道路设计论文格式
道路设计论文格式
道路交通论文
道路交通安全相关的论文应该怎么写呢?以下是我整理的道路交通论文,欢迎参考阅读!
摘要 :
交通安全关乎国计民生,是我国基础设施建设中不容忽视的问题之一。公路设计作为公路交通建设中关键的环节,其科学合理性直接影响着公路通车以后的使用性能,必须在公路设计阶段充分考虑对交通安全的影响。通过分析交通安全中公路设计因素的影响作用,探讨了改善公路设计的措施,以确保公路交通自设计之初就消除不必要的隐患,进一步提升公路交通安全。
关键词 :
交通安全;公路设计;线形设计;视距
引言
交通安全的影响因素中,公路设计是最不容忽视的因素之一。公路设计是公路工程建设中的关键环节,其科学性直接影响着道路以后的使用性能。公路设计过程中如果未对公路线形、抗滑系数等充分考虑,就可能在以后的车辆行驶过程中引发安全事故。因此,探讨公路设计中对交通安全的影响因素,并采取相应的改进措施是十分必要的。
1公路设计因素对交通安全的影响
公路交通作为交通系统中重要的组成部分,其安全性能对交通安全的影响是不容忽视的。公路设计是公路交通建设的关键步骤,设计质量的优劣直接影响着公路的使用性能。通常情况下,公路交通安全会受到多种因素影响,因此在公路设计的过程中应充分考虑各种因素的综合影响,进而在设计之初就采取相应的措施以确保公路交通系统的可靠性。
1.1平面线形设计对交通安全的影响
公路线是公路交通系统的主要组成部分,平面线形设计也是公路交通安全中首要考虑的因素。公路平面线形设计中必须充分考虑驾驶员在道路行驶过程中的心理和视觉感受,因为这些因素都直接影响着驾驶员在车辆行驶中的安全稳定性。实际上,每个驾驶员在车辆驾驶中的习惯和操控手法都不一致,这里主要考虑驾驶员的共性习惯问题,并兼顾个性效应。此外,设计中还应考虑紧急情况出现时驾驶员能够做出的控制和反应,以应对不同紧急状况的发生,从而在公路设计过程中就加强对交通事故及严重交通事故的预防。平面线形设计的优劣能够直接影响以后道路行驶中驾驶员的视觉效果,在设计过程中应特别重视对以上因素的影响[1]。1.2视距设计对公路交通安全的影响所谓视距,通常包括平面视距和纵断视距。视距对于驾驶员安全行车的影响也是不容忽视的,良好的视距设计可以在驾驶员的行车过程中营造舒适的外在环境,并在紧急情况出现时能够有更加充分的时间和空间来采取措施,及时操控车辆到安全的区域。公路设计中的视距设计根据内容又可以分为停车视距设计、会车视距设计及超车视距设计,其中最应该引起重视的是超车视距,因为超车通常是最容易引起交通事故的操作之一。超车视距也被认为是最长的视距,交通意外风险最高,在行车过程中需要的时间和空间最多,因此必须在超车视距设计中给予充分的考虑。
1.3纵断面线形设计对公路交通安全的'影响
纵断面的公路设计通常对视距的影响是决定性的,同时也是公路设计中影响交通安全的重要因素之一[2]。公路的线形设计中纵断面设计是十分重要的一个环节,特别是出现较长或者大型纵坡的情况时,公路纵断面的影响必须完全考虑。在公路上行驶的车辆一旦遇到长或大的纵坡,车辆载重量又较大的情况,就会保持长时间的低档行驶,进而对车辆造成一定的影响。除了大纵坡以外,还有一些其它方面的情况需要认真考虑,由于涉及到道路危险,因此纵断面的线形设计至关重要。
1.4平纵组合设计对公路交通安全的影响
平纵组合设计是影响交通安全的又一重要因素。组合设计的最终目的是为了让道路行驶过程更人性化,更符合驾驶员的习惯,也是帮助行驶车辆能够更好地协调。只有设置了相应的平纵组合设计,才能够尽量避免或减少车辆在行驶的过程中由于不适应而引发的交通事故。平纵组合的设计对于公路交通来说是十分重要的,要充分考虑到驾驶员的行车习惯及在各种路段行车过程中产生的惯性心理及其影响。
2改善公路设计中对交通安全影响因素的措施
公路交通安全关系到社会生活的方方面面,提供良好的交通环境需要公路设计过程中充分地考虑到影响交通安全的因素,并采取相应的措施。公路交通安全系数的提高,离不开科学合理的公路设计。
2.1改进公路平面线形设计
公路直线路段过长就容易引起驾驶员的视觉疲劳,同时也可能导致驾驶员的车速过快,因此,公路支线路段在设计长度上应尽量避免连续过长的路段。为了确保公路路段前后线形性能的稳定性,选择曲线半径时通常要用到比最小半径大的半径,且一般不超过1000m。此外,行车路段中出现比现行路段更复杂的情况后,应充分考虑车辆面临突然的变化采取习惯性制动措施的情况,一方面应尽可能通过曲线技术指标将路段科学过渡,留给驾驶员充分的时间做好预防突发状况的准备。此外,公路不仅仅是供人们通行的基础设施,同时也是周围环境的营造者,公路设计中也要考虑到对环境的影响,以为人们提供良好的行车外在环境。
2.2改进公路视距设计的方法及措施
在改进公路视距设计中主要从以下3个方面进行分析[3]:首先,驾驶员在公路上行车要实现超车就必须具有足够的超车时间和空间,视距设计时就应考虑到为车辆超车提供行车净空的标准要求,并在以后的施工中严格保证净空的规范质量,以确保车辆行进过程有序地完成。其次,公路设计的过程中任何设计方案的提出都要满足国家标准的要求,特别是高等级公路和主干线公路,必须满足在该路段标准车速行驶的状态下完成超车所需要的时间和空间保证。最后,公路路段中如果出现人工构造物或者边坡时,除了要保证相应的空间以外,还应该考虑到构造物对驾驶员视线的影响,可以适当设置交通标志以提示驾驶员可能要面临的路况,以尽早采取制动或其它措施来应对,预防和减少交通意外的出现。
2.3改进纵断面线形设计的措施
纵断面线形设计主要是针对长、大纵坡的路段,在设计的过程中要考虑长、大纵坡等实际情况。路段中出现较长或者较大的纵坡路段时,就需要对该路段进行爬坡设计,除了相应的受力计算外,也要保证各种行驶车辆在该路段爬坡时车辆的性能稳定性,绝不可采取极限值计算并应用于设计中。因为如果采取极限值法进行设计,一旦车辆性能受到影响就会发生不必要的交通事故。如果必须要采取极限值时,也应该辅助以相应能够有效降低车速的措施,或者设置醒目的道路警告交通标志,提前向驾驶员提示预警,让其尽早采取措施以减少由于特殊路段行车不当而引起的交通安全事故。
2.4改进平面组合设计的措施
组合设计的目的通过平面上直线与曲线的交叉或者其它方式的纵断相接,为驾驶员提供良好的行车环境,以预防和减少交通意外的出现。例如,公路路段中出现急转弯或者连续陡坡的情况时,通过平面曲线设计将道路平曲线设置的长于平面竖曲线,可以有效降低车辆行驶该路段过程中的不适应,从而降低交通意外的发生概率。直线纵断面在驾驶员行车的过程中可能会造成视觉上的阻碍,在公路设计中应注意避免,同时,还应考虑到驾驶员突然采取制动措施时的车辆可能行进状况,设置相应的平面区域,以降低紧急意外引起的事故发生率,确保公路交通安全。
3结语
经济的发展离不开基础设施的建设,公路交通作为我国的主要交通形式正在扮演者越来越重要的角色。公路设计是公路交通的关键步骤,良好的公路设计能够为交通安全及早地剔除隐患,减少重大交通事故的出现频率。随着我国经济建设的快速发展,公路交通安全越来越受到公众的重视,公路设计工作者需要承担的责任越来越大,在设计过程中应充分考虑交通安全的影响因素,提高公路交通的可靠稳定性。
论文格式
现如今,大家总免不了要接触或使用论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。写起论文来就毫无头绪?下面是我收集整理的论文格式模板范文(精选6篇),希望能够帮助到大家。
摘要:伴随经济社会的飞速发展,高速国道干线与城市内部道路均存在基础设施建设更新速度快、交通承载压力大、信息化程度低等特点,难以满足现代道路交通体系的数字化要求,迫切要求构建便捷、高效、实时的交通地理信息系统。
本文以ArcGISEngine开发环境为基础,对道路交通信息系统与ArcEngine组件式平台拟进行概要阐述,并按照软件设计的相关原则,对道路交通地理信息系统进行了总体设计与功能模块设计。
关键词:ArcGIS;Engine;道路交通地理信息系统;组件式开发
当前国内经济迅速增长,城市化规模不断增大,以机动车保有量为代表的道路交通压力也与日俱增,国内北京、上海、天津等大型城市纷纷通过限号形式来减缓道路载荷。
现代信息技术为整合道路交通资源、实现交通数据自动化管控提供了数据支撑,有利于构建时空一体的道路交通地理信息系统。
1.道路交通地理信息系统
ArcGISEngine作为GIS嵌入式二次开发平台,可摆脱ArcGIS提供组件式多类型开发应用程序接口API,同时可与MicrosoftVisualStu-dio系统编程集成开发环境相融合,基于进行多类编程语言下的模块式开发。
以GIS地理信息技术为基础,利用ArcGISEn-gine平台将交通路网与道路设施等空间信息、车载流量与基础设施等属性数据同航摄影像、多媒体监控数据等有效衔接,实现对空间和属性数据相关的采集、编辑与分析,采用GIS最短路径、道路畅通度算法等优化选择合理的交通线路,完成公交布线与站点布设等工作,同时融合多媒体监控手段,实时显示热点路况信息,科学指挥道路交通。
2.系统功能需求分析
从应用层面分析,道路交通地理信息系统的受众群体分为交通管理方与车辆应用客户方,其中本文所探讨的基于ArcGISEngine的应用系统主要为交通管理方的C/S客户端,具体车辆客户端则可采用基于Android、ios或WindowsMobile平台的APP软件;从系统设计的原则分析,应坚持安全性、共享性、可拓展性与可维护性的原则,提升道路交通地理信息系统的综合性发展。
作为道路交通地理信息系统,以数字化道路空间与属性信息为基础,在确保系统不同用户权限的条件下,提供地图量测、空间漫游、数据维护等功能,检索酒店、学校、商场、企事业单位相关位置,并根据摄像头监控热点交通流量、密度数据,同时借助GPS定位、无线数据传输技术,为公交、出租等公共车辆提供位置相关服务。
3.道路交通地理信息系统总体与功能模块设计
开展道路交通地理信息系统设计前,按照相应的数据标准采集空间影像数据、基础线划图与专题交通资料,经裁切、镶嵌与校准等流程完成数据的标准化预处理,并导入系统平台空间基础数据库中,按照点、线、面要素分层,细化停车场、公交站点、高速、铁路与公路等要素信息,其空间地理基础数据库分层如下:
(1)系统分库:大地控制测量数据库、数字高程DEM与正射影像DOM数据库、数字线划DLG与遥感栅格DRG数据库,以及系统元数据库。
(2)系统逻辑分层库:以DLG数据库为例,可分为居民地、水系、道路、植被、地形等数据库分层要素信息。
(3)系统逻辑底层:包含点、线、面、注记与多媒体层等相关信息。
根据道路交通地理信息系统的应用框架,其总体设计可分为三大部分:电子地图服务模块、公共信息服务模块、空间分析与数据统计模块。
系统空间数据库GeoDatabase导入Shape、栅格、属性表等相关空间数据与属性文件,管理客户端采用地方坐标系进行配准建设,以便于后期交通设施数据的更新与维护,针对公共信息服务模块,采用经脱密处理的电子地图和遥感数据,以确保数据空间位置安全。
关于系统的具体功能模块设计如下:
(1)电子地图服务模块。
利用ArcGISEngine地图工具集组件,在VS开发平台可便捷的实现图层控制、热点注记、空间量测等功能,实现对ArcInfo、Shapefile、GRID等数据格式的加载编辑。
(2)公共信息服务模块:重在提供空间位置检索、基于位置的信息服务功能,利用ArcGISEngine的类库资源,通过ToolbarControl和VS系统中的DataGridView、Find控件完成相关地图数据的检索功能,查询要素属性信息。
(3)空间分析与数据统计模块:道路交通地理信息系统中利用空间数据检索出的要素可进行相应的聚类分析或数值统计;关于空间分析功能,其主要涉及最短路径分析与缓冲区分析,根据交通需求量、流通量的变化,进行最短距离、最短时间的计算或识别相关地理实体对周边地物的影响区间,空间缓冲区分析实现的部分代码
4.结语
作为涵盖测绘信息采集处理、计算机软件编程和数据库建设等多行业学科融合的道路交通地理信息系统,以ArcGISEngine组件式开发平台为基础,通过对其进行系统需求分析与功能模块设计,明确了系统的相关服务功能,构建了系统的总体框架,为类似工程实践提供参考意义。
参考文献:
[1]刘莹.ArcGISEngine的开发及应用研究[J].城市勘测,2006(02).
[2]张国强.数字图像处理技术在交通监控领域里的应用[J].辽宁师专学报(自然科学版),2007(04).
[3]谭健妹,刘清君,邹小梅.基于GIS的交通事故信息系统研究[J].山西科技,2007(01).
[4]李红,沈冬.基于ArcGlSEngine的地理信息数据库设计与实现[J].测绘与空间地理信息,2009(04).
[5]兰小机,王飞,彭涛.基于ArcGISEngine的查询信息系统的设计与实现[J].金属矿山,2008(02).
摘要:探究式教以重视提高学生的发现、分析、解决问题能力的教学模式,其教学理念与我国的新课程改革理念相符。
通过对高中地理探究式教学进行分析,总结探究式教学实施经验,为高中地理应用探究式教学总结经验,提高课堂地理课堂教学效果,提升课堂教学效率,促进学生素质全面发展。
关键词:高中地理;探究式教学;新课程理念
在传统教学模式影响下,高中地理教学只重视学生的成绩,忽视提高学生的综合能力。
而新课程改革要求课堂教学应让学生掌握课本知识,更应让学生的综合素质获得提升。
在课堂教学中,教师需要转变教师和学生的地位,让学生成为课堂的主体,让学生主动参与课堂学习。
探究式教学方式属于培养学生主动性的教学方式,探究式教学模式与我国新课改理念相契合。
因而高中地理教师需要重视应用探究式教学模式,在探究教学过程中提高学生的主动探究能力科学素养,对学生学好地理知识以及学生的未来成长具有重要作用[1]。
笔者结合个人教学经验,对高中地理教学中应用探究式教学进行简要分析。
1、探究式教学中师生定位
1.1学生定位:探究式教学作为一种培养学生自主探究能力的教学方式,它要求每个学生都能够积极参与教学活动。
同时探究式教学要求学生在教师引导下开展探究学习,通过个人的观察、分析和研究等活动或行为总结知识,建构知识体系,而非教师通过灌输式方式将知识传授给学生。
道路桥梁论文
路基施工要点
关键词:30cm混渣+20cm碎石+4层20cm灰土
本人有幸于三月中旬到六月上旬间在天津市塘沽区的天津大道项目实习,以实习期间对天津大道项目路基工程的了解和认识为素材,并按照工程施工的顺序分析路基施工中的要点编纂论文。
一、天津地区气象水文及地质情况
天津位于北半球暖温带,中纬度亚欧大陆东岸,四季分明,介于大陆性欲海洋性气候的过渡带上,属于半湿润季风气候。春季干燥多风,冷暖多变;夏季温高湿重,雨热共济;秋季天高云淡,风和日丽;冬季寒冷干燥,雨雪稀少。年平均气温1~12℃,七月平均气温25.9℃,一月平均气温-5℃,极端最低气温-21℃,极端最高气温40.3℃。年平均降雨652.5mm,一日最大暴雨量304.4mm,最大积雪深度29mm。春秋两季降雨量分别占全年的10%和14%;夏季6月中旬~9月中旬为雨季(汛期),平均雨日34天左右,占全年降水量的73%以上;冬季与血量占全年的1%~3%.
天津地区位于海河流域下游,海河水系是华北地区最大水系,本工程自北向南,横贯扇面中央,共永定河、中亭河,子牙河等3条一级河道,龙河、中泓故道、南运河等3条二级河道,并且沿线灌溉、排水渠道密布,基本形成排灌水网系。
二、天津大道工程概况
天津大道连接天津市中心城区小白楼商务区与滨海新区于家堡、响罗湾商务区,为城市快速路,西起外环线津沽立交,东至中央大道,双向八车道,设计行车速度80km/h。
三、材料要求
(一) 路基填土
1、路基填料宜优先选用级配良好的砾类土、砂类土作为填料,泥炭、淤泥冻土、强膨胀土、有机质土及易溶盐超过允许含量的土等,不得直接用于填筑路基。
2、本工程位于冰冻地区,严禁采用未经处理的粉质土直接填筑路基。当采用其他细土时,路基填料CBR应满足要求。此外,液限大于50%,塑性指数大于26的细粒土不得直接作为路基填料。
3、禁止使用沼泽土、泥炭及淤泥、含有树根、树桩、易腐朽物质或有机质含量大于5%,氯盐含量大于3%,碳酸盐含量大于0.8%的土。
4、中央分隔带及绿化带填土按绿化回填要求进行填筑。
5、细粒土尽可能粉碎,粒径不得大于15mm。
(二) 碎石
1、碎石中不含植物残体、垃圾等杂物。
2、最大粒径应小于30mm,要求其压碎值不超过30%、强度不小于15MP(未筛分碎石)。
3、 碎石的颗粒组成应符合JTJ034-2000中第2.2.1.6中2#级配要求,为方便施工,宜采用10~30mm的粗集料,5~10mm的中集料,0~5mm的石屑细集料三种粒料配合。
3、池塘路基处理碎石垫层用碎石强度不小于15MP(未筛分碎石),最大粒径应小于150mm,通过20mm筛孔的选料不得超过总量的30%,通过0.075mm筛孔的选料不超过总量的10%。
(三) 钢塑双向土工格栅
1、钢塑双向土工格栅应采用凸结点形式,以保证连接牢靠,其性能要求如下:
纵向抗拉强度:≥80KN 横向抗拉强度:≥80KN
伸缩率:≤3% 结点剥离力:≥350N
2、同时为尽量减少搭接程数量,钢塑双向土工格栅幅宽不宜小于4m。
(四) 石灰
1、石灰应采用消石灰或生石灰粉;消石灰中不得有未消解的生石灰颗粒,石灰等级应在三级以上。
2、 如采用生石灰,钙质生石灰中有效氧化钙氧化镁的含量应大于70%;如采用消石灰,钙质消石灰中有效氧化钙氧化镁的含量应大于50%。
3、石灰剂量=石灰质量/干土质量,生石灰块应在使用前7~10天充分消解。消解的生石灰应保持一定的湿度,不得产生扬尘,也不得过湿成团。消石灰宜过孔10mm的筛,并尽快使用。
(五) 水泥
1、 水泥应符合国家技术标准的要求,宜采用42.5MPa的普通硅酸盐水泥、矿渣硅酸盐水泥或火山灰质硅酸盐水泥。
(六) 土壤固化剂
1、土壤固化剂采用液粉土壤固化剂路邦EN-1(浓缩液),固化剂浓缩液掺入剂量为0.014%,或根据实验确定。
2、土壤固化剂的技术性能指标应符合现行行业标准《土壤固化剂》CJ/T3073的规定,溶液的固体含量不得大于3%,不得有沉淀或絮状现象。
(七) 水
应采用饮用水或PH大于或等于6的水。
四、施工程序
(一)路基表层整体处理方案
由于本工程均处于稻、苇地等潮湿地段,路基填筑前应清除地表草皮、树根、腐殖土、垃圾、杂物等,路基清表30cm后大致找平并进行碾压,压实度应符合设计(90%)要求,如达不到压实度要求,可采用5%戗灰处理;如戗灰0~50cm仍达不到压实度要求,需换填50cm碎石垫层,以加快工程进度。
路基填筑高度小于路面和路床总厚度时,应将地基表层土进行超挖并分层回填压实,处理深度不应小于路床底面。
工程所处区域为平原地貌,土质为粘土或粉质粘土,地下水丰富,土质含水量较高,全线路基处于潮湿、中湿状态,因此需要对路基表层按实际情况分别进行处理方可进行路基填筑。
1、填土高度大于2m的路段(路床最低点距清表后地表距离):
地表整平后晾晒,对露出地下水的路段应设置临时排水沟,排除地表积水,经推土机排压后填筑30cm混渣,经12t以上压路机碾压3~4遍后通铺双向土工格栅,土工格栅反包其上灰土层(20cm厚,5%戗灰)2m,继续分层填筑分层压实灰土(5%戗灰,如达不到相应层位压实度及强度要求,增加灰量至8%)至路床顶以下80cm,对无法承受12t以上压路机地段应增加混渣厚度,各层压实度及强度满足设计说明的要求。
2、 填土高度大于1.3m、小于2m的路段(路床最低点距清表后地表距离):
地表整平后晾晒,对露出地下水的路段应设置临时排水沟,排除地表积水,经推土机排压后填筑40cm混渣,经18t以上压路机碾压3~4遍后通铺双向土工格栅,土工格栅反包其上灰土层(20cm厚,5%戗灰)2m,继续分层填筑分层压实灰土(5%戗灰,如达不到相应层位压实度及强度要求,增加灰量至8%)至路床顶以下80cm,对无法承受18t以上压路机地段应增加混渣厚度,各层压实度及强度满足设计说明的要求。
3、填土高度小于1.3m的路段(路床最低点距清表后地表距离):
地表应继续下挖至距路床顶1.3m的高度,排除地表积水后晾晒,经推土机排压后填筑30cm混渣,经18t以上压路机碾压2~3遍后继续填筑20cm的碎石,在混渣和碎石之间通铺双向土工格栅,土工格栅反包其上碎石2m,碎石经18t压路机碾压3~4遍后用平地机刮平碎石层准备填筑灰土。
(二)混渣填筑
1、混渣填筑厚度较大时应分层填筑分层压实,每层以20~25cm为宜
2、混渣填筑时应严格控制含水量,对于含水量较大的应进行适当的晾晒方可以进行碾压。而且应避免使用含土量过大的混渣,如果有含土量较大的材料进场,应先进行堆备,待其他含土量较少的混渣进场时掺拌后填入路基中。
3、混渣的强度应保证不小于15MP,最大粒径应保证小于150mm,通过20mm筛孔的选料不得超过总量的30%,其通过0.075mm的不超过总量的10%,大粒径渣石应填筑在下部,小粒径渣石填筑在上层,保证混渣顶的平整度(误差不超过2cm)空隙较大时应扫入石渣(未筛分),或石屑填充,上部可填筑渣石或石屑。
4、雨天时注意对基槽进行排水,杜绝在含水量过大的情况下对混渣进行碾压。
5 、为避免地基产生过分扰动造成地基基底无法压实,压路机在碾压过程中严禁使用震动碾压。但与此同时为保证填料的密实性,在碾压过程中横向接头要重叠50cm进行碾压,做到无漏压,保证碾压均匀,且严格控制碾压遍数为四遍。碎石填料与混渣碾压要求相同。
(三)碎石填筑
1、由于碎石填筑厚度仅为20cm,应严格控制混渣顶面高程,杜绝混渣侵入碎石填筑范围,减少碎石填筑厚度。
2、碎石填料粒径应控制在5cm以内,其通过0.075mm的总量不超过总量的10%,且级配良好,无杂物。
3、使用碎石强度不小于15MP(未筛分碎石)。
4、大粒径碎石应填筑在下部,小粒径碎石填筑在上层,保证碎石顶的平整度(误差不超过2cm)。
(四)钢塑双向土工格栅的铺设
1、土工格栅存放及铺设直接接触的填料中严禁含强酸性、强碱性物质、
2、一般路段土工格栅的铺设应垂直于路堤轴线方向,桥头路基处理段土工格栅应顺路堤轴线方向铺设。
3、土工格栅之间的连接应使用尼龙卡扣呈梅花型绑扎牢固,搭接长度不小于30cm,间距不得大于3各空格。
4、土工格栅铺设完成后应及时填筑调料,避免受阳光长时间暴晒,铺设与填料填筑时间间隔应不超过48小时。
5、施工中应采取措施避免是土工格栅受损,出现破损及时修补或更换。
6、土工格栅下乘层应平整,铺设时应拉直、平顺、绷紧,紧贴下承层,不得扭曲褶皱。
7、土工格栅上的第一层填料应采用轻型机械摊平和碾压,一切车辆及施工机械只允许沿路堤轴向方向行驶。
8、铺设土工格栅时,应在路堤每边各预留不小于2m的长度,回折覆裹在已压实的填筑层面上,折回外露部分应用土覆盖。
9、混渣层大致平整密实,大块石头尽量压到下层土中或者人工捡走,避免石块咯烂土工格栅。
10、平地机在整平碎石时,下刀要注意掌握力度,发现土工格栅立即收刀,整平时现场必须有人紧盯,发现问题人工及时处理。
(五)路基施工填土要求
1、一般路基段填土处理
(1)路基必须分层填筑分层碾压。每层最大压实厚度不宜超过20cm(当压实机械可以保证压实度并经现场试验、检测合格后可适当加大压实厚度),路床顶面最后一层压实厚度为20cm(遇特殊情况不满足设计要求是,最小压实厚度不得小于10cm)。
(2)含水量应控制在压实最佳含水量±2%之内。
(3)路基填筑宽度每侧应宽出填筑层设计宽度30cm,压实宽度不小于设计宽度,最后销坡。
(4)路基表面应具有2%~4%的向外横坡,防止积水。为避免路基边坡被雨水冲刷,路基填筑过程中要求在路基下坡脚外两米处设置临时排水埝和排水设施。
(5)征地边线外两侧各10m范围内禁止集中取土。
(6)路基填筑范围内严禁作为施工便道使用。
(7)路基填筑应均匀密实,路床顶面横坡于路拱横坡一致。
(8)路基填土压实度、填料最小强度及最大粒径不小于表1要求。
路基压实度、填料最小强度及最大粒径 表1
项目分类 压实度(%)(重型压实标准) 填料最大粒径(cm) 填料最小强度(CBR)%
路堤 上路床(0~30cm) ≥96 10 8
下路床(30~80cm) ≥96 10 5
上路堤(80~150cm) ≥94 15 4
下路堤(>150cm) ≥93 15 3
零填及路堑路床(0~30cm) ≥96 10 8
注:表中所列压实度系按《公路土工试验规程》(JTJ051)重型击实实验法求得的最大干密度计算所得。
(9)路基填土高度
路基最小填土高度须保证不因地下水、地表水、毛细水及冻胀作用而影响稳定性。本工程为城市道路,路基设计最小填土高度应大于路床处于潮湿或中湿状态的临界高度。根据沿线各钻孔(钻探时间为6月份最不利季节)揭示的地下水位以及Ⅱ4区路基处于潮湿、中湿状态的临界高度计算的路基最小填土高度见表2。
处于中湿、潮湿状态时的最小填土高度 表2
名称
孔位 ZK48 ZK49 ZK50 ZK51
孔口标高 2.25 1.9 1.35 2.55
静止水位埋深(m) 1.3 0.9 0.7 1.75
水位标高(m) 0.95 1.00 0.65 0.80
中湿状态路基设计标高(m) 3.90 3.95 3.60 3.75
中湿填土高度(m) 1.62 2.02 2.22 1.17
潮湿状态路基设计标高(m) 3.20 3.25 2.90 3.05
潮湿填土高度(m) 0.95 1.35 1.55 0.5
2、特殊路基段处理
(1)桥头引路段
桥头引路路基填方路段处于中湿状态,应对现状地坪清表整平后,回填路基土,然后在距路床顶面以下40cm以下做20cm土壤固化剂固化石灰土(5%石灰)+20cm土壤固化剂水泥石灰土(2%水泥+3%石灰),保证土基不出现软弹现象。
(2)池塘段路基处理
○1路线在穿越大面积池塘及大型沟渠处应打坝、抽水、清淤、整平后分层填筑分层压实混渣(每层以20cm~30cm为宜)至距路床顶以下100cm处,通铺钢塑双向土工格栅后填筑20cm碎石,碎石之上分层填筑灰土。池塘、大型沟渠等边坡应开蹬成台阶状,蹬高0.4m,两步为一蹬,蹬宽≥0.6m,开蹬处铺设≥1.6m宽的钢塑双向土工格栅。
○2路线经大面积池塘时,应将各池塘间堤埝铲平后再进行填筑混渣垫层、铺设土工格栅等工作,以确保路基整体性。
(3)桥头路基处理
○1桥头两侧地基处理根据地质条件、填土高度和施工周期,采用加固土桩(水泥搅拌桩)+石灰土(8%)的处理方式,加固土桩采用梅花形布置。加固土桩横向布置范围放坡一侧应超出引路坡脚以外至少1.0m。
○2成桩后应凿出桩头50cm,桩顶先铺30cm碎石垫层,然后铺土工格栅,最后再铺30cm碎石垫层 。
○3桥头处理范围控制在50m,根据处理前后恭候沉降差的情况,靠近桥头50m范围内(除台背回填)路堤填料采用8%石灰土,所填填料应分层碾压夯实,压实度要求达到重型90%。桥台后背回填采用14%石灰土分层碾压夯实。
(六)灰土填筑
施工时按照“四区段”和“八流程”进行。“四区段”即:“上土摊铺区、翻晒拌合区、整平碾压去、报验养生区”,“八流程”即:“上土、摊铺、翻晒、布灰、拌合、整平、碾压、养生”。具体施工工艺如下:
1、试验标定
在上土之前应取现场土样测定土的天然含水量及液塑限并进行标准击实试验确定最佳含水量和最大干密度。
2、测量放样
测量组准确放出道路中心线。
3、路堤填筑时在取土场用挖掘机和装载机将土装入自卸汽车,运到填土路基处。根据路基宽度、自卸汽车方量及松铺厚度,用白灰洒线打网格,确定每车土的卸土位置,以保证填土厚度。
4、素土摊铺粗平后,首先应根据虚铺系数追踪测定高程,在考虑虚铺系数的情况下若高程达不到设计值应及时采取措施补救,待满足要求后用铧犁和旋耕犁进行翻晒和粉碎。在上灰前,检查土的含水量,当接近最佳含水量时及时上灰。
5、 摊铺石灰:素土整平稳压后,按眼路线走向5×10m打好方格,根据配比将每格需要的石灰量人工摊铺均匀。上灰时应保证灰土中无杂质、无未消解的灰块。
6、 路拌机拌合:石灰摊铺完成后,均需用路拌机拌合,拌合遍数2遍以上,要用专人在路拌机后面随时检查拌合深度,拌合深度以打入路床顶以下5~10mm为宜,确保无素土夹层,保证拌合均匀色泽一致,没有灰花团和花条,检测混合料的含水量和灰剂量,含水量控制在最佳含水量1~2个百分点,灰剂量符合规范要求。
7、 整平和碾压:用平地机、水准仪跟踪控制高程。当高程、横坡达到规范要求时,先用振动压路机稳压一遍,再用振动压路机振压两遍,然后用18~21t压路机进行碾压三遍,由路肩向路中心碾压,碾压时轮迹重叠1/2轮宽,路肩处应多压2~3遍。严禁压路机在已完成的或正在碾压的路段上急调头或急刹车,以保证石灰土的表面不被破坏。若在碾压过程中出现“弹簧”现象,应采用挖除、重新换填或掺石灰或水泥等措施进行处理。在压路机碾压结束之前用平地机再终平一次,使其纵向顺适,路拱符合设计要求。终平应仔细进行,必须将局部高出部分刮除并扫除路外,对局部低洼之处不再进行找补,可待铺筑下层时处理。
8、 试验检测:一段路基完成后,试验人员及时进行路面外形、压实度、灰剂量等的试验检测,自检合格后报请监理工程师验收,验收合格后进行下层施工。
外形管理的测量频率和质量标准
项次 规定值 检查方法和频率
纵段高程(mm) +5~-20 每20延米1处
厚度(mm) -10~-25 每1500~2000 m26个点
宽度 不小于设计值 每40延米1处
平整度(mm) 15 3m直尺,每200延米2处,每处连续10尺
横坡(%) +0.5,-0.5 每100延米3处
我发的是word文档,有些格式肯定不正确,你自己修改
临吉高速公路云台山段路线设计论文
临吉高速公路云台山段路线设计论文
摘要: 文章主要介绍临吉高速公路云台山段项目区的地理地貌和工程地质概况,以及该段路线方案设计过程及经验。
关键词: 云台山特长隧道;路线设计
国家高速公路网青岛至兰州公路山西境临汾至吉县段高速公路第LZ2合同段位于山西省临汾市乡宁县和吉县境内,本合同段项目起点位于乡宁县高崖底村南,终点位于吉县苇子湾。路线全长50.75km,采用四车道高速公路标准建设,设计速度采用80km/h,路基宽度采用24.5m(分离式路基宽度12.25m)。本项目是国家高速公路网“7918”规划方案第六横的重要组成部分,也是山西省规划的“人字骨架,9横9环”高速公路网主骨架中第八横(黎城下湾至吉县壶口)的重要组成部分。
项目区位于山西省东南部,大的地貌单元上属于黄土高原,总地势为“两川夹一山”,即东部的临汾汾河冲积平原、中部的吕梁山脉、西部的黄河谷地。从地形上看,除冲积平原区地形条件简单外,其他区地形切割剧烈,河谷发育、沟壑纵横,属于地形条件复杂地区。区内最高点为乡宁与吉县分界的高天山,海拔1820m,最低点位于黄河河谷中段,海拔约为420m,两者之差约为1400m。
1 云台山段自然地理和工程地质概况
1.1地形地貌
总体地貌单元上属于黄土高原,地势为“两川夹一山”。即东部的临汾汾河冲积平原、中部的吕梁山脉、西部的黄河谷地。地形起伏,冲沟发育。山脊呈近南北向,主冲沟方向与山脊走向基本一致。地表被黄土覆盖,黄土层最大厚度84m,由坡脚向山脊黄土厚度逐渐增大,冲沟底部大多基岩出露。群山叠嶂,沟壑纵横,地形复杂,高差变化较大,使得气候特征各具代表性。区内总体属暖温带大陆性季风气候区,具有四季分明,冬长夏短,春季干燥、多风;夏季炎热、雨量集中;秋季凉爽湿润,秋雨多于春雨;冬季寒冷干燥,雨雪偏少。
根据地表形态特征及其成因类型,该地区属黄土残塬区。微地貌单元以黄土塬、黄土梁、黄土冲沟为主,地表覆盖有较厚层Q3黄土,冲沟底部有Q2亚黏土出露,局部沟底出露三叠系砂岩夹泥岩,水平状,中薄层。区内黄土冲沟多为近南北向,沟壁陡立,多呈“V”字型,与路线多呈大角度相交。本区段海拔在619m~916m之间,沟谷切割深度100m~200m。
1.2工程地质
云台山所处区域构造位于鄂尔多斯断块南缘的关王庙北东向褶带中部,属于构造运动相对稳定地区,隧址区属于黄土覆盖单斜构造区,区内地层总体向北西缓倾,产状介于300°~330°∠3°~8°之间。断裂构造不发育,野外调查、钻探及物探均未发现断层迹象。进出口基岩中发育两组直立节理,走向分别为3200°~330°、50°~60°,节理面平直,微张,黏性土充填。
该路段广泛分布第四系黄土,二叠及三叠系岩层仅在沟谷底部出露,构造相对简单,对路线的主要影响来源于复杂的地形,由于Q2亚黏土壁立性强,经常形成深大冲沟,失稳后有滑塌的可能。该段线路工程地质条件比较简单,属于较稳定工程地质分区。
1.3水文地质、地震
位于乡宁县刘家沟与吉县枣庄河西沟之间,穿越乡宁县和吉县之间的分水岭云台山,吉县端洞口前河沟中有微量的溪流,个别点有泉眼,云台山岭脊的洞顶没有地表水,临汾端马家河沟中有微量的溪流。隧址区地表水来自大气降水及山泉等共同补给。
隧址区地下水较少,围岩出水状态一般表现为砂质岩裂隙中可能有很少量的滴渗水现象,并以局部渗水为主。
项目区位于山西省南部,属典型的板内构造地震区,特点是强度大、震源浅,破坏性地震多为主震余震型,小震多属震群型或单个突发型,震中在平面上多为北北东向、北东向或北西向的条带状,与斜列盆地边缘的构造断裂方向相一致,震源深度在剖面上多呈层状,多数地震的震源在14km~20km之间。2路线设计原则
经对高速公路实地勘测调查,在1:2000地形图上对线位进行详细优化,对局部线位及主要控制点的线位段进行了认真比对、布设,作了局部的调整优化。路线具体设计中,从公路线形人手,优化平纵组合、改善线形,使线形组合的各技术指标除符合平面、纵断面规定外,还考虑了横断面对线形组合与行驶安全的影响,避免了平面、纵断面、横断面的最不利值的相互组合。在对临吉高速公路云台山段进行设计时先确定、遵从总体设计原则如下:
(1)路线走向符合路网总体规划,为当地经济发展服务,合理选择交通车流集散点,注意路网布局的合理性。
(2)路线布设尽量采用低线位,以避免高填深挖,减少桥梁、隧道的数量;同时对滑坡等不良地质尽量绕避。
(3)根据实际地形、地物,在平、纵面上可以采用较低指标。以减少工程数量,降低工程造价。
(4)坚持可持续发展主题,合理有效地利用资源,做到“四个合理”:合理把握路线走廊带、合理利用线位资源、合理确定建设规模、合理确定工程方案。
(5)严格控制工程造价,倡导科学合理的全寿命周期成本理念,加强各专业设计时技术与经济的有机结合,在确保安全和功能的前提下,严格控制工程造价,节约工程投资,以达到最佳的技术经济效益。
3 路线设计中的特点和难点
项目路线设计的特点:临吉高速公路项目区总地势为“两川夹一山”,受地形限制,路线走廊带非常狭窄,只能沿刘家沟布设以隧道形式穿过云台山,沿马家河沟布设,地形条件复杂,自然横坡较大,多处存在路基高边坡问题,为了边坡加强稳定性,在边坡形式上采用了设置宽平台。
项目路线设计的难点:在地形条件受限制情况下,提出合理的路线方案,减少压站煤矿资源,缩短特长隧道长度。在地形条件复杂、自然横坡较陡段的条件下,寻求路线平、纵、横最有利的结合,确保路基稳定性,消减路基高边坡。
4 对路线设计时难点的主要对策
根据山岭区地形特点,在对临吉高速公路路线设计时,结合地形条件和工程地质条件,提出多个方案进行认真比对,合理采用路线平纵指标。在路线方案优化过程中,采用路线方案总体图的方式,使平、纵、横有利的结合,缩短桥梁和隧道长度,使工程造价最低。在特长隧道方案的选择上,对隧道长度、斜竖井及后期运营及养护费用方面进行了比选。
我们通过对本区进行了较为详细的地形概况和工程地质分析后,结合本次总体的线路选线原则,针对云台山特长隧道设置长度不同的情况,共提出A、P、u三个方案,见图1。
4.1 A线方案(AK224+300~AK236+920)
A线方案基本采用工可方案,路线长度12.62km,特长隧道纵坡为-1.864%,特长隧道长度4485m,桥梁长度4028m。
4.2 P线方案(PK224+300~PK235+041.901) P线方案线位于AK224+300处与A线分离向西展线,设一座6950m的云台山特长隧道后与A线方案相接,P线方案路线长度10.742km,特长隧道纵坡-1.632%,桥梁长度1978.5m。与对应的A线方案相比,优点:比对应的'A线方案里程短1778m;特长隧道纵坡较A线方案特长隧道纵坡小;桥梁比对应的A线方案桥梁短2049.5m。
缺点:比对应的A线方案特长隧道长2465m;P线方案云台山特长隧道需设斜、竖井通风,对应的A线方案云台山特长隧道不需设斜、竖井;P线方案特长隧道比对应的A线方案施工工期长,特长隧道的前期投资和后期运营费用高;比A线方案压占煤矿资源多。
4.3 U线方案(UK224+300~UK235+526.807)
u线方案线位从AK224+300处与A线分离向西展线,设一座6519m的特长隧道后与A线方案相接。U线方案路线长度11.227km,特长隧道纵坡-1.3%,桥梁长度2497m。与对应的A线方案相比,优点:比对应的A线方案里程短1393m;特长隧道纵坡较A线方案特长隧道纵坡小;桥梁比对应的A线方案桥梁短1531m。
缺点:比对应的A线方案特长隧道长2034m;u线方案特长隧道需设斜、竖井通风,对应的A线方案云台山特长隧道不需设斜、竖井;U线方案特长隧道比对应的A线方案施工工期长,后期运营费用高,比A线方案压占煤矿资源多。
经过综合比选论证,从施工和运营安全、工程造价方面考虑,因此推荐A线方案。
5 结束语
路线的选定应根据地形条件,并在对工程地质、水文地质、自然景观等进行充分调查的基础上,以选定路线线位、主要平纵技术指标、沿线桥隧设置,还应综合考虑公路的平面、纵断面、横断面三者间的关系,做到平面顺适、纵面均衡、横面合理,以及隧道后期运营情况。本文结合临吉高速公路云台山段路线设计实例,对山岭区高速公路路线设计作了初步探讨,总结了设计中成功的经验。路线设计必须综合考虑各方面因素,是一个不断重复、优化的总体设计过程,平纵面线形的合理组合,不仅仅要满足规范、指标,更要在设计中贯穿“以人为本”的理念,让公路真正做到安全、环保、舒适、美观。
上一篇:英文译文研究论文
下一篇:医学导论论文格式