论文研究数学危机
论文研究数学危机
数学史上出现的三次数学危机,与其说是“数学的危机”,不如说是“数学哲学的危机”.下面我给你分享三次数学危机论文,欢迎阅读。
摘要:本文主要通过数学史上的三次危机的产生与消除,针对它们的本质浅谈自己的认识,实际导致这三次危机原因在与人的认识。第一次数学危机是人们对万物皆数的误解,随着无理数的发现,把第一次数学危机度过了。第二次数学危机是人们对无穷小的误解,微积分的出现产生了一种新的方法,即分析方法,分析方法是算和证的结合。是通过无穷趋近而确定某一结果。罗素悖论的发现,给数学界以极大的震动,导致了数学史上的第三次危机。为了探求其根源和解决难题的途径,在数学界逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展。
关键词:危机;万物皆数;无穷小;分析方法;集合
一、前 言
数学常常被人们认为是自然科学中发展得最完善的一门学科,但在数学的发展史中,却经历了三次危机,人们为了使数学向前发展,从而引入一些新的东西使问题化解,在第一次危机中导致无理数的产生;第二次危机发生在十七世纪微积分诞生后,无穷小量的刻画问题,最后是柯西解决了这个问题;第三次危机发生在19世纪末,罗素悖论的产生引起数学界的轩然大波,最后是将集合论建立在一组公理之上,以回避悖论来缓解数学危机。本文回顾了数学上三次危机的产生与发展,并给出了自己对这三次危机的看法,最后得出确定性丧失的结论。
二、数学史上的第一次“危机”
第一次数学危机是发生在公元前580-568年之间的古希腊。那时的数学正值昌盛,忒被是以毕达哥拉斯为代表的毕氏学派对数的认识进行了研究,他们认为“万物旨数”。所谓数就是指整数,他们确定数的目的是企图通过揭示数的奥秘来探索宇宙的永恒真理,信条是:宇宙间的一切现象都能归结为整数或整数之比,即世界上只存在整数与分数,除此之外他们不认识也不承认别的数。在那个时期。上述思想是绝对权威、是“真理”。但是不久人们发现即使边长为1的正方形对角线不是可比数。这样毕达哥拉斯“万物皆数”是不成立的,绝对的权威受到了严重的挑战:一方面证明单位正方形对角线的长不是整数分数,按照他们的观点,这种长度不是数!另一方面,他们不承认自己的观点有问题,这就陷入了极大的矛盾之中,这是第一次数学危机。
三、第二次数学危机
第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到很多年后。牛顿和莱布尼兹开辟了新的天地――微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾。直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。
四、数学史上的第三次危机
1.悖论的产生及意义
(1)什么是悖论
悖论来自希腊语,意思是“多想一想”。这个次的意义比较丰富,它包括一切与人的知觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。悖论是自相矛盾的命题,即如果承认这个命题成立,就可推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出原命题成立。如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。古今中外有不少著名的悖论,他们震撼了逻辑学和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。
(2)悖论产生的意义
疏忽学悖论是在数学学科理论体系发展到相当高的阶段才出现的。它是对数学学科理论体系可能存在的内在矛盾的揭示。虽然暂时引起人们的思想混乱,对正常的科学研究可能会形成一定的冲击,但它对于揭露原有理论体系中的逻辑矛盾,对于揭露原有理论的缺陷或局限性,对于这一步深入理解,任何和评价原有科学理念,对于原有的科学概念或理论的进一步充实完善和促进科学管理的产生都有相当重要的意义,同时也为科学研究提供新的课题和研究方向。
2.第三次数学危机的产生与解决
(1)第三次数学危机的产生
第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。
罗素在该悖论中所定义的集合R,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。事实虽是这样但原因却又是什么呢?这是由于R是集合,若R含有自身作为元素,就有R R,那么从集合的角度就有RR。一个集合真包含它自己,这样的集合显然是不存在的。因为既要R有异于R的元素,又要R与R是相同的,这显然是不可能的。因此,任何集合都必须遵循R R的基本原则,否则就是不合法的集合。这样看来,罗素悖论中所定义的一切R R的集合,就应该是一切合法集合的集合,也就是所有集合的集合,这就是同类事物包含所有的同类事物,必会引出最大的这类事物。归根结底,R也就是包含一切集合的“最大的集合”了。因此可以明确了,实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。
(2)第三次数学危机的解决
罗素的悖论产生后,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统(即所谓zF公理系统),这场数学危机到此缓和下来。
现在,我们通过离散数学的学习,知道集合论主要分为Cantor集合论和Axiomatic集合论,集合是先定义了全集I,空集,在经过一系列一元和二元运算而得来的。而在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。
三次数学危机是我们数学史发展中的一个奠基,他为我们日后更详细、深入的研究数学做了很好的铺垫,我我想以后也许会有第四次数学危机,但数学家也会把它化解掉,只有出现危机,才能使我们的数学研究达到更高的境界。
数学的产生和发展,始终与人类社会的生产和生活有着密不可分的联系。在新教材中,任何一个新概念的引入,都特别强调它的现实背景、数学理论发展背景或数学发展的历史背景,只有这样才能让学生感到知识发展水到渠成。所以特别希望在教学中能不时渗透数学史的相关知识,充分发挥和利用数学史的教育价值,使学生通过了解数学史,而更加全面更加深刻地理解数学、感悟数学。
一、集合论的诞生
一般认为,集合论诞生于1873年底。1873年11月29日,康托尔(,1845-1918)在给戴德金(Julius Wilhelm Richard Dedekind,1831—1916)的信中提问“正整数集合与实数集合之间能否一一对应起来?”这是一个导致集合论产生的大问题。几天后,康托尔用反证法证明了此问题的否定性结果,“实数是不可数集”,并将这一结果以标题为《关于全体实代数数集合的一个性质》的论文发表在德国《克莱尔数学杂志》上,这是“关于无穷集合论的第一篇革命性论文”,在其系列论文中,他首次定义了集合、无穷集合、导集、序数、集合运算等,康托尔的这篇文章标志着集合论的诞生。
二、集合论成为现代数学大厦的基础
康托尔的集合论是数学史上最具革命性和创造性的理论,他处理了数学上最棘手的对象——无穷集合,让无数因“无穷”而困扰许久的数学家们在这种神奇的数学世界找回了自己的精神家园。它的概念和方法渗透到了代数、拓扑和分析等许多数学分支,甚至渗透到物理学等其他自然学科,为这些学科提供了奠基的方法。几乎可以说,没有集合论的观点,很难对现代数学获得一个深刻的理解。
集合论诞生的前后20年里,经历千辛万苦,但最终获得了世界的承认,到了20世纪初,集合论已经得到数学家们的普遍赞同,大家一致认为,一切数学成果都可以建立在集合论的基础之上了,简言之,借助集合论的概念,便可以建立起整个数学大厦,就连集合论诞生之初强烈反对的著名数学家庞加莱(Jules Henri Poincaré,1854-1912)也兴高采烈地在1900年的第二次国际数学家大会上宣布:“借助集合论概念,我们可以建造整个数学大厦。今天,我们可以说绝对的严格性已经达到了。”然而,好景不长,一个震惊数学界的消息传出,集合论是有漏洞的!如果是这样,则意味着数学大厦的基础出现了漏洞,对数学界来说,这将是多么可怕啊!
三、罗素(Bertrand Russell,1872-1970)悖论导致第三次数学危机
1903年,英国数学家罗素在《数学原理》一书上给出一个悖论,很清楚地表现出集合论的矛盾,从而动摇了整个数学的基础,导致了数学危机的产生,史称“第三次数学危机”。
罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R,现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不属于自身,即R不属于R。另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R,这样,不论任何情况都存在矛盾,这就是有名的罗素悖论(也称理发师悖论)。
罗素悖论不仅动摇了整个数学大厦的基础,也波及到了逻辑领域,德国的著名逻辑学家弗里兹在他的关于集合的基础理论完稿而即将付印时,收到了罗素关于这一悖论的信,他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟,他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”这样,罗素悖论就影响到了一向被认为极为严谨的两门学科——数学和逻辑学。
四、消除悖论,化解危机
罗素悖论的存在,明确地表示集合论的某些地方是有毛病的,由于20世纪的数学是建立在集合论上的,因此,许多数学家开始致力于消除矛盾,化解危机。数学家纷纷提出自己的解决方案,希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。
在20世纪初,大概有两种方法。一种是1908年由数学家策梅洛(Zermelo,Ernst Friedrich Ferdinand,1871~1953)提出的公理化集合论,把原来直观的集合概念建立在严格的公理基础上,对集合加以充分的限制以消除所知道的矛盾,从而避免悖论的出现,这就是集合论发展的第二阶段:公理化集合。
解铃还须系铃人,在此之前,危机的制造者罗素在他的著作中提出了层次的理论以解决这个矛盾,又称分支类型化。不过这个层次理论十分复杂,而策梅洛则把这个方法加以简化,提出了“决定性公理(外延公理)、初等集合公理、分离公理组、幂集合公理、并集合公理、选择公理和无穷公理”,通过引进这七条公理限制排除了一些不适当的集合,从而消除了罗素悖论产生的条件。后来,策梅洛的公理系统又经其他人,特别是弗兰克尔(el)和斯科伦()的修正和补充,成为现代标准的“策梅洛——弗兰克尔公理系统(简称ZF系统)”,这样,数学又回到严谨和无矛盾的领域,而且更促使一门新的数学分支——《基础数学》迅速发展。
五、危机的启示
从康托尔集合论的提出至今,时间已经过去了一百多年,数学又发生了巨大的变化,而这一切都与康托尔的开拓性工作密不可分,也和数学家们的艰辛努力密不可分。从危机的产生到解决,我们可以看到,数学的发展跟提出问题和面对困难是离不开的,期间要经历无数的挫折和失败,但是只要坚持,终会走向成功。
矛盾的消除,危机的化解,往往给数学带来新的内容,新的变化,甚至革命性的变革,这也反映出矛盾斗争是事物发展的历史性动力的基本原理。正如数学家克莱因(FelixChristianKlein1849-1925)在《数学——确定性丧失》中说:“与未来的数学相关的不确定性和可疑,将取代过去的确定性和自满,虽然这次悖论已经找到解释,危机也已化解,但是更多的还是未知,因为只要仔细分析,矛盾又将会被认识更为深刻的研究者发现,这种发现不应该被认为是‘危机’,而应该感到,下一个突破的机会来到了。”
参考文献:
1.《普通高中课程标准实验教科书——数学必修1》教师教学用,人民教育出版社
2.胡作玄,《第三次数学危机》
中华人民共和国的诞生,为中国数千年的文明史揭开了新的篇章,我国数学科学的研究出现了生机勃勃的景象,以下是我搜集的一篇关于三次数学危机探讨的论文范文,供大家阅读参考,
从我国数学的发展看三次数学危机。
1 引言
数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。在整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整个数学的基础时,就产生数学危机。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。
2 三次数学危机
第一次数学危机发生在古希腊,源于毕达哥拉斯的以数为基础的宇宙模型和数是可公度的信条。毕达哥拉斯认为,事物的本质是由数构成的,并以数为基础,构造了宇宙模型[1].在毕达哥拉斯看来,数就是整数或整数之比。但这一信条后来遇到了困难。因为有些数是不可公度的。这一矛盾,导致了毕达哥拉斯关于数的信条的破产,并进一步导致了毕达哥拉斯以数为基础的宇宙模型的破产。这在当时产生的震动太大了,因此历史上称之为第一次数学危机。
17、18世纪关于微积分发生的激烈的争论,被称为第二次数学危机[2].在17世纪晚期,形成了微积分学。牛顿和莱布尼茨被公认为微积分的奠基者。他们的功绩主要在于把各种有关问题的解法统一成微积分,有明确的计算步骤,微分法和积分法互为逆运算[3].由于新诞生的微积分方法中隐含着逻辑推理上的严重缺陷,导致了无穷小悖论[4].当时牛顿等人不能自圆其说,而且,其后一百年间的数学家也未能有力的回答贝克莱的质问,由此而引起数学界甚至哲学界长达一个半世纪的争论,造成第二次数学危机.
19世纪末分析严格化的最高成就--集合论,似乎给数学家们带来了一劳永逸摆脱基础危机的希望。庞加莱甚至在1900年巴黎国际数学大会上宣称:现在我们可以说,完全的严格性已经达到了![5]但就在第二年,一场摇撼整个数学大厦基础的暴风雨来临了,英国数学家罗素以一个简单明了的集合论悖论打破了人们的上述希望,引起了关于数学基础的新争论。他把关于集合论的一个着名悖论用故事通俗地表述出来。
它和其它一些集合论悖论一样,对数学发展的影响是十分深刻、巨大的,甚至可以说是动摇了整个数学的基础,并导致了第三次数学危机。
3 从我国数学的发展看三次数学危机
中华人民共和国的诞生,为中国数千年的文明史揭开了新的篇章,我国数学科学的研究出现了生机勃勃的景象,这是我们国家社会主义建设的需要,也是我们党和国家非常重视科学技术的结果,
数学论文《从我国数学的发展看三次数学危机。中国科学院于1950年开始筹建数学研究所,1952年正式成立。全国各高等院校普遍设置了数学系,《数学学报》和《数学通报》复刊。1958年~1960年的大跃进时期,在极左思潮影响下,数学基础理论研究受到很大冲击,积极的一面是明确了向世界先进水平看齐的奋斗目标,也重视理论联系实际,线性规划得到大力推广并创造了切实可行的图上作业法,运筹学由此在我国发展起来。在发展我国高科技过程中,例如1965年9月17日,我国科学工作者在世界上首次用人工方法合成结晶牛胰岛素。
我们不能不承认,数学对于现实生活的影晌正在与日俱增。许多学科都在悄悄地经历着一场数学化的进程。现在,已经没有哪个领域能够抵御得住数学方法的渗透。因此,对于数学,特别是现代数学加以普及,使得数学和数学家的工作能对现实生活产生应有的积极影响,这已成为人们日益重视的课题。
4 总结
综上所述三次数学危机对数学的发展影响是巨大的。第一次数学危机中产生的欧几里德几何对树立天文学的发展起了很大的推动作用,第一次数学危机使古希腊数学基础发生了根本性的变化,使古希腊的数学基础转向几何。第二次数学危机中波尔查诺给出了连续性的正确定义;阿贝尔指出要严格限制滥用级数展开及求和;柯西指出无穷小量和无穷大量都是变量,并且定义了导数和积分;狄利克雷给出了函数的现代定义;美国数理逻辑学家罗宾逊又利用无穷小量引进超实数的概念,建立了非标准分析,同样也能精确的描述微积分,解决无穷小悖论。第三次数学危机建立了实数理论,且在此基础上建立了极限的基本定理,使数学分析建立在实数理论的严格基础之上,康托尔创立了集合论。而且还产生了公理化方法论和数理逻辑等一批新颖学科。我国以至世界各国的数学发展也都依赖于三次数学危机中产生的数学的新内容。整个数学的发展是一个层层深入、层层递进的过程。
参考文献:
[1]人民教育出版社中学数学室着.现代数学概论[M].北京:人民教育出版社,2003.
[2]张光远.现代化知识文库:二十世纪数学史话[M].知识出版社,1984.2
[3]袁小明.数学史话[M].山东教育出版社,1985.
[4]于寅.近代数学基础[M].华中理工大学出版社,1999.3.
数学发展历史上3次“危机”都是由悖论引起的,根据下面的提要,写一篇关于悖论与数学危机问题的小论文
郭敦顒回答:
数学自古诞生以来,数学家们一直在追求真理,而且成就辉煌。在数学以外的瓴域,数学概念及其推论为重大的科学理论提供了精髓。
任何事物都含有矛盾,事物内部的矛盾性,推动着事物的发展,数学也不例外。数学是在发现矛盾解决矛盾中发展的。数学中的矛盾有个委婉的说法,叫做悖论。由数学的悖论导致了更严重的后果就是数学危机。而所谓数学危机,只是在数学内部数学家们出于对数学真理地严格探求精神下的对数学界的严厉警示而已。正是由于有了这种严厉警示,而解决了诸多悖论,推动了数学的不断发展。
数学史上出现过三次悖论与数学危机。
第一次数学危机发生于古希腊时期。是在当时毕达哥拉斯学派所倡导的是一种称为"唯数论"的哲学观点,认为一切事物和现象都可归结为整数或整数与整数之比,称为"数的和谐"。但后来在证明勾股定理时希帕索斯发现直角三角形斜边上的高x,存在
1:x=x:2,x=√2,
√2与整数并不成整数之比。于是"数的和谐"被打破了,导致了无理数的产生(无理数这一称呼沿用至今,虽然不雅,已约定成俗)。
第二次危机发生在17世纪,涉及的是微积分理论基础的问题,是由贝克莱悖论引起的。贝克莱指出在计算式
Δy/Δx
中无穷小Δx既不作为零进行计算,又作为零将其舍去这违反了矛盾律。无穷小如果是零就不能作除数,如果不是零,就不能舍弃。这就是著名的"贝克莱悖论"。这导致数学界的思想混乱,爆发了第二次数学危机。人们认识到虽然微积分是解决众多实际问题的良法,但缺乏严谨的理论基础。于是众多数学家为建立微积分理论基础的问题进行了不懈的努力。法国数学家柯西首先给出了极限的定义,继而建立了连续、导数、微分、积分等理论。
近代三个世纪以来笛卡尔、牛顿、莱布尼兹、柯西、拉格朗日、阿贝尔、康托尔、费尔马、伯努力利家族、欧拉、拉普拉斯、希尔伯特等众多数学家为发展数学建立数学基础成就辉煌。
康托尔建立的集合论,成了数学的基础,然而英国数学家罗素提出了一个著名的 “理发师悖论”——小城里的理发师放出豪言:“我帮且只帮城里所有不自己刮脸的人刮脸”。但问题是:理发师该给自己刮脸吗?如果他给自己刮脸,那么按照他的豪言“只为那些不为自己刮脸的人刮脸”他不应该为自己刮脸;但如果他不给自己刮脸,同样按照他的豪言“为城里所有不为自己刮脸的人刮脸”他又应该为自己刮脸。理发师悖论(Barber paradox)是罗素用来比喻罗素悖论的一个通俗说法,是由伯特兰·罗素在1901年提出的。罗素悖论的出现是由于朴素集合论对于元素的不加限制的定义。由于当时集合论已成为数学理论的基础,这一悖论的出现直接导致了第三次数学危机,也引发了众多的数学家对这一问题的补救,最终形成了现在的公理化集合论。同时,罗素悖论的出现促使数学家认识到将数学基础公理化的必要性
于是数学家们为致力于公理化做了大量工作,到1930年数学基础建立了三大学派;直觉主义、逻辑主义和形式主义,虽然还都存有缺陷,但毕竟都为数学的发展做出了重大贡献。
在三大学派中似乎主要由希尔伯特建立的形式主义学派略胜一筹,曾宣称解决了“相容性和完备性”的问题,然而1931年,奥地利数学家哥德尔(后移居美国)证明了两个不完备性定理,“揭示了形式主义化方法不可避免的局限性.”哥德尔不完备性定理是对排中律的否定,但是“如果存在一个矛盾,任何命题都是可以证明的”,这又揭示了哥德尔不完备性定理本身的局限性.
总之,虽然数学成就辉煌。但至今仍存在众多问题,而且是根本问题尚未得到解决,如数学定义和数的定义问题等等均未解决,这需要人们致力于数学研究,特别需要致力于数学基础的研究,希望有志者致力于其中。
为此,郭敦顒进行数学研究达40年,写出了论文《哥德巴赫猜想证明》、《数学纲领—微观数学与宏观数学》、《欧几里得几何平行线问题解》、《浅论反证法—活的泛性公理》等论文,于2008——2009年在博客中国郭敦颙专栏中已经发表。
《数学纲领—微观数学与宏观数学》的前几章也在百度发表;《哥德巴赫猜想证明》为百度快照收录。
数学论文 集合论的艰难发展
集合论是德国著名数学家康托尔于19世纪末创立的,同样,集合的发展与这位科学家有着密不可分的关系。
十七世纪,数学中出现了一门新的分支:微积分。在之后的一二百年中这一学科获得了飞速发展。但在过于快速的发展过程中,出现了许多问题。十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动。在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端。
1874年,康托尔一般地提出“集合”的概念,即:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素。康托尔于1873年12月7日最早提出集合论思想,后来人们把那一天定为集合论诞生日。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
康托尔把全体自然数组成的集合简称作自然数集,用字母N来表示。在此之前的数学家认为,无限永远处在构造中,是潜在的,而不是实在,这在数学上被称为潜无限。而康托尔提出来实无限这个理论,用一个有限的字母符号去概括了一群无限的数。在当时,许多数学家在研究微积分时一直坚信潜无限这个理论,所以在集合论提出伊始,遭到许多数学家的激烈反对。在猛烈的攻击下与过度的用脑思考中,康托尔得了精神分裂症。
然而集合论前后经历二十余年,最终获得了世界公认。在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了。今天,我们可以说绝对的严格已经达到了。”
然而这种自得的情绪并没能持续多久。1902年,罗素提出的罗素悖论打破了这种高昂的情绪。
即理发师悖论:我只给村子里不给自己理发的人理发。理发师若给自己理发,那么他属于给自己理发的人,而理发师不给这样的人理发。他若不给自己理发,就符合理发师理发的标准,就应该给自己理发。
用数学语言表达即为:构造一个不属于自身的集合R。现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不应属于自身,即R不属于R;如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R。
数学陷入了自相矛盾之中。这就是数学史上的第三次数学危机。前两次数学危机分别是:希帕苏斯发现了根号二这个无理数无法用整数比来表示,被毕达哥拉斯派的人推到了大海中;微积分的合理性遭到质疑。
1908年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称ZF公理系统。简单来讲,就是把理发师从村子中的人中排除出去。这就是集合论发展的第二个阶段:公理化集合论。
与此相对应,康托尔创立的集合论被称为朴素集合论。公理化集合论是对朴素集合论的严格处理,较圆满地解决了第三次数学危机。
尽管康托尔在提出集合论时不够完整,但无疑他创造了一个崭新的学论,触碰了一个当时人们没有想也不敢想的领地,并为数学的发展做出了重要作用。正如当时以为著名的数学家所言:“它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一。康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献。”
而集合这一数学中的基本概念,在我们看来是一个非常简单易懂的概念,也经历了如此复杂的发展过程。在其发展过程中,间接的导致了一代数学家的陨落,出现了数学发展史上的第三次危机,才有了今天这么简练又科学的表达。而我回观历史,不禁感叹,是有多少伟人用了近三千年的时间,去铸就了一门如此浩瀚的科学。
上一篇:论文查重乱像
下一篇:信宜话的研究论文