极限计算毕业论文
极限计算毕业论文
毕业论文的开题报告一般会涉及到题目的研究背景及研究意义等。该公式一般适用于*/∞型数列极限和0/0型数列极限的计算和证明问题。
大学数学系本科毕业论文题目参考
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!
1、导数在不等式证明中的应用
2、导数在不等式证明中的应用
3、导数在不等式证明中的应用
4、等价无穷小在求函数极限中的应用及推广
5、迪克斯特拉(Dijkstra)算法及其改进
6、第二积分中值定理“中间点”的性态
7、对均值不等式的探讨
8、对数学教学中开放题的探讨
9、对数学教学中开放题使用的几点思考
10、对现行较普遍的彩票发行方案的讨论
11、对一定理证明过程的感想
12、对一类递推数列收敛性的讨论
13、多扇图和多轮图的生成树计数
14、多维背包问题的扰动修复
15、多项式不可约的判别方法及应用
16、多元函数的极值
17、多元函数的极值及其应用
18、多元函数的极值及其应用
19、多元函数的极值问题
20、多元函数极值问题
21、二次曲线方程的化简
22、二元函数的单调性及其应用
23、二元函数的极值存在的判别方法
24、二元函数极限不存在性之研究
25、反对称矩阵与正交矩阵、对角形矩阵的关系
26、反循环矩阵和分块对称反循环矩阵
27、范德蒙行列式的一些应用
28、方阵A的伴随矩阵
29、放缩法及其应用
30、分块矩阵的应用
31、分块矩阵行列式计算的若干方法
32、辅助函数在数学分析中的应用
33、复合函数的可测性
34、概率方法在其他数学问题中的应用
35、概率论的发展简介及其在生活中的若干应用
36、概率论在彩票中的应用
37、概率统计在彩票中的应用
38、概率统计在实际生活中的应用
39、概率在点名机制中的应用
40、高阶等差数列的通项,前n项和公式的探讨及应用
41、给定点集最小覆盖快速近似算法的进一步研究及其应用
42、关联矩阵的一些性质及其应用
43、关于Gauss整数环及其推广
44、关于g-循环矩阵的逆矩阵
45、关于二重极限的若干计算方法
46、关于反函数问题的讨论
47、关于非线性方程问题的求解
48、关于函数一致连续性的几点注记
49、关于矩阵的秩的讨论 _
50、关于两个特殊不等式的推广及应用
51、关于幂指函数的极限求法
52、关于扫雪问题的数学模型
53、关于实数完备性及其应用
54、关于数列通项公式问题探讨
55、关于椭圆性质及其应用地探究、推广
56、关于线性方程组的迭代法求解
57、关于一类非开非闭的商映射的构造
58、关于一类生态数学模型的几点思考
59、关于圆锥曲线中若干定值问题的求解初探
60、关于置信区间与假设检验的研究
61、关于周期函数的探讨
62、函数的一致连续性及其应用
63、函数定义的发展
64、函数级数在复分析中与在实分析中的关系
65、函数极值的求法
66、函数幂级数的展开和应用
67、函数项级数的收敛判别法的推广和应用
68、函数项级数一致收敛的判别
69、函数最值问题解法的探讨
70、蝴蝶定理的推广及应用
71、化归中的矛盾分析法研究
72、环上矩阵广义逆的若干性质
73、积分中值定理的再讨论
74、积分中值定理正反问题‘中间点’的渐近性
75、基于高中新教材的概率学习
76、基于最优生成树的'海底油气集输管网策略分析
77、级数求和的常用方法与几个特殊级数和
78、级数求和问题的几个转化
79、级数在求极限中的应用
80、极限的求法与技巧
81、极值的分析和运用
82、极值思想在图论中的应用
83、几个广义正定矩阵的内在联系及其区别
84、几个特殊不等式的巧妙证法及其推广应用
85、几个重要不等式的证明及应用
86、几个重要不等式在数学竞赛中的应用
87、几种特殊矩阵的逆矩阵求法
应用数学毕业论文
随机环境中经济增长模型研究
广义生产函数假设下的经济增长模型分析
考虑市场预期的供求关系模型
基于Matlab的离散事件模拟
用风险预算进行资产配置
有向图上的PAR贯序模拟系统
单圈图的一般Randic指标的极值问题
模糊数学在公平评奖问题中的应用
模糊矩阵在环境评估中的初步应用
模糊评判在电脑中的初步应用
数学家的数学思想
Riemann积分定义的网收敛表述
微积分思想在不等式证明中的应用
用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义
微积分思想在几何问题中的应用
齐次平衡法求KdV-Burgers方程的Backlund变换
Painleve分析法判定MKdV-Burgers方程的可积性
直接法求KdV-Burgers方程的对称及精确解
行波求解KdV-Burgers方程
因子有向图的矩阵刻划
简单图上的lit-only sigma-game
半正则图及其线图的特征多项式与谱
分数有向图的代数表示
WWW网络的拓扑分析
作者合作网络等的拓扑分析
古诺模型
价格歧视
用数学软件做计算微分方程的计算器
用数学软件做矩阵计算的计算器
弹簧-质点系统的反问题
用线性代数理论做隐含语义搜索
对矩阵若当标准型理论中变换阵求法的探讨
对矩阵分解理论的探讨
对矩阵不等式理论的探讨(1)
对矩阵不等式理论的探讨(2)
函数连续性概念及其在现代数学理论中的延伸
从有限维空间到无限维空间
Banach空间中脉冲泛函微分方程解的存在性
高阶脉冲微分方程的振动性
具有积分边界条件的分数阶微分方程解的存在唯一性
分数阶微分方程的正则摄动
一个形态形成模型的摄动解
一个免疫系统常微分方程模型的渐近解
前列腺肿瘤连续性激素抑制治疗的数学模型
前列腺肿瘤间歇性激素抑制治疗的数学模型
病毒动力学数学模型
肿瘤浸润数学模型
耗散热方程初边值问题解的正则性
耗散波方程初边值问题解的正则性
耗散Schrodinger方程初边值问题解的正则性
非线性发展方程解得稳定性
消费需求的鲁棒调节
生产函数的计量分析
企业的成本形态分析的研究
分数阶Logistic方程的数值计算
分数阶捕食与被捕食模型的数值计算
AIDS传播模型的全局性分析
HIV感染模型的全局性分析
风险度量方法的比较及其应用
具有区间值损益的未定权益定价分析
模糊规划及其在金融分析中的应用
长依赖型金融市场
股票价格与长相依性
分数布朗运动下的外汇期权定价
不确定性与资产定价
加油站点的分布与出租车行业的关系
极限的证明
请楼主参看下面的解说,看看能不能理解 ε-δ 方法。
下面是本人两次回答的记录。
【第一次的回答】
一、极限的计算:
就是算出当x无限地趋向于某个值x。时,函数 f(x) 越来越无止境地趋向于何值?
在一般情况下,就是直接代入。
有些情况是无法直接代入的,这就是不定式的七种类型,譬如分子分母都趋向于0,
我们就不能分子分母都代入0。而是要找出它们的比例究竟越来越趋向于什么数,
这样的结果,我们就产生了各种各样的计算极限的方法。
二、极限理论的证明。
这部分不好理解,请楼主细细看看下面的解释,会忽然开通。
1、极限的最早萌芽概念,我们祖先也有过,但是被当成诡辩学而埋葬了。
时至今日,仍有绝大多数数学教师,一提到诡辩学,立马教条式地彻
底否认,没有思辨的任何理性空间。
2、鬼子的祖先,也有诡辩学,他们认认真真地研究了paradox,由此而
建立了极限理论。极限理论是桥梁,桥的这边是初等数学,桥的那边
是微积分,是高等数学。我们的理论贡献局限在桥这边,桥那边的理
论世界的建设,我们几乎完全是手无寸功,我们在科研上的落后就是
从这里开始的。
3、极限的理论究竟是什么呢?
第一,极限的证明理论
这就是我们的大学新生大学伊始时,兴致勃勃地心情遇到的第一记沉重
的闷棍。极限的理论,其实是吵架的理论,是无止境争辩的过程,也是
无穷列举法的理论化过程。例如:
(1)、我说当 x 无限趋向于 2 时,x² 就无限趋近于 4。
(2)、你不信,你要我证明给你看。
(3)、我说,那你随便给一个很小的数,你给了0.5。
(4)、我通过计算,我说只要 x = 2.10 就行。
(5)、你反悔了,改成了0.4。
(6)、我重新计算了一下,我说只要 x = 2.09 就行。
(7)、你又反悔,又改成了0.3。
(8)、我又重新计算,我说只要 x = 2.07 就行。
(9)、你再次反悔,再改成0.2。
(10)、我再次计算,我说只要 x = 2.04 就行。
、、、、你不断地反悔,不断地提出越来越苛刻的数据,我也不断地计算,
不断给出越来越接近于2的具体数,也就是越来越限制了 x 趋近于 2 的程
度、、、、、
结果我们都厌烦了。
(11)、我说,别闹了,你给出一个可以表示很小很小的象征性的数字吧。
(12)、你给出了一个代号 ε。
(13)、我根据你的代号 ε,经过一番计算,找到了另外一个数字代号 δ。
我对你说,你自己随便找一个跟 2 的差距不大于 δ 的数就可以了。
算了,算了,我把计算公式也给你吧,你自己出 ε,自己去找 δ,
这样你还有什么话说?
争吵就这样结束了,无穷列出变成了一个理论计算过程,结果就得到了证明。
这个证明逻辑思路是:
只要你给得出一个无论多小的数,ε;
我就能根据你的 ε,算出一个 δ ;
只要将x 的取值,限制在 δ 的范围内,函数值与极限值之差就小于 ε。
由于 ε可以任意的小,两者之差可以无止境的小下去,就证明了极限。
δ 是根据 ε 算出的,我算出一个δ,你可以用比我更小的 δ 限制 x 的范围,
所以,ε是任给的,δ 是根据 ε 推算的,但 δ 不是唯一的,可以有无数个
更严格的、更小的值。所以说,总存在一个 δ,但是这个 δ,必须由我们
去根据 ε找出来。
第二、极限的计算
微积分的前面部分,就是寻找各种计算方法,最典型的是罗毕达法则。
第三、极限的运用
可以说极限是微积分的基础,也可以说,微积分是极限理论的运用。
如果你不能明白极限的理论证明方法,
那么,我们得恭喜你!你真正理解了我们传统的优秀数学史,到了近代数学时,
怎么突然落后了、落伍了。当代理论,我们没有参与建立,迄今为止,我们还
处于三流开外。
如果你明白了极限的理论证明方法,
那么,我们得祝贺你!你真正开始领略到了现代数学、现代科学的真谛。体会
到了我们传统的、定性、模棱两可、之乎者也的学风,更现代数学、现代科学、
现代医学、、、、、之间的鸿沟是多么得深,多么得广,多么得不可同日而语。
【第二次的回答】
1、ε 是任意给的,但不是确定的!
ε 可以随时更改,可以改得越来越小,但 ε 并不是无穷小;
ε 仅仅是一个象征性的很小的、可以任意更改的正数。
任意的意思:
可以任意地小;可以任意地更改;
针对任何一个给出的 ε 的情况下,找到 δ ,或 N,
这是极限证明的核心!
也就是说,
δ 或 N 是 ε 的函数,是由 ε 决定的;
随便更改 ε,δ 或 N 也随之更改。
2、就 ε-N 证明方法而言,
根据 ε ,计算出一个 N,这个 N 也不是固定的:
A、N 的取值跟 ε 紧密相关,或者说 N 由 ε 所确定;
B、但是,在具体证明时,为了证明过程的顺利进行,
可以取不同的 N。也就是说,根据 ε,解不等式,
原本可以解出一个 N,假设为 N₁,可能解题困难,
我们可以放大这个,变大成为 N₂,N₂ > N₁,为了
严格证明,我们取 N = N₂。
也可能写成 N = max{N₁, N₂, N₃, N₄, 、、、}。
然后,当 n > N 时,由极限计算式算出的值,跟极限值之差,
就小于 ε,证明就结束了。
3、极限证明的过程,其实就是:
A、一个争吵的过程;一个无穷列举理论化的过程;
B、一个无止尽耍赖皮的过程,ε 可以任意给,也就是可以更改,
根据 ε 找到 N 的过程,就是理论化的过程。无论怎样更改 ε,
无论怎样耍无赖,只要 ε 给得出,N 就找得到。
.
这个过程就是理论化的过程,就是tendency的过程。
.
只是我们的教学,过于花拳绣腿,大大咧咧地忽视了tendency,
仅仅着重于极限的限limiting、limitation。
.
如果认识不到这点,到头来,是不可能获得真正的感悟的。
.
学过极限证明理论的人每年千千万万,绝大多数,只是凑热闹而已。
他们永远悟不出真谛,包括绝大多数数学教师,都是人云亦云,不知所云。
.
加油吧!
极限理论已经成熟了几百年了,极限理论的建立与完善,
跟我们没有丝毫的关系,我们完全没有半毛钱的贡献!
极限理论,对我们来说,完全是舶来品!完全是山寨!
.
极限的理论,是鬼子建立的,是鬼子整合的,是鬼子完善的;
我们是,并且仅仅只是学习,只是摇旗呐喊,只是歌功颂德,
只是人云亦云,只是鹦鹉学舌,只是模仿秀,别无其他。
.
迄今为止,
A、我们的教师在教书时,会下意识地暗示学生,似乎极限理论的建立,
我们也起了什么作用!
B、极限理论似乎刚建立起来不久,更好像还在建立过程中!
这些是刻意的误导!刻意的忽悠!
.
经常有学生问:
1、极限理论研究的现状如何?
2、我国目前对极限研究的现状如何?
、、、、、、、、、
这些问题的提出,都一再表明,可怜的孩子们已经被可恶的教师们当成了白痴在玩弄!
.
加油吧!任重而道远!
任重在于,雪耻教师们对当代科学毫无贡献的耻辱!
道远在于,纠正教师们有意无意的根深蒂固的误导!
2022最新数学方向毕业论文题目
学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!
↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓
★ 数学应用数学毕业论文 ★
★ 大学生数学毕业论文 ★
★ 大学毕业论文评语大全 ★
★ 毕业论文答辩致谢词10篇 ★
中学数学论文题目
1、用面积思想 方法 解题
2、向量空间与矩阵
3、向量空间与等价关系
4、代数中美学思想新探
5、谈在数学中数学情景的创设
6、数学 创新思维 及其培养
7、用函数奇偶性解题
8、用方程思想方法解题
9、用数形结合思想方法解题
10、浅谈数学教学中的幽默风趣
11、中学数学教学与女中学生发展
12、论代数中同构思想在解题中的应用
13、论教师的人格魅力
14、论农村中小学数学 教育
15、论师范院校数学教育
16、数学在母校的发展
17、数学学习兴趣的激发和培养
18、谈新课程理念下的数学教师角色的转变
19、数学新课程教材教学探索
20、利用函数单调性解题
21、数学毕业论文题目汇总
22、浅谈中学数学教学中学生能力的培养
23、变异思维与学生的创新精神
24、试论数学中的美学
25、数学课堂中的提问艺术
26、不等式的证明方法
27、数列问题研究
28、复数方程的解法
29、函数最值方法研究
30、图象法在中学数学中的应用
31、近年来高考命题研究
32、边数最少的自然图的构造
33、向量线性相关性讨论
34、组合数学在中学数学中的应用
35、函数最值研究
36、中学数学符号浅谈
37、论数学交流能力培养(数学语言、图形、 符号等)
38、探影响解决数学问题的心理因素
39、数学后进学生的心理分析
40、生活中处处有数学
41、数学毕业论文题目汇总
42、生活中的数学
43、欧几里得第五公设产生背景及对数学发展影响
44、略谈我国古代的数学成就
45、论数学史的教育价值
46、课程改革与数学教师
47、数学差生非智力因素的分析及对策
48、高考应用问题研究
49、“数形结合”思想在竞赛中的应用
50、浅谈数学的 文化 价值
51、浅谈数学中的对称美
52、三阶幻方性质的探究
53、试谈数学竞赛中的对称性
54、学竞赛中的信息型问题探究
55、柯西不等式分析
56、中国剩余定理应用
57、不定方程的研究
58、一些数学思维方法的证明
59、分类讨论思想在中学数学中的应用
60、生活数学文化分析
数学研究生论文题目推荐
1、混杂随机时滞微分方程的稳定性与可控性
2、多目标单元构建技术在圆锯片生产企业的应用研究
3、基于区间直觉模糊集的多属性群决策研究
4、排队论在交通控制系统中的应用研究
5、若干类新形式的预条件迭代法的收敛性研究
6、高职微积分教学引入数学文化的实践研究
7、分数阶微分方程的Hyers-Ulam稳定性
8、三维面板数据模型的序列相关检验
9、半参数近似因子模型中的高维协方差矩阵估计
10、高职院校高等数学教学改革研究
11、若干模型的分位数变量选择
12、若干变点模型的 经验 似然推断
13、基于Navier-Stokes方程的图像处理与应用研究
14、基于ESMD方法的模态统计特征研究
15、基于复杂网络的影响力节点识别算法的研究
16、基于不确定信息一致性及相关问题研究
17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究
18、广义时变脉冲系统的时域控制
19、正六边形铺砌上H-三角形边界H-点数的研究
20、外来物种入侵的广义生物经济系统建模与控制
21、具有较少顶点个数的有限群元阶素图
22、基于支持向量机的混合时间序列模型的研究与应用
23、基于Copula函数的某些金融风险的研究
24、基于智能算法的时间序列预测方法研究
25、基于Copula函数的非寿险多元索赔准备金评估方法的研究
26、具有五个顶点的共轭类类长图
27、刚体系统的优化方法数值模拟
28、基于差分进化算法的多准则决策问题研究
29、广义切换系统的指数稳定与H_∞控制问题研究
30、基于神经网络的混沌时间序列研究与应用
31、具有较少顶点的共轭类长素图
32、两类共扰食饵-捕食者模型的动力学行为分析
33、复杂网络社团划分及城市公交网络研究
34、在线核极限学习机的改进与应用研究
35、共振微分方程边值问题正解存在性的研究
36、几类非线性离散系统的自适应控制算法设计
37、数据维数约简及分类算法研究
38、几类非线性不确定系统的自适应模糊控制研究
39、区间二型TSK模糊逻辑系统的混合学习算法的研究
40、基于节点调用关系的软件执行网络结构特征分析
41、基于复杂网络的软件网络关键节点挖掘算法研究
42、圈图谱半径问题研究
43、非线性状态约束系统的自适应控制方法研究
44、多维power-normal分布及其参数估计问题的研究
45、旋流式系统的混沌仿真及其控制与同步研究
46、具有可选服务的M/M/1排队系统驱动的流模型
47、动力系统的混沌反控制与同步研究
48、载流矩形薄板在磁场中的随机分岔
49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制
50、带有非线性功能响应函数的食饵-捕食系统的研究
51、基于观测器的饱和时滞广义系统的鲁棒控制
52、高职数学课程培养学生关键技能的研究
53、基于生存分析和似然理论的数控机床可靠性评估方法研究
54、面向不完全数据的疲劳可靠性分析方法研究
55、带平方根俘获率的可变生物种群模型的稳定性研究
56、一类非线性分数阶动力系统混沌同步控制研究
57、带有不耐烦顾客的M/M/m排队系统的顾客损失率
58、小波方法求解三类变分数阶微积分问题研究
59、乘积空间上拓扑度和不动点指数的计算及其应用
60、浓度对流扩散方程高精度并行格式的构造及其应用
专业微积分数学论文题目
1、一元微积分概念教学的设计研究
2、基于分数阶微积分的飞航式导弹控制系统设计方法研究
3、分数阶微积分运算数字滤波器设计与电路实现及其应用
4、分数阶微积分在现代信号分析与处理中应用的研究
5、广义分数阶微积分中若干问题的研究
6、分数阶微积分及其在粘弹性材料和控制理论中的应用
7、Riemann-Liouville分数阶微积分及其性质证明
8、中学微积分的教与学研究
9、高中数学教科书中微积分的变迁研究
10、HPM视域下的高中微积分教学研究
11、基于分数阶微积分理论的控制器设计及应用
12、微积分在高中数学教学中的作用
13、高中微积分的教学策略研究
14、高中微积分教学中数学史的渗透
15、关于高中微积分的教学研究
16、微积分与中学数学的关联
17、中学微积分课程的教学研究
18、高中微积分课程内容选择的探索
19、高中微积分教学研究
20、高中微积分教学现状的调查与分析
21、微分方程理论中的若干问题
22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程
23、基于偏微分方程图像分割技术的研究
24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性
25、几类分数阶微分方程的数值方法研究
26、几类随机延迟微分方程的数值分析
27、微分求积法和微分求积单元法--原理与应用
28、基于偏微分方程的图像平滑与分割研究
29、小波与偏微分方程在图像处理中的应用研究
30、基于粒子群和微分进化的优化算法研究
31、基于变分问题和偏微分方程的图像处理技术研究
32、基于偏微分方程的图像去噪和增强研究
33、分数阶微分方程的理论分析与数值计算
34、基于偏微分方程的数字图象处理的研究
35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程
36、反射倒向随机微分方程及其在混合零和微分对策
37、基于偏微分方程的图像降噪和图像恢复研究
38、基于偏微分方程理论的机械故障诊断技术研究
39、几类分数阶微分方程和随机延迟微分方程数值解的研究
40、非零和随机微分博弈及相关的高维倒向随机微分方程
41、高中微积分教学中数学史的渗透
42、关于高中微积分的教学研究
43、微积分与中学数学的关联
44、中学微积分课程的教学研究
45、大学一年级学生对微积分基本概念的理解
46、中学微积分课程教学研究
47、中美两国高中数学教材中微积分内容的比较研究
48、高中生微积分知识理解现状的调查研究
49、高中微积分教学研究
50、中美高校微积分教材比较研究
51、分数阶微积分方程的一种数值解法
52、HPM视域下的高中微积分教学研究
53、高中微积分课程内容选择的探索
54、新课程理念下高中微积分教学设计研究
55、基于分数阶微积分的线控转向系统控制策略研究
56、基于分数阶微积分的数字图像去噪与增强算法研究
57、高中微积分教学现状的调查与分析
58、高三学生微积分认知状况的思维层次研究
59、分数微积分理论在车辆底盘控制中的应用研究
60、新课程理念下高中微积分课程的教育价值及其教学研究
上一篇:能力培养论文检测
下一篇:智能论文参考文献