医学论文统计表
医学论文统计表
您好
1. 多组率的比较用卡方检验(χ2检验,chi-square
test)
直接用几个率的数值比较,与直接用原始数据录入比较,结果会有什么不同?卡方值会受样本量的影响,样本越多,卡方值越大。
2.多组计量资料比较采用方差分析(F检验) ,不能用t检验。当方差分析结果为P<0.05时,只能说明k组总体均数之间不完全相同。若想进一步了解哪两组的差别有统计学意义,需进行多个均数间的多重比较,即SNK-q检验
(多个均数两两之间的全面比较 )、LSD-t检验 (适用于一对或几对在专业上有特殊意义的均数间差别的比较)和Dunnett检验
(适用于k-1个实验组与一个对比组均数差别的多重比较 )。
3.非正态分布多组数据之间比较选用非参数检验、单样本中位数检验(符号检验和 Wilcoxon 检验)、双样本中位数检验(Mann-Whitney
检验)、方差分析(Kruskal-Wallis、Mood 中位数和 Friedman 检验)
4.按血糖水平从低到高分成多组,进行多组之间死亡率的比较,由于死亡率同样受年龄、性别、病史、血脂等因素的影响,所以需选取合适统计方法实现“调整年龄、性别等危险因素后,按血糖分组进行死亡率的比较(由血糖从低到高分成的4组)”。
①年龄是定量变量(是数值),调整年龄的方法可在Logistic回归中运用,连续性变量年龄加入covariate中,当成协变量,就可以调整年龄,age-adjusted
odds ratio就能得到了。
②性别性别是二分类变量,不是定量变量,不可在LOGISTIC回归里比较。调整性别可在卡方检验中采取分层的方法比较。
如果为多分类LOGISTIC回归,在选择用multinomianl
LOGISTIC回归中,可选入年龄等进入covariate,观察年龄的配比情况。可把性别选入factors(自变量)。这样可以实现调整年龄、性别等危险因素。
5.回顾性研究(1)临床妊娠率和女性年龄的关系+(2)男性影响临床妊娠的精子参数比较:
数据类型及变量的说明:y:计量
拟采用的分析方法:卡方检验
拟采用的分析软件:spss
原始数据附件及格式:word表
能否用其他方法统计分析:可用卡方分割,调整检验水准(根据比较的次数N,校正后的检验水准为0.05/N)。
6.重复t检验:多个样本均数间的两两比较(又称多重比较)不宜用t检验,因为重复数次,t检验将增加第一类错误的概率,使检验效率降低。此时宜用方差分析,并在此基础上用两两比较方法(如.SNK、LSD、Duncan法等)。
对于同一对均数间的差异,用t检验无显著性,而两两比较可能有显著性,可见错误选用统计方法将推出错误结论。
医学论文中怎样根据统计资料的类型选择一种或几种检验方法?
刚在那个什么 创新医学网 上看见过 医学论文 写作辅导的文章 这个知道是不是 你要的答案
统计资料的显著性检验(significant test)方法的选择是医学论文中常常遇见的问题,退稿原因中常有显著性检验方法选择不当。如t检验、u检验、χ2检验等,虽然各有其应用范围和要求,但也其共同之处。作者可根据统计资料的类型,选择一种或几种检验方法。但当作者在获得一组、两组或两组以上的数据资料时,选择何种显著性检验,是至关重要的问题。不同的资料类型其统计指标、统计检验的方法是不同的,见表1。
医学生物研究中,许多指标都是服从正态分布(u分布)的,而随着样本含量加大或自由度增大,t分布、χ2分布、F分布都趋向于正态分布见图1、图2。
在《中华创伤杂志》第12卷1~6期和增刊中文章所涉及的统计方法(表2),表明了正态分布的广泛性、常见性。
故当作者获得数据资料后,首先应进行正态性检眩�范ㄊ欠为标准正态分布(或近似正态分布)或不属于正态分布。笔者首先推荐概率单位法。
当统计资料属于正态分布或近似正态分布时,差异显著性检验方法的选裕�诜合其应用条件下,一般可按表3进行选择。
显著性检验应用时的主要注意事项:(1)率值或均值在进行显著性检验前,应注意样本的代表性和可比性。(2)检验结果接近显著性界限时:要多方面考虑,是否确实不存在差异;或是观察例数不够,而需加大样本例剩换是检验公式运用不当,可用其他检验印证。(3)多个样本比例数的χ2检验,差异显著性,只能说明多组比例数不同或不完全相同,而不能确定哪个比例数不同,要进一步进行显著性检验才能了解两个样本比例数是否构成相同。
表1 一般情况下不同资料的统计指标与检验方法的关系
资料类型 统计指标 统计检验方法
计量资料 均数、标准差 t检验、F检验等
计数资料 率、构成比 χ2检验等
半定量资料 率、构成比 秩和检验、Ridit分析
表2 《中华创伤杂志》第12卷1~6期、
增刊显著性检验方法使用频数
检验方法 应用次数 检验方法 应用次数
t检验 27 直线相关与回归分析 5
χ2检验 16 拟合线性回归 1
F检验 24 相关分析 6
Q检验 2 非参数统计 4
u检验 1 未注明方法 6
表3 常用显著性检验方法的选择
统计资料比较类型 显著性检验
小样本均数与总体均数相比较 t检验
小样本均数相比较 t检验、F检验
两个或多个大样本均数与
总体均数相比较 u检验、t检验
大样本均数相比较 u检验、t检验
配对计量资料 配对t检验
两个率的比较 u检验、χ2检验
多个样本率的的比较 χ2检验
配对计数资料两种属性的
相关分析及其差别的比较 χ2检验
20.10.11. 医学中的统计学方法【引】
杜院士是博士毕业马上要上院士在学校当老师的医生。
最近他老人家给我种草了统计学,三言两语我被问的一愣一愣的,感觉自己以前学的统计学都被狗吃了。
我决定要弱弱地回击一下。嗯,先扳回三十城吧。
好,开始。
是统计学方法必须描述的3方面内容。
SPSS (statistics package for social science) 和 SAS (statistical analysis system ) 是全世界学术界公认且最常用的两大统计软件包。
检验水准即—— 表示组间实际无差别而统计结果判断为有差别,犯这类错误的概率。实际工作中常取 ,表示本次研究计算所得 值必须小于 0.05 ,才能认为组间差异有统计学意义。 因而对于检验水准的描述多简化为 " " 。
统计分析方法的准确描述是科技论文科学性的关键所在。统计学方法一般包括 和 (即: 假设检验 ) 两部分内容。
统计描述主要是根据资料类型及原始数据分布类型,选择正确的指标描述资料特征。
资料类型分为 定量资料 和 定性资料 。
定量资料 是指对每个观察对象测得的某个指标 能够用具体数值表示 ,如:年龄、身高、每张切片的阳性细胞百分率等;
定性资料 指对每个观察对象测得的某个指标 不能用具体数值表示 ,仅反映观察对象的某一特征,如: 阳性、阴性,ABO 血型,治愈、显效、好转、无效等。
定量资料如果符合正态分布, 统计描述指标 可用 均数及标准差 ,一般描述为 “数据以均数±标准差表示” ;
定量资料如果不符合正态分布,则 统计描述指标 选用 中位数和级差 (即: 最大值和最小值之差)。
区分资料是正态或偏态分布,可以通过SPSS、SAS 统计软件程序判断,也可以通过目测数据是否有"极端值",即特别大或特别小的数据,进行判断。
定性资料的 统计描述 包括 率、构成比及相对比 。
率 表示单位时间内某现象或事物发生的概率,如发病率、死亡率等; 构成比 指事物内部某一部分的个体数与该事物各部分个体数的总和之比,表示各构成部分在全体中所占的比重或分布,不能说明某现象发生的频率或强度,如性别构成、疾病构成、死亡构成等。然而, 在实际应用中以构成比代替率很常见 。
科技论文中最常用的是 组间差异性检验 。假设检验方法很多,不同的科研设计类型及资料类型适用的检验方法有所不同。定量资料与定性资料常用的统计分析方法介绍如下。
定量资料的统计分析方法包括 参数法 和 非参数法 . 参数法——t检验、方差分析;非参数法——秩和检验。 选择的关键在于 资料分布类型 ,如果资料符合 正态分布且组间方差齐 (即各组标准差彼此接近) 则选用参数法,不符合则选用非参数法。 但在许多医学论文中经常忽略这两个条件,不考虑资料的分布直接采用t 检验或方差分析,由此得出的分析结果是不可信的,见例1。
例1: 为研究 、 肿瘤标志在喉癌患者手术前、后有无差异,分别检测了58 名患者前及术后 和 ,经配对 检验, 术前、后差异有统计学意义,结果见表1。
表1. 肿瘤标记物术前术后的检测*
与术前比较p值﹤0.05
表中两指标 标准差 均相差达2 倍以上,提示 方差不齐 ,故 不宜采用t 检验 ,而适合采用 秩和检验 。 用于两组均数间的比较 ,包括两独立样本 检验、配对 检验和样本均数与总体均数比较的 检验; 用于两组或两组以上均数的比较 。然而,在许多医学论文中,对于3 组或3 组以上均数的两两比较,常 重复使用独立样本t 检验作比较 ,如例2。 这样会加大犯阳性错误的概率 ,即可能将无差别的两个总体均数判断为有差别。这点尤其需引起作者的注意,这也是医学科技论文中 滥用的重要表现之一。
此类资料正确的分析方法应是先进行方差分析,以确定这几组均数总体差异有无统计学意义;如果有统计学意义,则进一步采用 (任意组间两两比较) 或 (每个实验组与对照组比较) 以确定哪些组间差异有统计学意义。
例2: 为了解不同分化程度的下咽癌患者 表达阳性脉管的数目 表达阳性脉管差异,分别检测16 例高分化患者,15 例中分化者及13 例低分化者,作者采用独立样本 ,结果见表2。
表2 下咽癌组织中VEGFR- 3 表达阳性脉管与病理分级的关系
各组之间p 值﹥0.05
定性资料整理与归纳后,主要分为3种类型,即 四格表资料 (只有2组,且结果变量为2分类变量,总络子数为4见表3)、 行×列表资料 (总格子数>4,见表4) 和 列联表资料 (又称双向有序资料,见表5)。 行×列表资料 又包括 单向有序资料 (即等级资料,2组或2组以上,结果变量为有序多分类变量,见表6)。不同资料类型采用的统计分析方法有所不同。
表3 四格表资料格式
表4 行×列表资料格式
表5 列联表资料格式
表6 单向有序资料格式
四格表资料χ2 检验医学论文中,四格表资料χ2 检验的应用很常见,但使用时应注意具体的应用条件。当总例数大于40,且每个格子的理论频数均不小于5 时,应用未校正的χ2 检验;如果总例数大于40,有一个格子的理论频数小于5 但大于1,采用校正的χ2 检验; 如果总例数小于40,或有一个格子的理论频数小于1,则采用Fisher 确切概率法。实际应用中,许多作者不考虑应用的前题条件,均使用未校正的χ2 检验,从而导致结果不可靠。行×列表资料χ2 检验行×列表资料χ2 检验主要用于多个率或构成比的比较。但此时要求所有格子中理论频数小于5 的格子数少于总格子数的1/5。如果大于1/5 ,则相邻格子应删除或合并后再计算。此时若需了解具体那些率之间差异有统计学意义,就需进行χ2 分割来确定。
单向有序资料此类资料如果是比较组间治疗效果差异有无统计学意义,则应采用秩和检验 。如果采用χ2 检验,仅表明各组的疗效构成差异有无统计学意义,因为此时只利用了每组构成比提供的信息,损失了有序指标提供的“等级”信息。这也是许多作者误用统计学方法的资料类型之一,需尤其注意。列联表资料χ2 检验此类资料特征为对同一组观察对象,分别观察其两种有序分类变量的表现,归纳成双向交叉排列的统计表,分析两个分类变量是否有相关联系的假设检验,采用行×列表χ2 检验。
如果需了解两变量有无相关性,或相关程度有多大,此时需作相关分析。 相关分析应报告相关系数及对该相关系数所作的假设检验P 值 。相关系数种类很多,选择时应根据指标类型来确定。如果是计量指标,则应选择 Pearson 相关系数 ; 如果是等级指标,则应选择 Spearman 相关系数 。
首先要明确“P 值< 0.05”,习惯上称“显著”(significant) ,仅说明两组差异有统计学意义,并不能说明两组该指标相差很大,或在专业上有显著的(重要的)价值; 反之,P 值>0.05,习惯上称“不显著”(non significant) ,不应误解为相差不大,或一定相等,仅说明从统计角度考虑这两组差异无统计学意义。为了不与一般意义上的“显著”、“不显著”相混淆,许多统计学家主张作结论时不用“是否显著”一词,而用“差异有无统计学意义”。
此外,根据统计结果得出专业结论不能太绝对化,因为统计结论均是概率性的,不是绝对的肯定或否定,本次研究统计结果是阴性,如果增加样本含量,组间差异可能就有统计学意义了。
综上所述,不同的统计分析方法均有其应用条件和适用范围,实际应用时,必须根据科研设计类型及变量类型选择恰当的统计分析方法,同时注意检查结果解释和专业结论是否同时满足专业和统计学要求。切忌将t 检验、χ2 检验视为分析资料的“万能工具”,盲目套用,导致文章的科学性降低。
上一篇:传成医学论文强
下一篇:博雅医学论文网