欢迎来到学术参考网
当前位置:发表论文>论文发表

内存泄露检测论文

发布时间:2023-03-13 18:20

内存泄露检测论文

一般来说内存泄漏有两种情况。一种情况,在堆中的分配的内存,在没有将其释放掉的时候,就将所有能访问这块内存的方式都删掉(如指针重新赋值);另一种情况则是在内存对象明明已经不需要的时候,还仍然保留着这块内存和它的访问方式(引用)。第一种情况,在Java中已经由于垃圾回收机制的引入,得到了很好的解决。所以,Java中的内存泄漏,主要指的是第二种情况。
可能光说概念太抽象了,大家可以看一下这样的例子:

1 Vector v=new Vector(10);
2 for (int i=1;i<100; i++){
3 Object o=new Object();
4 (o);
5 o=null;
6 }

在这个例子中,代码栈中存在Vector对象的引用v和Object对象的引用o。在For循环中,我们不断的生成新的对象,然后将其添加到Vector对象中,之后将o引用置空。问题是当o引用被置空后,如果发生GC,我们创建的Object对象是否能够被GC回收呢?答案是否定的。因为,GC在跟踪代码栈中的引用时,会发现v引用,而继续往下跟踪,就会发现v引用指向的内存空间中又存在指向Object对象的引用。也就是说尽管o引用已经被置空,但是Object对象仍然存在其他的引用,是可以被访问到的,所以GC无法将其释放掉。如果在此循环之后,Object对象对程序已经没有任何作用,那么我们就认为此Java程序发生了内存泄漏。
尽管对于C/C++中的内存泄露情况来说,Java内存泄露导致的破坏性小,除了少数情况会出现程序崩溃的情况外,大多数情况下程序仍然能正常运行。但是,在移动设备对于内存和CPU都有较严格的限制的情况下,Java的内存溢出会导致程序效率低下、占用大量不需要的内存等问题。这将导致整个机器性能变差,严重的也会引起抛出OutOfMemoryError,导致程序崩溃。

一般情况下内存泄漏的避免

在不涉及复杂数据结构的一般情况下,Java的内存泄露表现为一个内存对象的生命周期超出了程序需要它的时间长度。我们有时也将其称为“对象游离”。
例如:

1 public class FileSearch{
2
3 private byte[] content;
4 private File mFile;
5
6 public FileSearch(File file){
7 mFile = file;
8 }
9
10 public boolean hasString(String str){
11 int size = getFileSize(mFile);
12 content = new byte[size];
13 loadFile(mFile, content);
14
15 String s = new String(content);
16 return ns(str);
17 }
18 }

在这段代码中,FileSearch类中有一个函数hasString,用来判断文档中是否含有指定的字符串。流程是先将mFile加载到内存中,然后进行判断。但是,这里的问题是,将content声明为了实例变量,而不是本地变量。于是,在此函数返回之后,内存中仍然存在整个文件的数据。而很明显,这些数据我们后续是不再需要的,这就造成了内存的无故浪费。
要避免这种情况下的内存泄露,要求我们以C/C++的内存管理思维来管理自己分配的内存。第一,是在声明对象引用之前,明确内存对象的有效作用域。在一个函数内有效的内存对象,应该声明为local变量,与类实例生命周期相同的要声明为实例变量……以此类推。第二,在内存对象不再需要时,记得手动将其引用置空。

复杂数据结构中的内存泄露问题

在实际的项目中,我们经常用到一些较为复杂的数据结构用于缓存程序运行过程中需要的数据信息。有时,由于数据结构过于复杂,或者我们存在一些特殊的需求(例如,在内存允许的情况下,尽可能多的缓存信息来提高程序的运行速度等情况),我们很难对数据结构中数据的生命周期作出明确的界定。这个时候,我们可以使用Java中一种特殊的机制来达到防止内存泄露的目的。
之前我们介绍过,Java的GC机制是建立在跟踪内存的引用机制上的。而在此之前,我们所使用的引用都只是定义一个“Object o;”这样形式的。事实上,这只是Java引用机制中的一种默认情况,除此之外,还有其他的一些引用方式。通过使用这些特殊的引用机制,配合GC机制,就可以达到一些我们需要的效果。

Linux Kernel模块内存泄露分析

假如通过“Free”查看内存几乎耗尽,但通过 top/ps 命令却看不出来用户态应用程序占用太多的内存空间, 那么内核模块可能发生了内存泄露

SLAB 是Linux内核中按照对象大小进行分配的内存分配器。

通过SLAB的信息来查看内核模块占用的内存空间:

方法1. 查看meminfo文件

方法2. 查看slabinfo文件

一般查看slabinfo文件就足以,如果发现slabinfo中占用内存过大,那基本可以断定,内核模块出现了内存泄露了 还有个命令 slabinfo 也是可以看,其实也是去读 /proc/slabinfo 后可视化出来

Linux内核的Kmemleak实现内存泄露检测

看看下面这个函数是哪里导致的内存泄漏呢?

一眼可能不容易看出上面的有什么问题,有kmalloc,有kfree 成对出现的。

问题正好出在 pr_debug 这个函数中的参数传递, 熟悉函数调用传参的人应该会知道编译器一般对参数的处理采用堆栈的方式,是一个先进后出的过程,这样参数的执行一般是逆序的(由于编译器实现的不同,这个过程不是确定的),这样kfree会在kmalloc之前运行,导致每次运行都会泄漏一点内存。

Resolving Memory Leaks In Linux Kernel

Slab Allocator

Proc Info

Using Crash Debugger

linux内核内存泄露检测

经常碰到系统跑着跑着一段时间内存满了,出现内存泄漏的问题,系统软件太庞大,这类问题又不好直接从源码中分析,所以需要借助工具来分析了,kmemleak就是这样的一个工具。

在Kernel hacking中打开CONFIG_DEBUG_KMEMLEAK =y即使能了kmemleak,其实就是开了一个内核线程,该内核线程每10分钟(默认值)扫描内存,并打印发现新的未引用的对象的数量。kmemleak的原理其实就是通过kmalloc、vmalloc、kmem_cache_alloc等内存的分配,跟踪其指针,连同其他的分配大小和堆栈跟踪信息,存储在PRIO搜索树。如果存在相应的释放函数调用跟踪和指针,就会从kmemleak数据结构中移除。下面我们看看具体的用法。

查看内核打印信息详细过程如下:

1、挂载debugfs文件系统

   mount -t debugfs nodev /sys/kernel/debug/

2、开启内核自动检测线程

   echo scan > /sys/kernel/debug/kmemleak

3、查看打印信息

   cat /sys/kernel/debug/kmemleak

4、清除内核检测报告,新的内存泄露报告将重新写入/sys/kernel/debug/kmemleak

   echo clear > /sys/kernel/debug/kmemleak

内存扫描参数可以进行修改通过向/sys/kernel/debug/kmemleak 文件写入。 参数使用如下:

  off 禁用kmemleak(不可逆)

  stack=on 启用任务堆栈扫描(default)

  stack=off 禁用任务堆栈扫描

  scan=on 启动自动记忆扫描线程(default)

  scan=off 停止自动记忆扫描线程

  scan=<secs> 设置n秒内自动记忆扫描,默认600s

  scan 开启内核扫描

  clear 清除内存泄露报告

  dump=<addr> 转存信息对象在<addr>

通过“kmemleak = off”,也可以在启动时禁用Kmemleak在内核命令行。在初始化kmemleak之前,内存的分配或释放这些动作被存储在一个前期日志缓冲区。这个缓冲区的大小通过配CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE设置。

上一篇:检测疲劳驾驶论文

下一篇:博士论文论文查重