连续函数毕业论文
连续函数毕业论文
对于一元 可微可以推出可导和 连续 可导可推连续和可微 对于多元 可微可推连续和可导 一元偏导数连续可推可微 没说的均是没联系的
大学数学系本科毕业论文题目参考
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!
1、导数在不等式证明中的应用
2、导数在不等式证明中的应用
3、导数在不等式证明中的应用
4、等价无穷小在求函数极限中的应用及推广
5、迪克斯特拉(Dijkstra)算法及其改进
6、第二积分中值定理“中间点”的性态
7、对均值不等式的探讨
8、对数学教学中开放题的探讨
9、对数学教学中开放题使用的几点思考
10、对现行较普遍的彩票发行方案的讨论
11、对一定理证明过程的感想
12、对一类递推数列收敛性的讨论
13、多扇图和多轮图的生成树计数
14、多维背包问题的扰动修复
15、多项式不可约的判别方法及应用
16、多元函数的极值
17、多元函数的极值及其应用
18、多元函数的极值及其应用
19、多元函数的极值问题
20、多元函数极值问题
21、二次曲线方程的化简
22、二元函数的单调性及其应用
23、二元函数的极值存在的判别方法
24、二元函数极限不存在性之研究
25、反对称矩阵与正交矩阵、对角形矩阵的关系
26、反循环矩阵和分块对称反循环矩阵
27、范德蒙行列式的一些应用
28、方阵A的伴随矩阵
29、放缩法及其应用
30、分块矩阵的应用
31、分块矩阵行列式计算的若干方法
32、辅助函数在数学分析中的应用
33、复合函数的可测性
34、概率方法在其他数学问题中的应用
35、概率论的发展简介及其在生活中的若干应用
36、概率论在彩票中的应用
37、概率统计在彩票中的应用
38、概率统计在实际生活中的应用
39、概率在点名机制中的应用
40、高阶等差数列的通项,前n项和公式的探讨及应用
41、给定点集最小覆盖快速近似算法的进一步研究及其应用
42、关联矩阵的一些性质及其应用
43、关于Gauss整数环及其推广
44、关于g-循环矩阵的逆矩阵
45、关于二重极限的若干计算方法
46、关于反函数问题的讨论
47、关于非线性方程问题的求解
48、关于函数一致连续性的几点注记
49、关于矩阵的秩的讨论 _
50、关于两个特殊不等式的推广及应用
51、关于幂指函数的极限求法
52、关于扫雪问题的数学模型
53、关于实数完备性及其应用
54、关于数列通项公式问题探讨
55、关于椭圆性质及其应用地探究、推广
56、关于线性方程组的迭代法求解
57、关于一类非开非闭的商映射的构造
58、关于一类生态数学模型的几点思考
59、关于圆锥曲线中若干定值问题的求解初探
60、关于置信区间与假设检验的研究
61、关于周期函数的探讨
62、函数的一致连续性及其应用
63、函数定义的发展
64、函数级数在复分析中与在实分析中的关系
65、函数极值的求法
66、函数幂级数的展开和应用
67、函数项级数的收敛判别法的推广和应用
68、函数项级数一致收敛的判别
69、函数最值问题解法的探讨
70、蝴蝶定理的推广及应用
71、化归中的矛盾分析法研究
72、环上矩阵广义逆的若干性质
73、积分中值定理的再讨论
74、积分中值定理正反问题‘中间点’的渐近性
75、基于高中新教材的概率学习
76、基于最优生成树的'海底油气集输管网策略分析
77、级数求和的常用方法与几个特殊级数和
78、级数求和问题的几个转化
79、级数在求极限中的应用
80、极限的求法与技巧
81、极值的分析和运用
82、极值思想在图论中的应用
83、几个广义正定矩阵的内在联系及其区别
84、几个特殊不等式的巧妙证法及其推广应用
85、几个重要不等式的证明及应用
86、几个重要不等式在数学竞赛中的应用
87、几种特殊矩阵的逆矩阵求法
自学考试数学教育专业毕业论文题目
1. 生活中处处有数学
2、解数学竞赛题的整体策略 3、谈数学解题中发掘隐含条件的若干途径
4、论数学教育中性别差异的影响 5、逆向思维在数学论证中的作用及培养
6、谈小学、初中数学的衔接 7、容斥原理及其应用
8、从高中课程改革看大学课程改革 9、信息化教育问题
10、数学素质教育中的教师素质问题 11. 浅析课堂教学的师生互动
12、谈设疑法在课堂教学中的应用 13、计算机辅助小学数学教学的探索
14、谈一类重要的数学方法--分类讨论法15、小学数学竞赛题的教育价值
16、在解题中培养学生的数学直觉思维 17. 反思教学中的一题多解
18. 初探影响解决数学问题的心理因素 19、在数学教学中培养学生的反思意识
20、关于探索性命题的若干问题 21、数学实验教学模式探究
22、论小学数学竞赛题的解题方法 23、奥林匹克数学的解题策略
24、三角形面积在竞赛中的应用 25. 数学教育中的科学人文精神
26. 数学几种课型的问题设计 27. 在探索中发展学生的创新思维
28. 把握发现式教学实质,优化课堂教学 29. 如何评价小学学生的数学素质
30. 阅读材料在数学教学中的作用 31. 数学中的判断之我见
32. 关于学生数学能力培养的几点设想 33. 反例在数学中的作用
34. 谈谈类比法 35. 数学教学设计随笔
36. 数学CAI应遵循的原则 37. 我国数学教育改革的若干问题
38. 当代数学教学模式的发展趋势 39. “问题解决教学”的实践与认识
40. 数学教学中的“理论联系实际” 41. 小学数学课堂教学探究性学习案例简析
42. 数学训练,贵在科学 43. 教学媒体在数学教学中的作用
44. 培养数学能力的重要性和基本途径 45. 初探在数学教学中开展研究性学习
46. 浅谈数学学习兴趣的培养 47. 如何使计算机辅助教学变得更方便
48. 精心设计习题,提高教学质量 49. 我对概念教学的的再认识
50. 数学教学中的情境创设 51. 结合数学教学实际开展教研教改
52. 为学生展开想象的翅膀创造环境 53. 利用习题变换,培养思维能力
54. 课堂教学中培养学生创造能力的尝试 55. 观察法及其在数学教育研究中的应用
56. 直觉思维在解题中的运用 57. 数学方法论与数学教学—案例三则
58. 概念课是思维训练的重要环节 59. 对概念导入和问题设计的思考
60. 把握概念本质注重思维能力的培养 61. 将研究性学习引入数学课堂教学
62. 数学教学的现代研究 63. 数学探究性活动的内容、形式及教学设计
64. 注重创新性试题的设计
以上为参考论文选题,学生写论文时可选用,也可按选题提供的范围和方向,根据自己教学过程中体会最深的某方面自定论文选题
1.关于数学教学目的问题;
2.关于数学思维问题;
3.关于数学教学方法问题;
4.关于学习的迁移问题;
5.关于数学教学的评价问题;
6.关于熟练技能与深刻理解的关系问题;
7.数学的实用功能与数学的文化教育功能相关关系的研究;
8.数学教学的德育功能研究;
9.班级授课制中集体教学、小组教学和个别教学在数学教学中的地位和作用;
10.数学发现法(探究式)教学可实施的基本内容、对象和范围;
11.对数学教学中“可接受性原则”的认识及其具体做法的实验研究;
12.中学生数学学习习惯与学习方法的调查分析;
13.诊断和鉴别数学学习困难学生的方法探析;
14.数学智力因素与数学非智力因素的界定及其对学生学习成绩交互作用的研究;
15.数学教学中激发学生学习兴趣的内在机制和外部因素的研究;
16.教法与学法的双向作用研究;
17.学生“用数学”意识和能力的形成机制以及培养途径的实验研究;
18.数学新课程实施中转变学生学习方式的途径;
19.学生数学观念或数学意识的形成机制和培养途径的实验研究;
20.创设良好的数学教学心理氛围与提高数学教学质量相关关系 的研究。
21.中学数学教育的地位与作用。
22.形象思维与数学教学。
23.直观思维与数学教学。
24.非智力因素与数学学习。
25.数学美与数学教学。
26.在数学教学中怎样培养学生的数学能力。
27.数学作图及图形的教学。
28.数学解题错误的探讨。
29.怎样配备数学习题。
30.数学解题常用的一些思维方法。
31.怎样提高学生的自学能力。
32.怎样培养学生学习数学的兴趣。
二、《概率论与数理统计》参考题
1.有关概率论发展的历史。
2.随机性与必然的数学基础与认识。
3.随机变量的直观认识与数学描述。
4.古典概率型的计算技巧。
5.几何概率型的分析处理。
6.有关概率论之介绍。
7.概率论中数学期望概念。
8.利用期望概率统一引人矩阵概率。
9.期望概率在概率论中的地位和作用。
10.特征函数与因数在概率论中的作用及其含义。
11.关于独立性。
12.大数定律与中心定律之含义。
13.大数定律与概率的统计定义。
14.有关概率不等式。
15.条件概率与条件期望。
16.Bayes公式的扩展。
17.概率在其它学科中的应用。
18.其它数学分支在概率论中的应用。
19.概率题目计算的多解性。
20.数理统计概念。
21.数理统计的过去与现在。
22.数理统计在客观现实中的作用。
23.假设检验的实质与作用。
24.参数估计的作用与处理方法。
25.数理统计在你自己工作实践中的应用(实例)。
26.学习概率统计的实践与体会。
27.概率统计中的错题分析。
28.如果我讲概率统计的话,我将这样讲(要求具体详细,资料充实,结构新颖)。
29.利用回归分析方法处理问题。
30.回归分析理论中存在的问题与解决的设想。
三、《微分几何》参考题
1.空间曲线的基本公式及其在曲线论中的作用。
2.渐近线与渐缩线。
3.空间曲线弯曲性的研究。
4.曲率与挠率。
5.曲面的第一基本形式在曲面论中的作用。
6.等矩映象与曲面的内在几何。
7.曲面的第二基本形式在曲面论中的作用。
8.曲面上的曲率线,渐近曲线,测地线。
9.曲面的内在几何与外在几何的相依性。
10.曲面内的基本定理与曲线论的基本定理的比较(相仿之处与不同之处)。
11.高斯曲率的意义与作用。
12.等矩映射与等角映射及等积映射的关系。
13.高斯与波涅公式的意义与作用。
14.伪球面与罗氏几何。
四、《复变函数》参考题
1.复变函数在一点解析的等价定义。
2.幅角多值性所导出的问题汇集。
3.小结复变函数的积分。
4.解析与调和函数的关系。
5.漫谈复数∞。
6.0,∞与函数
7.多值函数单值分支的表达与计算。
8.分式线性函数全体对乘法——函数复合——构成群。
9.∞和∞邻域的引进使扩充复平面的为紧空间。
lo.等比级数 ,在函数的泰勒展开式和罗朗展开式中的作用。
11.谈复数的比较大小问题。
五、《实变函数》参考题,
1.关于积分号下取极限(积分与极限交换次序问题)。
①在什么条件下可以积分号下取极限,是积分的一个重要性质,例 如关系到微积分基本定理成立的条件,函数项级数和的性质等等。
②列举勒贝格积分和黎曼积分在几个问题上的基本结论,分析其 中最基本的要求和相互关系(书上P146第6题可供参考),可以发现勒贝格积分在这方面比黎曼积分好得多,而且是用勒贝格积分的主要好处之一。
③给出上述基本结论的简单推论,新的证明方法应用例题,并说明它们的意义。
2.关于微积分基本定理(牛顿一菜布尼兹公式)
①什么是微积分基本定理,它的重要意义在哪里?
②黎曼积分情形,相应定理的条件是什么?有什么不足之处?
③勒贝格积分情形,相应的定理的结论和条件又是怎样的?条件减弱在哪里?还有什么问题?
④应用例题。
3.关于绝对连续函数。
①绝对连续的定义是什么?有些什么等价说法或充分必要条件,并证明之。绝对连续与连续、一致连续有什么不同,有什么关系。
②证明绝对连续函数列一致收敛的极限,可微函数与绝对连续函 数复合,仍为绝对连续的。
③绝对连续函数几乎处处可微,能否做到处处可微?举例!绝对连续函数与它的导致关系如何,与微积分基本定理有什么关系。
④绝对连续函数全体组成线性空间。
4.关于勒贝格积分。
①试将关于勒贝格积分的定义综合起来,做出一个统一,一般的勒贝格积分定义,并说明勒贝格积分仍然是“分割、求积、取极限”的结果,勒贝格积分的“分割”与黎曼积分又有何根本不同之处?
②说明勒贝格积分在几何上仍是“曲边梯形的面积”。
③证明对于勒贝格积分,也和黎曼积分一样,无界函数的积分(广 义积分)和无界区域上的积分(无穷积分),都是有界函数在有界域上的积分的极限。
④勒贝格积分有哪些黎曼积分所没有的重要性质。从积分的定义看,是什么原因导致这两类积分有许多重大差别。
⑤勒贝格积分有许多重要性质,带来一些什么好处?
5.关于测度。
①总结定义点集的勒贝格测度的过程,并与数学分析中定义区域的面积的过程(重积分前面部分)作比较,分析其中不同之处,以及为什么因为这些不同,导致黎曼积分和勒贝格积分在性质上有许多重大差别。
②说明勒贝格测度长度、面积、体积概念的推广,当平面区域可求面积时,它的面积和勒贝格测度相等。
③列举勒贝格测度的重要性质,说明它们与勒贝格积分性质的关 系(例如测度的可数可加性与积分的可数可加性有什么关系,单调集列极限的测度(定理3、2、6~3、2、10)与勒维定理(定理5、4、2的关系)。
6.关于可测函数。
①可测函数与连续函数,可积函数从定义上、性质上看有什么关系和差别。
②全体可测函数构成线性空间,构成环。
③试说明鲁金定理的意义,以及它与黎斯定理、叶果洛夫定理的关系。你如何理解“可测函数近于连续函数”及其理由。
7.关于可测函数列的各种收敛概念。
①试述实变函数论中及数学分析中讲过的各种收敛概念的定义和性质、互相之间的关系。以及引进这些概念的意义和用处。
②从黎斯定理和叶果洛夫定理出发说明,你怎么理解“几乎处处收敛,近乎一致收敛”。
8.关于点集上的连续函数。
①定义,性质。
②与数学分析中讲的连续的关系。
9.集合论和点集论的方法在实变函数论中的意义。
从一些具体例子出发说明,为了解决数学分析中一些结果不够完善的问题,如推广它们的结论,有必要用这种方法去研究函数,用它也确实有好的效果。说明集合论是测度论和积分论的基础。
以上问题,除参考.所用教材外,还可参考程其襄等编《实变函数与泛函分析基础》。朱玉楷编《实变函数简编》等有关书籍资料。
有没有关于小学数学专业的毕业论文
前言: 当今,在社会环境对从业人员要求具有更高学历的激励下,在各类专业人员不断进行知识更新的进程中,广泛地存在着要求提高自己的数学水平的愿望.特别对于原来只学过普通微积分课程的人来说,他们在补习各自所需要的数学知识时,因缺乏牢固的数学基础,不可避免地会遇到很多困难.本论文就是在为他们讲授数学分析理论基础课的讲义的基础上写成的.考虑到在职人员投入业余学习的时间十分有限,要他们系统地学完一门数学分析这样的大课程几乎是不可能的.一种可行而有效的做法或许是这样的--选择几个起主导作用的专题,讲授其中那些具有原则意义的概念和思想,通过举例讨论一些典型问题的解法. 序言: 自20世纪90年代后期开始,我国的高等教育改革步伐日益加快.实行5天工作制,使教学总时数减少,而新的专业课程却不断出现.在这样的情况下,对传统的专业课程应该如何处置,这样一个不能回避的问题就摆在了我们的面前.而这时,教育部师范司启动了面向21世纪教学改革计划.在我们进行"数学专业培养方案"项目的研究中,这个问题有两种方案可以选择:一是简单化的做法,或者削减必修课的数量,将一些传统的数学课程从必修课的名单中去掉,变为选修课,或者少讲内容减少课时;二是对每门课程的教学内容进行优化、整合,建立一些理论平台,减少一些繁琐的论证和计算,以达到削减课时,同时又能保证基本教学内容. 目录: 第一章 实数理论 1.1 建立实数的原则与完备有序域 *1.2 戴德金分划说简介 1.3 无限小数与实数 1.4 实数完备性的等价命题 *1.5 上极限与下极限 第二章 连续性 2.1 n维欧氏空间 2.2 函数概念的演进 2.3 函数极限和连续的一般定义 2.4 连续函数的整体性质 2.5 不动点与压缩映射原理简介 第三章 微分学 3.1 可微性的统一定义 3.2 可微函数的性质 3.3 微分中值定理与导函数的性质 3.4 凸函数 3.5 例题续编 第四章 积分学 4.1 定积分概念与牛顿-莱布尼兹公式 4.2 可积条件 4.3 定积分的性质 4.4 变限积分 4.5 反常积分 第五章 级数 5.1 数项级数综述 5.2 一致收敛概念的提出 5.3 一致收敛判别 5.4 一致收敛函数列(或级数)的性质 1、小学数学论文的组成 小学数学论文具有类型多样、形式活泼等特点,有的侧重于经验的总结,实验结果的阐述,包括实验过程、手段、方法和结果的记录;有的侧重于理论性的研究,包括对研究课题的提出,对研究成果的分析、推导、论证和应用等。但不论哪类论文,主要由标题、摘要、前言、正文、结论、参考文献等部分组成。 标题就是论文的总题目,是文章基本内容的缩影,古人云:“立片言以居要,乃全篇之警策。”所以拟定标题应该力求简短、明确、质朴、醒目,既要防止太冗长,又要避免太概括,使人不明了;既要防止文不对题或过于陈旧,又要避免追求新颖、空泛而没有实际的内容。 摘要一般包括本课题研究的意义,研究的内容与方法,研究的成果或价值等,便于读者迅速了解全文的概貌。所以摘要应简明扼要,引人入胜,内容全面,重点突出,且能独立使用。 前言也称引言或绪言,一般包括本课题研究的背景或起点,需要研究的问题,研究的方法、手段,研究的意义或价值。需要注意的是,对研究的意义或价值应力求实事求是,既不可拔高,也不可贬低或过分谦虚。 正文是论文的主体,作为表达作者个人研究成果的部分,所占篇幅较大,有时还必须辅以必要的小标题,应力求概念清晰,论点明确,论证严密,论据充分,具有科学性、准确性和创新性,同时条理要清楚,文字应通俗简明。 结论是对正文中所分析论证的问题加以综合,概括出基本点,这是课题解决的答案。结论作为理论分析和实验的逻辑发展,是论述的概括集中和升华,由局部到一般,由具体事实、经验,上升到理论概括,是整篇论文的归宿,所以应力求完整、准确、鲜明,还应如实指出本理论的使用范围和成果的意义,以及本文尚未解决的问题和继续研究的方向。 参考文献是反映作者严肃的科学态度和研究工作的依据,其中包括撰写该论文所参考的书籍(作者姓名、书名、版次、页数、出版者、出版年份)或期刊(作者姓名、标题、刊物名称、卷或期、页数、年份)。 2、小学数学论文的撰写过程 第一步,选题、选材。 要想写什么内容的文章,无论是理论探讨方面,还是教材教法方面和解题方法技巧方面,以及教学经验总结方面,对阐述问题的深度、广度等,要心中有数,具有明确的目的性和主题性。 无论选择哪方面的内容与具体题材,都必须力求具有先进性、针对性和实践性,要想做到这一点,首先,根据文献检索方法,尽可能多地查阅资料,掌握国内外最新研究动态。其次,深入钻研这些文献资料,看看能否得到进一步启发,有无新的见解。尽管选题可能重复,类似的题材较多,但也可以从不同侧面结合不同实例,根据不同对象写出一定的新意来,使观点更明确,方法更有效,使其先进性、针对性、实用性更强。第三,选题要从实际出发,题目大小、题材的深度和广度要恰当。 第二步,拟纲、执笔。 论文选题确定后,就要注意写好提纲,这是写好文章的基础。首先,要将内容、结构布局好,要拟定一个写作提纲,准备分几个部分,各个部分集中讲几个问题,这些部分与问题之间的关系如何,都需要进一步精心设计,使其结构严谨、层次分明,具有科学性、逻辑性。其次,要注意各种文章的特点。写理论性的文章,最好能再确定大小标题,叙述上力求论点明确,可信度强,便于别人借鉴;写教材分析方面的文章,应进行比较,提出改进意见或提示值得深入研究的问题等。 第三步,修改、定稿。 修改是文章初稿完成后的一个加工过程,它包括对论文文字的修饰,以及科学性的推敲等。论文初稿形成后,应从头至尾反复地阅读,逐句逐段推敲,审核一下文中的论点是否明确,论据是否充分,论证是否合理,结构是否严谨,计算是否正确等。一篇好的小学数学论文,应该是数文并茂。就是说,既要有好的数学内容,又要有好的文字表达。所以,文字的工夫对数学论文来说很为重要。数学论文,贵在朴实,少用浮词,免得冲淡文章的中心,文字应通俗易懂,简明扼要,用词应准确简炼,表达完整,特别是中心内容一定要阐述透彻清楚。此外,书写要规范,题号、图号、标点也要正确。修改是一项细致的工作,只有对文稿反复推敲、修改,才能消除不应有的错误。只有经过反复修改加工,文章的质量才会不断提高。
上一篇:艾宾浩斯研究论文
下一篇:飞机铆接毕业论文