欢迎来到学术参考网
当前位置:发表论文>论文发表

发表合金论文

发布时间:2023-11-01 19:08

发表合金论文

合金是由金属与其它一种以上的金属或非金属所组成的具有金属通性的物质。我国是世界上最早研究和生产合金的国家之一,在商朝(距今3000多年前)青铜(铜锡合金)工艺就已非常发达;公元前6世纪左右(春秋晚期)已锻打(还进行过热处理)出锋利的剑(钢制品)。

铝是分布较广的元素,在地壳中含量仅次于氧和硅,是金属中含量最高的。纯铝密度较低,为2.7 g/cm3,有良好的导热、导电性(仅次于Au、Ag、Cu),延展性好、塑性高,可进行各种机械加工。铝的化学性质活泼,在空气中迅速氧化形成一层致密、牢固的氧化膜,因而具有良好的耐蚀性。但纯铝的强度低,只有通过合金化才能得到可作结构材料使用者选用

根据铝合金的成分和生产工艺特点,通常分为形变与铸造铝合金两大类.工业上应用的主要有铝-锰,铝-镁,铝-镁-铜,铝-镁-硅-铜,铝-锌-镁-铜等合金.变形铝合金也叫熟铝合金,据其成分和性能特点又分为防锈铝,硬铝,超硬铝,锻铝和特殊铝等五种.。

铝合金的突出特点是密度小、强度高。铝中加入Mn、Mg形成的Al-Mn、Al-Mg合金具有很好的耐蚀性,良好的塑性和较高的强度,称为防锈铝合金,用于制造油箱、容器、管道、铆钉等。硬铝合金的强度较防锈铝合金高,但防蚀性能有所下降,这类合金有Al-Cu-Mg系和Al-Cu-Mg-Zn系。新近开发的高强度硬铝,强度进一步提高,而密度比普通硬铝减小15%,且能挤压成型,可用作摩托车骨架和轮圈等构件。Al-Li合金可制作飞机零件和承受载重的高级运动器材。
各种飞机都以铝合金作为主要结构材料。飞机上的蒙皮、梁、肋、桁条、隔框和起落架都可以用铝合金制造。飞机依用途的不同,铝的用量也不一样。着重于经济效益的民用机因铝合金价格便宜而大量采用,如波音767客机采用的铝合金约占机体结构重量 81%。军用飞机因要求有良好的作战性能而相对地减少铝的用量,如最大飞行速度为马赫数 2.5的F-15高性能战斗机仅使用35.5%铝合金有些铝合金有良好的低温性能,在-183~-253[2oc]下不冷脆,可在液氢和液氧环境下工作,它与浓硝酸和偏二甲肼不起化学反应,具有良好的焊接性能,因而是制造液体火箭的好材料。发射“阿波罗”号飞船的“土星” 5号运载火箭各级的燃料箱、氧化剂箱、箱间段、级间段、尾段和仪器舱都用铝合金制造。
航天飞机的乘员舱、前机身、中机身、后机身、垂尾、襟翼、升降副翼和水平尾翼都是用铝合金制做的。各种人造地球卫星和空间探测器的主要结构材料也都是铝合

毕业论文题目写镍铁合金的生产可以吗

可以。毕业论文题目写镍铁合金的生产可以的,毕业论文写什么东西都可以的,只要符合常理,可以镍铁合金的生产为话题展开,镍作为不锈钢的必需合金元素,以镍铁合金为载体加入到不锈钢生产中,有效提高镍矿利用率,能显著降低生产能耗,提高生产效率。

求一篇关于《合金》的小论文?

镁是最轻的结构金属。几种常用结构金属的密度(g·cm-3)(20o)如下:
  AL Mg Ti Fe Cu
  2.70 1.74 4.51 7.87 8.96
  可见镁的密度约分为Al,Ti,Fe,Cu的64%,39%,22%,19%。
  由于镁的密度小,它的合金也以质轻著称。一般镁合金的密度在1.8g·cm-3以下,镁,锂合金的密度低于镁 1.6g·cm-3.某些超轻型镁.锂合金密度甚至低于1,比水还轻.镁得镁和金的低密度使其比性能提高.例如,20o时的弹性模量为45Gpa,比铝(70Gpa)和Ti(120Gpa)的低,但三者的比弹性模量相同(~26Gpa).镁和镁合金质量小的特点,使其在交通运输、航空工业和航天工业上具有巨大的应用前景.
  镁的熔点为 651℃,沸点为1107℃.镁的蒸气压很高,627℃时为215215.95Pa,727℃时为1037.1Pa,因此镁铍极易挥发.镁原子最外层的两个电子很易失去,是很活泼的金属.常温下镁能与F、CL、BR、I等元素作用生成相应化合物.加热时镁能与硫、氮作用生成MgS和Mg3N2。在空气中镁会慢慢氧化,失去银白光泽而变黑.若温度提高至400℃以上,镁的氧化速度增快,超过500℃以后氧化速度更快,会着火燃烧,此时会生成氧化镁和少量氮化镁.镁燃烧时会发出非常强烈的光亮.镁的这一特点,颇受人们的青睐.早期就被利用于摄影照明,给人们留下美好的形象和记忆.战争时期,被用来制造照明 弹,把战场和目标照明得如同白昼.又被用于制造燃烧 弹,点燃战区的物资装备,杀伤对方有生力量.人们还利用镁的这一特点,将镁粉、铝粉和其它原料制成烟花.每当节庆的夜晚,随着阵阵悦耳响声,人们可以看到”嫦娥奔月””天女散花”……各种形色的烟花在夜空飞舞,多彩多姿,给人们带来极大的欢乐.顺便提一下,镁的这种”牺牲自我””乐于助人”精神处处可见.例如它仗着活泼的电化学性质做了牺牲自我的阳极,保护着其它的金属和设备.它又作为原电池阳极,耗尽了自己,照亮了他人.
  由于化学活泼性高,金属镁是耐腐蚀性能最差的金属之一.在酸性、中性和弱碱性溶液中它都会受到腐蚀而变成Mg2+离子.各种类型大气均会对镁产生程度不同的腐蚀作用.在干燥的空气中,它的表面上形成一层暗淡的的疏松多孔氧化膜,在潮湿大气中,生成的产物组成大致为Mgco3·3H2O+Mgso4·7H2o+Mg(OH)2.大气湿度增加,工为地区和海洋环境的大气中所含的二氧化硫和氯化物等物质,能加重镁的腐蚀.镁中氯化物杂质及铁杂质也会加速镁的腐蚀.因此,工业生产的镁锭必须镀膜钝化,涂油及以蜡纸包覆.
  镁是地壳中分布最广的元素之一,占地壳重量的2.77%,为第四个最丰富的金属元素(位于Al、Fe、Ca)之后.在自然界中镁只能以化合物的形态存在.在已知的1500多种矿物中,含镁矿物的有200多种,主要为碳酸盐、硅酸盐、硫酸盐、氧化物.海洋及盐湖中的镁比陆地上更多,是镁的主要来源.海水中含有10多种元素,镁的含量排第三,位居Na、K之后.海水中含镁0.13%每立方千米海水中有130万t镁,相当于世界镁年消耗量的4倍(见表2.8)盐湖水的镁浓度比海水更高.以东以色列、约旦之间的”死海”(实为另一内陆湖),受到千万干旱气候的造化,湖水极浓,含镁竟高达4%.仅此一处的镁,就能满足全世界2.2万年的需要.
  纯镁不适合做结构材料.作为结构材料应用的镁主要是镁合金和铝-镁合金.全世界约有千种铝合金牌号,若按化学成份归类的话,约为300多种.这300多种铝合金几乎都含有镁,其中以镁作为主要添加剂的铝-镁合金(镁含量最高为10.5%)约为40种.全世界各国镁合金品牌共有200多种,这些品牌按化学成份可归为30多种.共中变形镁合金黄色10多种,铸造镁合金20多种,铸造镁合金主要有以下3个体系.
  1) 镁-铝合金.这种合金自第一次世界大战被德国使用以来,成了最广泛使用的铸造镁合金的基础.大部份含有8%~9%的铝及少量的锌(使拉伸性能有某些提高)和锰(改善抗蚀性)
  2) 镁-铝-锌合金.镁-铝合金中加锌会产生一定的强化作用,其中高含锌量的合金具有很吸引人的压铸特性.如Mg-8AL-8ZN,具有足够大的流动性.,可用于压铸件,而且流动性和抗蚀性超过传统铝-锌合金.
  3) 含锆镁合金.锆能细化晶粒,改善镁合金的拉伸性能,提高镁合金蠕变能力,以满足航空和航天工业的需要.属于这一系列的合金有镁-锌-锆合金,镁-稀土-锌-锆合金,以及镁-钍系为基和镁-银系为基的含ZR合金.这种含稀土金属和或含钍的合金都可焊.钍也能改善铸造性能.银可以进一步提高拉伸性能.一些铸造镁合金的性能示于表3.2.
  镁是立方晶格的金属,可以承受的形变量有限(特别是在低温下).其变形材料主要在300~500℃温度范围内通过挤压、;轧制和压力锻造进行生产.变形合金可以按照它们是否含锆而分成两类.按照变形产品种类可分为三类:1薄板和厚板轧制金.如AZ31(Mg-Al-Z系),ZM21(Mg-Zn-Mn系)和ZE10(Mg-Zn-RE系),这三种合金都可焊,后两种强度较低.LA141A(Mg-Li-Al)等也属这一类,前面已作详细介绍.属于这一类的还有含钍的HK31(Mg-Th-Zr系)以及随后研制的HM21(Mg-Th-Mn等),它们的高温强度更高.2挤压合金.这类合金含铝量大多在1%~8%之间.
  镁合金都具有密度小的特点,特别是某些镁-锂合金(见前),密度甚至低于1。美英俄等国正在研制含钇镁合金。一种Mg-8.5Y-1.25Zn-0.5Zr合金,其密度小于1.9g·cm-3 ,抗拉强密度420Mpa, 0.2%屈服强度360Mpa,比现有任何一种变形镁合金的都高,同高强度铝合金强度相当。
  镁铝合金又名铝镁合金,分子式:Mg4Al3分子量:178.22颜色为灰褐色,比重约为2.15g/cm3,熔点463℃,燃烧时产生的温度达2000℃-3000℃。在烟花生产过程中起着非常重要的还原剂作用,也可作为白光剂和照明剂。
  镁铝合金是用镁锭和铝锭在保护气体中高温熔融而成。长期以来关于镁铝合金的结构有两种说法。一种说法是镁铝合金是简单物理混合;另一种说法是镁铝合金内部改变了晶体结构,不是简单的物理混合。
  镁锭和铝锭在高于1150K时,部分铝与空气中的氧气反应,生成a-Al2O3,氧化铝的此种晶体化学性质呈惰性,起着屏障、隔离作用。低于1150K时,生在B-Al2O3而这种晶体与酸反应,保护不了内部的镁铝合金。
  标准的镁铝合金中镁、铝的含量各约为50%。活性铝含量的多少对烟花的安全生产和产品的质量有很大的影响。但是现在生产镁铝合金的企业多为私营企业,近几年来铝锭比镁锭贵,受利益的驱动,大多未按国标生产。现在镁铝合金粉中铝的含量普遍低于50%,有的铝含量低到了40%。镁含量的增加使得镁铝合金的性质接近镁粉的性质,使得烟火 药的撞击感度、摩擦感度增加,烟火剂更加敏感,从而增加隐患。我们可能以用下面的化学机理来检验镁铝合金中铝的含量。
  1、盐酸与镁铝合金的反应
  Mg+2HCl=MgCl2+H2↑
  2Al+6HCl=2AlCl3+3H2↑
  2、混合溶液与氢氧化钠溶液反应(混合溶液中滴几滴石蕊或酚酞试剂作指示剂,以避免氢氧化钠过量)
  MgCl2+2NaOH=2NaCl+Mg(OH)2↓
  AlCl3+3NaOH=3NaCl+Al(OH)3↓
  3、过滤、烘干、称重,重量为G1克
  4、氢氧化铝与过量的氢氧化钠反应
  Al(OH)3+NaOH=NaAlO2+2H2O
  5、未反应的为氢氧化镁。过滤、烘干、称重,重量为G2克
  镁铝合金的中铝的含量 Al%=(G1-G2)/G×34.62%
  GB150-85规定了镁铝合金中铝的含量的范围为47-53%,铝含量低于这个范围镁铝合金容易引起质量事故和安全事故,应慎用。
  镁锭在镁铝合金中的应用:镁铝合金由镁锭和铝锭在保护气体中高温熔融而成,其组成有:简单的物理混合与已改变晶体结构的物理混合两种说法。

《Nature Commun》:合金的层错能研究取得新进展

层错是晶体面序列上的不规则性。因此,晶体基态结构中的层错与过剩的能量有关,称为层错能(SFE)。

在此,来自美国俄亥俄州立大学的Maryam Ghazisaeidi等研究者,重新讨论了层错能(SFE)的意义和致密合金中晶格位错平衡解离的假设。相关论文以题为“Stacking fault energy in concentrated alloys”发表在Nature Communications上。

论文链接:

SFE测量了相对于另一个原子平面的剪切能量成本,因此,直接与晶体对变形的响应有关。根据Frank法则,在晶格位错分解为部分位错以降低弹性能的过程中,会产生层错。因此,层错区域的大小(部分位错之间的距离),是由部分位错之间的排斥性弹性相互作用和它们之间产生层错的能量之间的平衡所决定的,即SFE。 在面心立方(fcc)晶体中,SFE和位错的解离宽度会影响位错的迁移率、交叉滑移的能力和孪晶的形成,所有这些因素都决定着晶体的力学行为。

通过合金化引入化学变化,进一步影响SFE,进而影响力学响应。在fcc晶体中,层错区域以部分位错为界,由两个具有六方致密排列(hcp)结构的原子平面组成。Suzuki等人研究表明,该区域溶质的平衡浓度可能与平均体积浓度不同。溶质向或从层错区偏析或耗尽,改变了SFE,进而影响位错行为。而这种现象,已在许多合金体系中广泛观察到。

随着合金的成分变得更加复杂,例如,在不锈钢或高温合金中,SFE的合金化效应,在决定相互竞争的变形机制中起着更加突出的作用。例如,钢中马氏体相变和机械孪生等二次变形模式的激活均与SFE直接相关。随着SFE的减小,变形机制由位错滑移向位错滑移和孪晶(孪生诱导塑性效应或TWIP效应)转变为位错滑移,γfcc转变为ϵhcp马氏体相变(相变诱导塑性效应或TRIP效应)。

高熵合金(HEAs)将成分的复杂性带到一个新的极端。HEAs是等浓度或接近等浓度的多组分合金,其中溶质和溶剂的概念不存在。在这种情况下,SFE很可能受到局部原子构型的影响,因为一些原子键比其他原子键更难打破。Smith等人观察了CoCrNiFeMn中层错宽度沿位错线的局部变化,证明了HEAs中局部效应的重要性。

但在这里,有两个基本问题急需解决:(1)SFE还能被认为是晶体特有的固有属性吗?(2)解离距离和位错迁移率仍然受SFE控制吗?

鉴于此,研究者使用NiCo系统模型进行了计算演示,该模型完全可混溶,可以检测一系列成分和温度。此外,hcp和fcc的有利度以及SFE的符号可以通过改变成分来调整。此外,该体系不容易形成SRO,因此,可以将这种效应从随机合金中仅由成分波动引起的效应中分离出来。

研究表明,SFE在纯金属中具有独特的价值。然而,在超过稀释极限的合金中,SFE值的分布取决于局部原子环境。通常,部分位错之间的平衡距离是由部分位错之间的排斥性弹性相互作用和SFE的唯一值之间的平衡决定的。这种假设被用来从金属和合金中位错分裂距离的实验测量来确定SFE,通常与计算预测相矛盾。研究者在模型NiCo合金中使用原子模拟,研究了在具有正、零和负平均SFE的成分范围内的位错解离过程,令人惊讶的是,在所有情况下,在低温下都能观察到稳定的、有限的分裂距离。然后,研究者计算了去相关应力,并检查了部分位错的力平衡,考虑了对SFE的局部影响,发现即使SFE分布的上界在某些情况下也不能满足力平衡。此外,研究者还证明了在浓固溶体中,位错与局部溶质环境相互作用产生的阻力,成为作用于部分位错的主要力。在这里,研究者证明了高溶质/位错相互作用的存在,而这在SFE的实验测量中是不容易测量且容易忽略的,从而使得SFE的实验值不可靠。(文:水生)

图1 等原子CrCoNi介质熵合金离解位错的表征。

图2 晶格位错离解过程中能量的示意图变化。

图3 NiCo随机合金中边缘位错的解离。

图4 解离过程中作用在肖克利部分位错上的力。

图5 NiCo随机合金有限温度fcc-hcp自由能与局部层错能的比较。

图6 NiCo随机合金中边缘位错的去相关过程。

图7 fcc Co中存在部分位错的Ni溶质相互作用能图。

图8 溶质/位错相互作用的估计。

图9 解离过程中作用在肖克利部分位错上的各种力的图解演示。

上一篇:发表论文犯法

下一篇:竹笛论文发表