欢迎来到学术参考网
当前位置:发表论文>论文发表

医学论文数据集

发布时间:2023-11-05 15:16

医学论文数据集

一、Elsevier(sciencedirect)是荷兰一家全球著名的学术期刊出版商,每年出版大量的学术图书和期刊,大部分期刊被SCI、SSCI、EI收录,是世界上公认的高品位学术期刊。scienceDirect是爱思唯尔公司的全文数据库平台,是全球最大的科学、技术与医学全文电子资源数据库,提供2500余种学术期刊以及37000余种图书的全文内容。包括全球影响力极高的CELL《细胞杂志》、THE LANCET《柳叶刀杂志》等。

二、Embase数据库是Elsevier旗下综合医学信息检索平台。前身为“荷兰医学文摘”。包含源自8300种期刊的4200万条生物医学记录,来自每年7,000个会议的295万条会议信息(自2009年开始收录),及已被确定接受但还未最终印刷出版的手稿(article-in-press)。覆盖各种疾病、药物和医疗器械信息。

特点:1.比Pubmed覆盖的期刊更多(欧洲,亚洲期刊覆盖率多30%);2.检索主题词库远大于Pubmed,且更新迅速,检索最新医学文献信息更全面;3.检索界面便捷,文摘分类工具多样;4.更专业的循证医学类文献检索,PICQ分类检索等;5.更专业的医学,药学,医疗器械文献检索模块。

三、文献党下载器()大型文献检索下载平台。几乎整合了所有中外文献数据库资源,覆盖全部学科,关于医学文献数据库的有:Web of Science、Elsevier(sciencedirect)、PubMed(生物医学)、Emerald(生物医学)、Ovid(医学库)、ClinicalKey、UpToDate、万方医学网、知网、中华医学期刊全文数据库等等,还有世界顶尖期刊《柳叶刀》The Lancet、《新英格兰医学期刊》NEJM、《美国医学会杂志》JAMA、《英国医学期刊》BMJ等等,特点:只要有互联网在哪里都可使用该网站下载文献。

四、ClinicalKey临床精钥是信息分析公司爱思唯尔(Elsevier)推出的一个临床决策支持工具,帮助医生快速获取准确、简洁、世界前沿的循证医学知识。临床精钥包含了经本地专家参与审阅编辑的基于最新证据及实践指南的临床综述,并收录了如Braunwald’s心脏病、罗森急诊医学等经典图书,涵盖超过25000种中国临床用药信息,并有400多种医学评分工具等。ClinicalKey还有一优点提供中文界面,可以用中文关键词检索,系统自动匹配英文,从而检索到自己需要的英文文献。

五、Ovid隶属于威科集团的健康出版事业集团,与LWW、Adis等公司属于姊妹公司。Ovid发展到今天,已经成为全球最受欢迎的医学信息平台。Ovid在医学信息服务领域,无论在技术领先性、数据质量以及用户检索体验等等上,均为排在全球第一。

六、UpToDate临床顾问数据库是用于协助临床医生进行诊疗上的判断、决策的循证医学数据库。UpToDate覆盖了常见的 25 个临床专科,涵盖了诊疗全流程和全生命周期的绝大多数疾病及其相关问题,目前已收录11,000多篇临床专题,全部专题皆由 UpToDate在全球范围内招募的6700多位临床医师,浏览了高质量期刊、文献证据后加上个人专业经验和意见撰写而成。除了核心的临床专题外,UpToDate还提供多平台访问、智能搜索、图表导出生成PPT、重要更新、诊疗实践更新、患者教育、计算器和药物专论等多项功能。

七、Wiley 作为全球最大、最全面的经同行评审的科学、技术、医学和学术研究的在线多学科资源平台之一,“Wiley Online Library”覆盖了生命科学、健康科学、自然科学、社会与人文科学等全面的学科领域。有1600多种经同行评审的学术期刊,20000本电子图书,170多种在线参考工具书,580多种在线参考书,19种生物学、生命科学和生物医学的实验室指南(Current Protocols),17种化学、光谱和循证医学数据库(Cochrane Library)。

八、PubMed 是一个免费的搜寻引擎,提供生物医学方面的论文搜寻以及摘要的数据库。它的数据库来源为MEDLINE。其核心主题为医学,但亦包括其他与医学相关的领域,像是护理学或者其他健康学科。PubMed 的资讯并不包括期刊论文的全文,但可提供指向全文提供者(付费或免费)的链接。

九、Cochrane library(考克兰图书馆)是the Cochrane Collaboration的主要产品,由美国Wiley公司出版发行,汇集了关于医疗保健治疗和干预有效性的研究。它是循证医学的黄金标准,可以帮助参与卫生保健决策人员及时了解最新证据,为他们提供有关现有治疗方法和新治疗方法的高品质信息。主要面向临床医生、决策者、研究人员、教育者和学生等用户。

十、Karger医学电子期刊是由瑞士Karger出版社出版,每年出版约80余种高质量的学术期刊,大部分以英文出版,内容涵盖了整个生物医学领域,包括传统医学以及最新的医学热门课题。Karger电子期刊被Google全文索引,并且被收录在所有著名的二次文献数据库,例如MEDLINE、CAS、Current Contents、Reference Update、让用户可以轻易的在网络上找到Karger出版的医学文献。

十一、BMJ Best Practice(BP)是英国医学杂志(BMJ)出版集团于 2009年2月出版的升级版循证医学数据库资源,它在BMJ Clinical Evidence(临床证据)中的治疗研究证据的基础上,增添了由全球知名学者和临床专家执笔撰写的,涉及个体疾病的诊断、预防、药物处方、国际临床指南和随访等重要内容。此外,BP中还提供了大量的病症彩色图像和数据表格等资料,有效解决了医生在临床工作流程的各个环节需要的关键信息和知识。

十二、世界医学顶尖期刊:《柳叶刀》The Lancet、《新英格兰医学期刊》NEJM、《美国医学会杂志》JAMA、《英国医学期刊》BMJ

「数据集」医学图像数据集与竞赛大全

智能医疗有很多的发展方向,例如医学影像处理、诊断预测、疾病控制、 健康 管理、康复机器人、语音识别病历电子化等。当前人工智能技术新的发力点中的医学图像在疾病的预测和自动化诊断方面有非常大的意义,本篇即针对医学影像中的病例分析,降噪,分割,检索等领域来介绍一些常用的数据集。

1.1 病例分析数据集

1.1.1 ABIDE

发布于2013年,这是一个对自闭症内在大脑结构的大规模评估数据集,包括539名患有ASD和573名正常个体的功能MRI图像。

1.1.2 OASIS

OASIS,全称为Open Access Series of Imaging Studies,已经发布了第3代版本,第一次发布于2007年,是一项旨在使科学界免费提供大脑核磁共振数据集的项目。它有两个数据集可用,下面是第1版的主要内容。

(1) 横截面数据集:年轻,中老年,非痴呆和痴呆老年人的横断面MRI数据。该组由416名年龄在18岁至96岁的受试者组成的横截面数据库组成。对于每位受试者,单独获得3或4个单独的T1加权MRI扫描包括扫描会话。受试者都是右撇子,包括男性和女性。100名60岁以上的受试者已经临床诊断为轻度至中度阿尔茨海默病。

(2) 纵向集数据集:非痴呆和痴呆老年人的纵向磁共振成像数据。该集合包括150名年龄在60至96岁的受试者的纵向集合。每位受试者在两次或多次访视中进行扫描,间隔至少一年,总共进行373次成像。对于每个受试者,包括在单次扫描期间获得的3或4次单独的T1加权MRI扫描。受试者都是右撇子,包括男性和女性。在整个研究中,72名受试者被描述为未被证实。包括的受试者中有64人在初次就诊时表现为痴呆症,并在随后的扫描中仍然如此,其中包括51名轻度至中度阿尔茨海默病患者。另外14名受试者在初次就诊时表现为未衰退,随后在随后的访视中表现为痴呆症。

1.1.3 DDSM

发布于2000年,这是一个用于筛选乳腺摄影的数字数据库,是乳腺摄影图像分析研究社区使用的资源。该项目的主要支持来自美国陆军医学研究和装备司令部的乳腺癌研究计划。DDSM项目是由马萨诸塞州综合医院(D. Kopans,R. Moore),南佛罗里达大学(K. Bowyer)和桑迪亚国家实验室(P. Kegelmeyer)共同参与的合作项目。数据库的主要目的是促进计算机算法开发方面的良好研究,以帮助筛选。数据库的次要目的可能包括开发算法以帮助诊断和开发教学或培训辅助工具。该数据库包含约2,500项研究。每项研究包括每个乳房的两幅图像,以及一些相关的患者信息(研究时间,ACR乳房密度评分,异常微妙评级,异常ACR关键字描述)和图像信息(扫描仪,空间分辨率等)。包含可疑区域的图像具有关于可疑区域的位置和类型的像素级“地面真实”信息。

1.1.4 MIAS

MIAS全称为MiniMammographic Database,是乳腺图像数据库。

乳腺MG数据(Breast Mammography)有个专门的database,可以查看很多数据集,链接地址为:

1.1.5 MURA

发布于2018年2月,吴恩达团队开源了 MURA 数据库,MURA 是目前最大的 X 光片数据库之一。该数据库中包含了源自14982项病例的40895张肌肉骨骼X光片。1万多项病例里有9067例正常的上级肌肉骨骼和5915例上肢异常肌肉骨骼的X光片,部位包括肩部、肱骨、手肘、前臂、手腕、手掌和手指。每个病例包含一个或多个图像,均由放射科医师手动标记。全球有超过17亿人都有肌肉骨骼性的疾病,因此训练这个数据集,并基于深度学习检测骨骼疾病,进行自动异常定位,通过组织器官的X光片来确定机体的 健康 状况,进而对患者的病情进行诊断,可以帮助缓解放射科医生的疲劳。

参考2018年论文:MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs.

1.1.6 ChestX-ray14

参考论文:

CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning

ChestX-ray14 是由NIH研究院提供的,其中包含了30,805名患者的112,120个单独标注的14种不同肺部疾病(肺不张、变实、浸润、气胸、水肿、肺气肿、纤维变性、积液、肺炎、胸膜增厚、心脏肥大、结节、肿块和疝气)的正面胸部 X 光片。研究人员对数据采用NLP方法对图像进行标注。利用深度学习的技术早期发现并识别胸透照片中肺炎等疾病对增加患者恢复和生存的最佳机会至关重要。

1.1.7 LIDC-IDRI

LIDC-IDRI数据集是由美国国家癌症研究所(National Cancer Institute)发起收集的,目的是为了研究高危人群早期肺结节检测。该数据集中,共收录了1018个研究实例。对于每个实例中的图像,都由4位经验丰富的胸部放射科医师进行两阶段的诊断标注。该数据集由胸部医学图像文件(如CT、X光片)和对应的诊断结果病变标注组成。

1.1.8 LUNA16

发布于2016年,是肺部肿瘤检测最常用的数据集之一,它包含888个CT图像,1084个肿瘤,图像质量和肿瘤大小的范围比较理想。数据分为10个subsets,subset包含89/88个CT scan。

LUNA16的CT图像取自LIDC/IDRI数据集,选取了三个以上放射科医师意见一致的annotation,并且去掉了小于3mm的肿瘤,所以数据集里不含有小于3mm的肿瘤,便于训练。

1.1.9 NSCLC

发布于2018年,来自斯坦福大学。数据集来自211名受试者的非小细胞肺癌(NSCLC)队列的独特放射基因组数据集。该数据集包括计算机断层扫描(CT),正电子发射断层扫描(PET)/ CT图像。创建该数据集是为了便于发现基因组和医学图像特征之间的基础关系,以及预测医学图像生物标记的开发和评估。

1.1.10 DeepLesion

DeepLesion由美国国立卫生研究院临床中心(NIHCC)的团队开发,是迄今规模最大的多类别、病灶级别标注临床医疗CT图像开放数据集。在该数据库中图像包括多种病变类型,目前包括4427个患者的32,735 张CT图像及病变信息,同时也包括肾脏病变,骨病变,肺结节和淋巴结肿大。DeepLesion多类别病变数据集可以用来开发自动化放射诊断的CADx系统。

1.1.11 ADNI

ANDI涉及到的数据集包括如下几部分Clinical Data(临床数据)、MR Image Data(磁共振成像)、Standardized MRI Data Sets、PET Image Data(正电子发射计算机断层扫描)、Gennetic Data(遗传数据)、Biospecimen Data(生物样本数据)。

1.2 医学降噪数据集

1.2.1 BrainWeb数据集

发布于1997年,这是一个仿真数据集,用于医学图像降噪。研究者可以截取不同断层的正常脑部仿真图像,包括T1,T2,PD3种断层,设置断层的厚度,叠加高斯噪声或者医学图像中常见的莱斯噪声,最终会得到181×217大小的噪声图像。

1.3 医学分割数据集

1.3.1 DRIVE数据集

发布于2003年,这是一个用于血管分割的数字视网膜图像数据集,它由40张照片组成,其中7张显示出轻度早期糖尿病视网膜病变迹象。

1.3.2 SCR数据集

发布于2000年,胸部X光片的分割,胸部X光片中解剖结构的自动分割对于这些图像中的计算机辅助诊断非常重要。SCR数据库的建立是为了便于比较研究肺野,心脏和锁骨在标准的后胸前X线片上的分割。

本着合作科学进步的精神,我们可以自由共享SCR数据库,并致力于在这些分割任务上维护各种算法结果的公共存储库。在这些页面上,可以在下载数据库和上载结果时找到说明,并且可以检查各种方法的基准结果。

1.3.3 医学图像分析benchmark

在网址提供了时间跨度超过10年的医学图像资料。

1.3.4 Ardiac MRI

ardiac MRI 是心脏病患者心房医疗影像数据,以及其左心室的心内膜和外膜的图像标注。包括33位患者案例,每个受试者的序列由沿着长的20帧和8-15个切片组成,共7980张图像。

1.3.5 NIH

发布于2017年,这是一个胸部X射线数据集,包含30,805个患者,14个疾病图像标签(其中每个图像可以具有多个标签),112,820个正面X射线图像,标签是使用自然语言处理从相关的放射学报告中自动提取。十四种常见的胸部病变包括肺不张,巩固,浸润,气胸,水肿,肺气肿,纤维化,积液,肺炎,胸膜增厚,心脏扩大,结节,肿块和疝。由于许多原因,原始放射学报告(与这些胸部X射线研究相关)并不是公开分享的。所以文本挖掘的疾病标签预计准确度 > 90%,这个数据集适合做半监督的学习。

1.4 List of Open Access

在List of Open Access Medical Imaging Datasets网站上可以看到更多的相关方向的数据集。

2.1 VISCERAL

VISCERAL 是Visual Concept Extraction Challenge in Radiology的缩写,是放射学中的视觉概念提取挑战赛。他们提供几种不同成像模式(例如CT和MR)的几种解剖结构(例如肾,肺,膀胱等)的放射学数据以及一个云计算实例。

2.2 Grand Challenges

提供了医学图像分析领域内所有挑战的概述,下面举的例子是2019年的医学图像方面将要举办的竞赛。

2.3 Dream Challenges

这个挑战赛中包括有数字乳腺摄影梦想挑战;ICGC-TCGA DREAM体细胞突变称为RNA挑战(SMC-RNA)等等。

最后提供给对医学影像处理感兴趣的童鞋一个超级赞的github链接如下:

这是Github上哈佛 beamandrew机器学习和医学影像研究者贡献的数据集,包括了医学影像数据、竞赛数据、来自电子 健康 记录的数据、医疗数据、UCI数据集、生物医学文献等。

获取医学信息资源的类型

获取医学信息资源的类型如下:

1、学术期刊文章:

许多学术期刊已经采用开放获取模式,通过互联网免费向公众提供医学研究文章。这些文章经过同行评审,并由专家学者撰写和审查,具有高质量和可信性。

2、学术博士论文和硕士论文:

一些研究机构、大学和学术出版社提供学术博士论文和硕士论文的开放获取,使人们可以免费获得最新的医学研究成果。

3、学术会议论文集:

许多学术会议将其论文集以开放获取方式发布,使人们可以获取到最新的医学研究成果和学术交流

4、数据库和数据集:

一些医学数据库和数据集,例如PubMed、ClinVar和GenBank等,提供了大量的医学信息和基因组学数据,供科研人员和医学专家免费使用。

5、医学教科书和课程材料:

一些大学和教育机构提供免费的医学教科书和课程材料,使医学学习者可以学习和掌握医学知识。

6、科普和患者教育资源:

一些医学组织、医院和健康机构提供免费的科普文章、健康教育手册和患者教育资源,可以帮助公众了解和管理自己的健康问题。通过开放获取的医学信息资源,人们可以更方便地获取到最新的医学研究成果和临床知识,促进科研和医疗的进步,提高人们的健康水平。

7、其他:

此外,还有一些开放获取的医学教育平台,如Coursera和edX,提供免费的医学课程和学习资料。别的,一些科研基金会和慈善组织也提供开放获取的医学研究资助项目,鼓励研究者共享他们的成果。

这些开放获取的资源为医学工作者和公众提供了更广泛的学术信息和资源,推动了医学研究的发展和应用。

写医学类论文要准备哪些资料呢?

写医学类论文需要准备的资料主要包括以下几个方面:
1. 相关文献资料:医学类论文需要充分查阅相关的文献资料,包括期刊文章、书籍、病例报告、会议论文等。通过查阅文献资料,可以了解当前领域内的研究进展和趋势,找到研究空白和问题,为论文的撰写提供基础和支持。

2. 病例资料:如果是以病例为研究对象的论文,需要准备相关的病例资料,包括病人的病历记录、影像学检查报告、实验室检查结果、治疗方案和随访记录等。这些病例资料是论文研究的重要依据,需要进行详细的描述和分析。

3. 统计分析资料:如果是进行定量研究的论文,需要准备相关的统计分析资料,包括数据集、数据分析方法和统计软件等。这些资料可以帮助作者进行数据分析和结果解释,提高论文的科学性和可信度。

4. 实验材料和方法:如果是进行实验研究的论文,需要准备相关的实验材料和方法,包括实验设计、实验流程、实验数据和结果等。这些实验资料可以帮助作者进行实验分析和结果解释,提高论文的科学性和可信度。

5. 参考文献资料:医学类论文需要准备充足的参考文献资料,包括期刊文章、书籍、会议论文等。参考文献是论文研究的重要依据,需要按照规范要求进行标注和引用,确保论文的学术性和可信度。

需要注意的是,在准备上述资料时,需要遵守伦理规范和道德标准,保护病人的隐私和权益,避免造成不必要的伤害和风险。同时,还需要对文献资料和实验数据进行充分的整理和归纳,确保论文的逻辑性和连贯性。

上一篇:看医学论文感想

下一篇:医学论文的等级