈,使管理层确信SPC计划正在改进质量和降低成本。
缺陷记录可用来收集目视检查的数据,还可以提供与SPC实施无关的有用数据。合理使用缺陷记录,并配合对过程的周密计划,则缺陷记录可以指明改进过程的方向。记录应设计成易于单个产品缺陷输入,以便减少对总体工作流程的影响,但又能涵盖过程中所能出现的各个缺陷。
缺陷记录中的数据可以一个生产班次为单位计算,将结果制成排列图(Pareto图)格式制成图表。在排列图中缺陷记录按照出现频次从高向低排列,以保证重点改进项目得以优先解决。同样可以直观地反映出那些有效产品缺陷的尝试。使用EXCEL电子表格很容易绘制排列图。
5 如何实施SPC
5.1 我厂应用SPC的历史和现状
我厂从80年代就开始引进和实施全面质量管理,对过程中影响产品质量的关键工序建立工序质量监控点,对关键的过程指标采用控制图等SPC的应用,但长期以来,一直存在一些认识上的误区。以为收集一些的质量数据,做几个控制图,挂在墙上展示一下,计算一下Cpk,就算使用了SPC,这样其实只能应付公司质量部门的审核,很少有人不觉得这样做是个负担。 98年通过QS9000质量体系认证后,我们的客户和体系的要求,必须在过程控制中有效使用SPC,控制计划和作业指导书保留原有的工序质量控制点的应用,为了减少数据收集和统计的“麻烦”,将原有的SPC控制图表人为减少,以利于审核的通过,这些认识都是很初级的,完全没有理解SPC动态过程控制的核心,根本不能达到对过程质量动态、连续监控的目的。
有些人员在接触了SPC后,试图寄望它不只能发现过程的异常波动,更应该给出导致异常的过程要素和原因。如异常情况是由设备、原料或操作上的什么问题引起的?其实这些想法是不切实际的,也是没有理论依据的。SPC工具是用统计学方法对过程质量数据进行处理、使工序质量状态可视化。而可视化的控制图只反映当前过程的运行状态或者未来趋势,并不能反映导致这种状态出现的内在原因。异常原因还要由人去查找,究竟哪道工序是导致异常的根源这样的特殊情况。所以,理想化的期望必将影响质管人员对SPC的信心,也将阻碍工厂实施SPC的进程。
5.2 SPC计划
着手开展SPC和数据收集计划时,要留意打好基础以减少执行中出现的问题。采用一次涉及太多问题的“猎枪”法会遇到要求高级支援的困难,占用质量和工程小组的日常生产支持时间,虽然大公司有钱请专人执行和支持SPC和数据收集,较小的公司常会增加现有雇员的任务。最好的方法是全面推广前,先在便于管理的小范围内运行和获得成功的执行经验。
实施SPC前,先开始检查现有的数据,寻找产生铸件主要缺陷的关键过程。如果没有过硬的数据,也可非正式评估某一个正在花费技术人员许多时间去解决问题的过程。它通常会是某一方面如砂芯质量的问题,并随着设备、原材料、方法、人力和工作环境本身的变化而变化。一旦选择某一过程作为重点,即入下一个步骤。
根据所监控的过程来决定你要收集变量数据还是属性数据。这些作为运作选择适当的控制图表。如果收集变量数据,通常使用X直方图和R曲线图。如果收集属性数据,往往选择P或NP图,在这两大类图中还有各种不同式的样图,技术人员和质量工程师在开发和需要进一步深入时会再使用这些图。
在开展SPC工作初期,可用人工计算数据和作图,而不要用电子数据表格的图表或自动软件包。人工作图让操作人员对数据收集过程有实际的感受。并且最终获得主宰过程和参与数据收集的感受,经过一段时间之后,系统可停止对操作人员的数据收集任务和理顺整个SPC过程。
必须对操作人员提供为什么和怎样实施SPC和数据收集的充分训练。以小组活动的形式解释清楚他们承担的特定过程的变化对最终产品总质量的影响。然后,对统计过程管理作审查,使用简单的练习来说明过程内的变化,以及如何监控让他们制作测试图图表和跟踪过程数据。直至他们懂得数据收集的重要性和他们过程的作用。如果培训获得成功,负责该计划的质量和工程小组在真正实施和执行时就比较容易了。
5.3 SPC和数据收集的方法
只要提供可用于改善现行过程有意义的数据,任何统计过程管理和数据收集方法都可以使用。
开始起动一个计划时,特别当员工没有SPC经验时,最好使用人工方法进行运作,与经费多少或易于使用无关,人工方法为在机构内执行统计过程管理和观念提供坚实的基础。有一种错误概念认为,SPC需要高级数学技巧,实际上对于任何会用小型计算器的人员来说,所用大部分计算都是很简单的。
对于我厂现阶段的实际情况来说,人工方法就足够了,虽然利用基于电子表格EXCEL的控制图可提高效率。电子数据表格本身可做大量数字的数据收集工作,也可生成控制图,而无需对数据点作连线的例行事务。最后,它还是提供数据可在局域网内实时存取的方法,便于信息的查阅。
5.4 SPC实施步骤流程
6 网络化SPC是过程质量系统的必然选择
铸件的质量是每个工序产品质量的累积,有时微量元素较小的变化也能影响整个产品的使用性能。要全面提升企业的过程质量控制能力,必须从每一个操作、每一道工序的处理做起,形成自始至终的过程控制闭环,实现全面过程质量控制,达到休哈特理论中的全稳生产线。只有形成这样的控制局面,才能保证企业范围生产过程的可控态。有了稳定的工序状态,才会有稳定的产品质量。
过程质量控制不但要处处有,还要人人参与。它不只是现场操作工的事情,企业各层的质量管理人员都应积极参与到这一工作中去,从而形成互相分工、互相关联、互相监督的全员化网络型过程质量保证体系。SPC只有在企业的真正需求的前提下,把网络技术、数据库技术与SPC科学结合了起来,才能为企业提供了一个全面的过程质量解决方案。
基于大型数据库的网络化SPC系统,是实现企业全面过程质量控制的优选方案。它以企业局域网设施为基础,以大型数据库为平台,以质量数据采集系统、SPC现场动态监控系统、质管员监督分析系统、管理层质量查阅系统等为应用框架,构成了功能完整、运行有效的企业网络化SPC过程质量控制系统。针对企业生产过程质量参数多(包括产品和工艺参数,计量和计数参数等),数据采集连续性、高频度的情况,只有大型数据库系统能够承担数据的管理工作。网络化的系统框架,可以把质量监控点布置到从办公室到生产现场的任何角落,是全面过程质量系统的思想基础。
建立网络化SPC软件,使数据更便于输入,用基于电子数据表格的数据输入图表,能自动求出过程运行中的读数之和并且计算上下控制界限。它可24小时收集数据和自动作出图表,包括X直方图和R曲线图。系统驻留在屏幕打印机旁边的专用计算机内,并且可通过局域网获得可视的数据。SPC系统有多种型式和大小,从互联网获得的免费软件和共享软件到200~1000美元的软件包,提供所需要的各种图表和输出方式。软件包具有许多用户配置选项和作图规则,并考虑到多道工序或多条生产线的监控。最高级的和数据收集是全部硬件/软件结合的集成,它把设备直接连接到软件和网络。这些软件可预设告警界限和用户实施的规则,以及当某一过程超出控制范围时自动告知适当的人员。这种解决方案的价格较高。
7 总结
仍然使用质量控制的“检测”方法的铸造企业不但浪费时间和金钱,而且面对我们的对手失去竞争优势。统计控制过程和数据收集对我厂在改进质量和降低成本方面都有很大帮助。如果从结构和逻辑性方面着手的话,实施人工SPC和数据收集计划是较简单和有效的。在此基础上计划可以升级,通过基于自已编制的电子数据表、便宜的现成软件包来实现。不管怎样,统计过程控制和数据收集对任何过程和产品都有用处,这时毫无疑问的事情。
参考文件:
〔1〕公司内部QCD教育手册:质量管理
〔2〕爱肯锡公司培训讲义:统计过程控制
求一个关于铸造的论文?
随意推荐两篇,谨供参考
1、国内外铸造生产线设计生产中的问题及解决办法
一.概述
随着国民经济的不断发展,近年来对铸件的要求越来越高,特别是汽车发动机缸体、缸盖类铸件,不仅要求材质好,而且还要求尺寸精度高、表面光法、重量轻。为此,作为影响铸件质量的关键工部件造型工部,纷纷采用新的工艺和设备,以满足铸件质量和产量的要求。据不完全统计,我国引进的高压造型线、气冲造型线、静压造型线已有60条左右;国内自己设计制造的高压造型线、气冲造型线已有70余条。
从使用情况来看,这些造型线确实为我国的铸件产量和质量的提高起了很重要的作用,但与我们的希望来比,还很不够。进口线的实际生产率一般在设计能力的5080%,国产线现在使用的估计只占50%,而在这50%中,开动率也较低,出现以上现象的原因是多方面的,归纳起来大概有以下几方面。
二.存在问题
1.设计存在的问题
由于造型线设备复杂,动作多,逻辑性强,因此,设计中就难免有考虑不周的地方,特别是造型线设计的初期,问题更多,比如:材质选用不合理,元件选用不当,逻辑关系不强等。这就决定了我国早期的高压线多数运行状况不太理想。比如:某大厂在70年代初期设计了一条高压造型线,制造安装后一直没有使用,其主要原因是:设计时许多辅机上的垂直液压缸原始位置设在中间位置,由于国产液压阀的泄漏,致使许多辅机不能处在原始位置;运行部件没有考虑制造的误差及液压泄漏,经常相碰,该联锁的电器上也没有联锁,放了这么多年,给工厂带来了很大的经济损失,听说最近要拆掉。国内如此,国外的造型线也同样存在设计上的不足,比如某厂引进一条高压造型线,由于设计时没有考虑砂箱走边的检测及清扫,以至砂箱的进翻箱机时经常卡死,甚至把翻箱机顶坏。还有一家厂引进的静压造型线在设计时工艺性考虑的不周,使上箱在下箱上边翻箱,从而导致造好的下箱内腔掉进砂子,造成铸件缺陷。
2.设备可靠性差
影响设计可靠性的因素主要有设计、制造、安装、生产管理、维修等。
设计中零件选用不当,材质选用不合理,是影响可靠性的重要原因之一,过去着重强调了国产化和降低成本,因此,元器件全为国产件。但由于国产无器件质量不过关,严重影响了造型线的开动率。比如:由于机械传动的误差,会导致转运车上的轨道与冷却道轨道对不准,致使输送器小车和砂箱脱轨,造成较长时间的停车;同样规格的密封件,国产的只能用3~6个月,而进口的能用12年;同样的管接头,国产的就漏油,进口的就不漏油,仅此一项,某一条造型线严惩时每年将漏油200多吨,价值100多万元;由于接近开关发讯不准,也常导致误动作造成停车;液压阀及气动阀的泄漏和精度不高,也是影响造型线开动率的主要因素。比如某厂造型机的控制不仅有电器联锁,而且有气动联锁,气动控制管路的管子是Φ8×1的,连接的管接头较多,由于管接头及气阀的漏气,常使控制气路压力降低,不能使气阀动作,为此,不得不冒险将部分联锁取消。
制造质量的好坏,也将影响造型线的开动率,包括内在质量和尺寸精度。比如:由于加工精度达不到要求,造成设备移动部分和固定部分相碰,定位不准等故障;由于元件的材质或热处理达不到要求,将影响设备的使用寿命和可靠性;由于液压系统的清理不干净,导致油液污染,使阀卡死的现象也经常出现。我到过一个现场,两台主机的工作台同样是球铁的,一台球化好了,用了几年就没问题,而另一台,没有多久就坏了,断面象马蜂窝似的。再如,某厂引进的气冲线96年投产以来,主机工作台油缸已更换了三次,第一次没过保质期就坏了,结果索赔了一台,此后,每两三年更换一次。另外,电线接头长时间使用后引起松动,也导致坏电路二三次。安装不按规范,偷工减料,也是造成可靠性差的重要原因之一。比如:安装时对管子不按规范进行清洗,该氩弧焊的用普通焊代替,造成管子里边有焊渣;该装管夹的地方不装或少装,造成管子震动,管接头松动,时间一长开始漏油;该用RVV软线的地方,用KVV代替,宜造成断路;该用螺栓固定的地方一焊了之,等等。
3.维修困难
由于设计人员现场经验不足,设计出来的设备往往只注意功能性,而没有注意维修容易,比如有些易损件或耐磨件,在制造厂装配时依次可以装上,但如果使用过程中磨损了,需要更换,则必须大卸八块,才能换上。这样,既费时,又影响了整个设备的精度。再如,过去将滤网放在泵的吸油口,并埋在油箱内,由于油的污染,经常要对滤网进行清理,但清理一次滤网必须先把油抽干净,而不是将滤网放在回油管上,清洗更换都方便。在阀箱里或多管平行的地方,安装管夹时,没有留出足够的维修空间,一旦一根管子漏油,必须选把别的管子拆掉,才能拧紧,形象地说,就跟栽葱的一样。制造过程中不注意质量,零件严重超差,也是造成维修困难的一个重要原因。比如一个零件与另一个零件为过度配合,由于加工超差,装配时变成了过盈配合,一旦零件出了问题需更换时,就很难取出。还有,经常拆装的缸端管接头,不用球铰接头,而用端直角接头,从而给维修带来困难。安装时只顾管子、电线走向,而忽略维修的可能性的情况也是常有的,比如,有些设备距地沟壁有一定的距离,本来是作为维修空间用的,但安装时不注意,觉得走管子或电缆桥架挺方便的,就装上了,但使用维修时就叫苦了。
4.生产任务不足,成本较高
在市场经济的今天,铸件成本的高低显得越来越重要了。近几年来,由于乡镇和民营铸造企业的蓬勃发展以及城市的环境保护要求,再加上乡镇和民营铸造企业的成本较低,企业经营灵活,这些企业的铸件在市场上的份额越来越大,从而导致一些具有造型线的大中型企业生产能力不足。例如:现在许多厂爱“开三停四”,一个月上半个月的班,由原来的两班或三班改为单班,经常放长假等。造型线的运行成本较高,也是影响使用的一个因素。如果开动造型线,必须所有设备开动,包括相关工部的设备,这样,用电量较大,同时,所有人员都得到岗,再加上漏油损失,在产量少的情况下,开机将很不划算。比如:有一个厂原来产量很大,上了一条气冲造型线,后来,产量锐减,开动造型线明显不划算,再加上实行成本核算,只好将造型线封存,改为地面造型。
5.管理不善
没有通盘计划,各自为政的现象严重,致使一些企业不考虑自己的实际情况,盲目上马,但后来由于资金不足,产品不对路等原因,造成虽已有较大投入,但尚未形成生产能力而闲置着的设备数量也不少。
企业内部管理不善,主要表现为:维修人员责任不明确,没有明确的设备维修制度,备件采购和维修脱节,维修人员素质较低,工资待遇差等。经常看到这样的现象:操作工上班时维修工在休息,操作工下班了维修工也下班了,至少设备是否需要备件,是否带病工作,是束需要维修,没有人去管,只有设备实在开不动了,才去修理,而这时换上的备件往往又不合适。比如某厂造型线上的备件是由设备科来组织,线上该备什么,备多少,基本不与维修人员通气,买来的备件也不与造型线上实际使用的实物对照,因此,常常出现原来是24伏的阀,更换时变成了220伏;应该是内控内泄阀,更换时变成了内控外泄阀;加工的备件更换时才发现超差等现象,从而影响生产。
6.各工部不匹配
由于国内外铸造设备的标定生产率与实际相差很大,所以,经常导致铸造车间各工部不匹配,从而影响造型线的开动率,据不完全统计,一般造型线由于各工部不匹配而占停机时间约为30-50%左右。例如有一个厂,在车间设计时引进了一条造型线,但其它工部选用国产设备,投入使用后出现两个问题:一是其它工部设备故障率高,严重影响了造型线的开动率,使造型线处于半停产状态;二是混砂能力不够,国产混砂机的混砂能力在实际实用中只能达到名义能力的一半左右,而设计时按名义能力考虑,因此,造成这样的后果。该车间这样生产了大概三、四年,厂里下决心又对砂处理工部进行了改造,目前,使用情况良好。
三.解决问题的办法
要想将一条造型线用好,无非要作好“防”和“备”两方面的工作,“防”是防止问题的出现,“备”是防不胜防时,出现问题了要有所准备,将问题尽快解决。但要做到这两点,必须在以下方面下功夫。
1.加强学习,吸引国内外先进技术和经验,以防为主
设计人员的素质直接影响到造型线的水平,只有设计水平提高了,才有可能制造出好的造型线。为此,设计人员必须掌握国内外的先进技术和设备,并不断总结经验,逐步提高,使设计水平从“小学”提高到“大学”。近年来,我国铸造设备设计人员已充分意识到这一点,通过他们的努力,再加上生产实践、消化吸引国外先进的工艺和技术,我国铸造设备设计水平大大提高,他们不仅具有了设计出高水平造型线的能力,而且具有现场动手的能力,通过不断改进,已设计出多条布置合理,性能可靠的造型自动线。这些改进有:工艺方面:由气动微震改为高压造型,再发展为气冲造型、静压造型、触头式动力撞击造型等。使设备越来越简单,工艺性越来越好。可靠性方面:过去造型线控制用顺控器控制,设备又庞大,故障又多,维修也困难,但有了PC以后,我们马上用在造型线控制上,目前,基本上没有人说电器有问题了;过去辅机及转运车为了实现慢--快--慢的动作,用子母电机或行程阀控制,现在有了调频电机和比例阀,很容易就解决了,可靠性也得到了提高;过去动作检测发讯用行程开关,现在用接近开关或编码器;过去由于油温过高,常使密封件容易老化,产生漏油等现象,严重影响造型线的开动,针对这一原因,现在增加了液压油冷却面积,改变溢流阀型号,使无负荷时泄荷,而不是溢流,减少产生热量的原因,降低落同温;活塞式蓄能器改为囊式蓄能器,性能可靠,动作灵敏;将不可靠的国产元件改为进口元件等。维修方面:一条造型线再好也不可能一点问题没有,但出了问题很难解决,设计水平就不能说很高,为此,设计人员也下了很大功夫。便好:过去液压系统出了故障,必须先把系统卸荷,回油完了再维修,现在将阀箱带在设备上,并在进出油口各加一个截止阀,维修时阀一关就行了,十分方便;还有,经常拆装的较大零件,设计时直接设计上两个吊装孔,使维修变的十分方便。专业设计方面:过去许多大厂车间设计由自己的技术人员来完成,但由于受专业和实际经验的限制,设计完成后问题较多,特别是各工部不匹配的现象普遍存在。因此,铸造项目最好不要请非专业的技术人员来设计,要请专业的设计院所来设计,这样,就会少出错或不出错,不走弯路。
2.强化质量意识,提高产品质量
“质量就是生命”这句话我们大家都很熟悉,但在实际中对质量的认识还很不够,还应该加强,使每一个员工意识到没有质量,就没有生存。一切操作按规范进行,绝对禁止为了一点小利进行偷工减料的行为。过去经常有这样的事,图纸归图纸,加工归加工,加工的人不看图纸要求,设备做成什么就是什么,比如端直通管接头的螺纹孔,由于要靠组合垫密封,图纸上螺纹孔和端面的锪平面有垂直度要求,但机加工工人是不管的,甚至不锪平,所以,容易造成漏油。还有多个螺钉固定的设备,往往有几个螺钉孔对不上,因此,把螺钉磨成丝锥一样拧进去或不拧。当然,经过这么多年的生产实践,许多厂已意识到质量的重要性,加工手段也提高了许多,比如现在许多厂用专机或加工中心加工砂箱,过去自己制造的油缸现在也外协到专业油缸厂制造。另外,必须提高基础件的质量,过去同样12.9级的螺钉固定液压阀,进口的就不漏油,国产的就漏油。减速机内的齿轮,要求是硬齿面,耐实际是软齿面,用不了多外就坏,等等。
3.加强管理,健全维修制度,有备无患
首先上级主管部门要根据企业的具体情况,决定是否要上造型线,把好第一关,避免上了一半而中途下马,经国家和企业造成经济损失。如果上了造型线,企业内部必须加强管理,与造型线有关人员必须责、权、利分明,谁出了问题,谁负责任,谁来解决。要有严格的管理制度,注意各工部之间的匹配,注意人材的培养和合理利用。再好的一条线,如果管理维修跟不上,也不可能用好。因此,必须重视维修人员的素质。维修人员必须对造型线非常了解,明白每一个零件的用途,平时要进行预检预修及巡检,出了故障能很快正确地判断并及时排除。我到过一个现场,维修人员没见过造型线的液压原理图,对全线的动作原理不清楚,因此,出了故障手忙脚乱,最后捣鼓一通能用为止,究竟出了什么问题,怎样解决却不清楚。因此,大大影响了开动率。象这种状况,以后必须改进。备品备件的管理对自动化流水生产线来说,显得特别重要,建议此项工作由专人管理。备件清单的提供要与造型线上的需要一致,进货后要与造型线核对,并分类保管,保管条件要符合材质的要求,定期对备件进行检查,对过期的零件清理出去,及时补充新的零件。要做到造型线使用的备品备件随时能准确无误地提供,从而,确保造型线正常运转。总之,要用好一条造型,不是一件简单的事,几十台设备、一、二百个点,每天都毫无差错地运行,不仅要从设计、制造、安装、调试、维修、备品备件等造型线本身方面来下工夫,而且要从生产管理、各工部协调匹配、正确确定工艺参数等方面下功夫。随着技术水平、制造水平,加上设计人员的设计水平和使用者管理水平的不断提高,国产造型线一定能制造好,使用好。
刘小龙
2、浅谈如何提高压铸模寿命
材料自身存在的缺陷、维修和保养的方法都是会影响压铸模的寿命的。本文从后者来介绍如果提高压铸模的寿命,并列举了压铸模常见的故障原因及排除方法。
压铸模由于生产周期长、投资大、制造精度高,故造价较高,因此希望模具有较高的使用寿命。但由于材料、机械加工等一系列内外因素的影响,导致模具过早失效而报废,造成极大的浪费。
压铸模失效形式主要有:尖角、拐角处开裂、劈裂、热裂纹(龟裂)、磨损、冲蚀等。造成压铸模失效的主要原因有:材料自身存在的缺陷、加工、使用、维修以及热处理的问题。
1、材料自身存在的缺陷
众所周知,压铸模的使用条件极为恶劣。以铝压铸模为例,铝的熔点为580-740℃,使用时,铝液温度控制在650-720℃。在不对模具预热的情况下压铸,型腔表面温度由室温直升至液温,型腔表面承受极大的拉力。开模顶件时,型腔表面承受极大的压应力。数千次的压铸后,模具表面便产生龟裂等缺陷。
由此可知,压铸使用条件属急热急冷。模具材料应选用冷热疲劳抗力、断裂韧性、热稳定性高的热作模具钢。H13(4Cr5MoV1Si)是目前应用较广泛的材料,据介绍,国外80%的型腔均采用H13,现在国内仍大量使用3Cr2W8V,但3Cr2W8VT_艺性能不好,导热性很差,线膨胀系数高,工作中产生很大热应力,导致模具产生龟裂甚至破裂,并且加热时易脱碳,降低模具抗磨损性能,因此属于淘汰钢种。马氏体时效钢适用于耐热裂而对耐磨性和耐蚀性要求不高的模具。钨钼等耐热合金仅限于热裂和腐蚀较严重的小型镶块,虽然这些合金即脆又有缺口敏感性,但其优点是有良好的导热性,对需要冷却而又不能设置水道的厚压铸件压铸模有良好的适应性。因此,在合理的热处理与生产管理下,H13仍具有满意的使用性能。
制造压铸模的材料,无论从哪一方面都应符合设计要求,保证压铸模在其正常的使用条件下达到设计使用寿命。因此,在投入生产之前,应对材料进行一系列检查,以防带缺陷材料造成模具早期报废和加工费用的浪费。常用检查手段有宏观腐蚀检查、金相检查、超声波检查。
(1) 宏观腐蚀检查。主要检查材料的多孔性、偏柝、龟裂、裂纹、非金属夹杂以及表面的锤裂、接缝。
(2) 金相检查。主要检查材料晶界上碳化物的偏析、分布状态、晶料度以及晶粒间夹杂等。
(3) 超声波检查。主要检查材料内部的缺陷和大小。
2、压铸模的加工、使用、维修和保养
模具设计手册中已详细介绍了压铸模设计中应注意的问题,但在确定压射速度时,最大速度应不超过100m/S。速度太高,促使模具腐蚀及型腔和型芯上沉积物增多;但过低易使铸件产生缺陷。因此对于镁、铝、锌相应的最低压射速度为27、18、12m/s,铸铝的最大压射速度不应超过53m/s,平均压射速度为43m/s。
在加工过程中,较厚的模板不能用叠加的方法保证其厚度。因为钢板厚1倍,弯曲变形量减少85%,叠层只能起叠加作用。厚度与单板相同的2块板弯曲变形量是单板的4倍。另外在加工冷却水道时,两面加工中应特别注意保证同心度。如果头部拐角,又不相互同心,那么在使用过程中,连接的拐角处就会开裂。冷却系统的表面应当光滑,最好不留机加工痕迹。
电火花加工在模具型腔加工中应用越来越广泛,但加工后的型腔表面留有淬硬层。这是由于加工中,模具表面自行渗碳淬火造成的。淬硬层厚度由加工时电流强度和频率决定,粗加工时较深,精加工时较浅。无论深浅,模具表面均有极大应力。若不清除淬硬层或消除应力,在使用过程中,模具表面就会产生龟裂、点蚀和开裂。消除淬硬层或去应力可用:①用油石或研磨去除淬硬层;②在不降低硬度的情况下,低于回火温度下去应力,这样可大幅度降低模腔表面应力。
模具在使用过程中应严格控制铸造工艺流程。在工艺许可范围内,尽量降低铝液的浇铸温度,压射速度,提高模具预热温度。铝压铸模的预热温度由100~130℃提高至180~200℃,模具寿命可大幅度提高。
焊接修复是模具修复中一种常用手段。在焊接前,应先掌握所焊模具钢型号,用机械加工或磨削消除表面缺陷,焊接表面必须是干净和经烘干的。所用焊条应同模具钢成分一致,也必须是干净和经烘干的。模具与焊条一起预热(H13为450℃),待表面与心部温度一致后,在保护气下焊接修复。在焊接过程中,当温度低于260℃时,要重新加热。焊接后,当模具冷却至手可触摸,再加热至475℃,按25mm/h保温。最后于静止的空气中完全冷却,再进行型腔的修整和精加工。模具焊后进行加热回火,是焊接修复中重要的一环,即消除焊接应力以及对焊接时被加热淬火的焊层下面的薄层进行回火。
模具使用一段时间后,由于压射速度过高和长时间使用,型腔和型芯上会有沉积物。这些沉积物是由脱模剂、冷却液的杂质和少量压铸金属在高温高压下结合而成。这些沉积物相当硬,并与型芯和型腔表面粘附牢固,很难清除。在清除沉积物时,不能用喷灯加热清除,这可能导致模具表面局部热点或脱碳点的产生,从而成为热裂的发源地。应采用研磨或机械去除,但不得伤及其它型面,造成尺寸变化。
经常保养可以使模具保持良好的使用状态。新模具在试模后,无论试模合格与否,均应在模具未冷却至室温的情况下,进行去应力回火。当新模具使用到设计寿命的1/6~1/8时,即铝压铸模10000模次,镁、锌压铸模5000模次,铜压铸模800模次,应对模具型腔及模架进行450—480℃回火,并对型腔抛光和氮化,以消除内应力和型腔表面的轻微裂纹。以后每12000~15000模次进行同样保养。当模具使用50000模次后,可每25000~30000模次进行一次保养。采用上述方法,可明显减缓由于热应力导致龟裂的产生速度和时间。
在冲蚀和龟裂较严重的情况下,可对模具表面进行渗氮处理,以提高模具表面的硬度和耐磨性。但渗氮基体的硬度应在35-43HRC,低于35HRC时氮化层不能牢固与基体结合,使用一段时间后会大片脱落:高于43HRC,则易引起型腔表面凸起部位的断裂。渗氮时,渗氮层厚度不应超过0.15mm,过厚会于分型面和尖锐边角处发生脱落。
3、热处理
热处理的正确与否直接关系到模具使用寿命。由于热处理过程及工艺规程不正确,引起模具变形、开裂而报废以及热处理的残余应力导致模具在使用中失效的约占模具失效比重的一半左右。
压铸模型腔均由优质合金钢制成,这些材料价格较高,再加上加工费用,成本是较高的。如果由于热处理不当或热处理质量不高,导致报废或寿命达不到设计要求,经济损失世大。因此,在热处理时应注意以下几点:
(1) 锻件在未冷至室温时,进行球化退火。
(2) 粗加工后、精加工前,增设调质处理。为防止硬度过高,造成加工困难,硬度限制在25-32HRC,并于精加工前,安排去应力回火。
(3) 淬火时注意钢的临界点Ac1和AC3及保温时间,防止奥氏体粗化。回火时按20mm/h保温,回火次数一般为3次,在有渗氮时,可省略第3次回火。
(4) 热处理时应注意型腔表面的脱碳与增碳。脱碳会记过迅速引起损伤、高密度裂纹;增碳会降低冷热疲劳抗力。
(5) 氮化时,应注意氮化表面不应有油污。经清洗的表面,不允许用手直接触摸,应戴手套,以防止氮化表面沾有油污导致氮化层不匀。
(6) 两道热处理工序之间,当上一道温度降至手可触摸,即进行下道,不可冷至室温。
上一篇:论文格式这么调整
下一篇:sci论文学术圈