法医学杂志模板
法医学杂志模板
玉米“DNA指纹”鉴定应用前景广阔
农博网2005年1月26日讯 山东某公司从东北某地买了几火车皮玉米种子,经北京市农林科学院玉米研究中心检测,结果令人大吃一惊,原来这是报废的种子,如果播到地里,轻则减产,重则颗粒无收,农民还将白白赔上施肥、浇水等人力、财力。所幸的是,该公司根据玉米“DNA指纹”鉴定结果,及时进行了妥善处理,避免了巨大的经济损失。
玉米“DNA指纹”鉴定作为一项新技术,在应用中正发挥出越来越大的作用。
玉米打假维权新途径
当前出现了两种令种子研发、生产、使用者头疼的现象,一是假种子屡禁不止,主要使广大农民蒙受巨大损失。二是窃取良种,非法进行生产、销售,主要侵害着良种研发、生产者的利益。某一国审玉米品种由于没能及时进行品种权保护,被大面积侵权,已无计可施。
究其原因,首先是玉米品种鉴别难度很大,凭肉眼,不仅农民,连专家也分不清。其次,暴利使得违法者铤而走险。北京市农林科学院玉米研究中心主任赵久然博士介绍,玉米种子生产利润很高 每斤种子按四五元、利润按2元算,每亩利润可达10元,若种植面积上百万亩,利润可达上千万元。而以次充好、以假充真的利润就更高。至于侵权者,不难从田间得到良种,仅逃避的种子转让费就高达几十万、上百万元。
随着玉米“DNA指纹”鉴定技术日益成熟,越来越多的人们通过这一新途径辨识种子真实身份,用以打假维权。该中心承担玉米“DNA指纹”司法鉴定任务已四五年,近两年客户猛增,至今承担此类侵权案鉴定已达40多起。同时,该中心提供大量鉴别假冒伪劣的服务,几年来为全国科研、生产、经营、管理及执法部门提供种子纯度检测、真伪鉴定已达5000多样次。
作为“超级玉米种质创新及DNA指纹库构建”项目主持人,赵久然博士指出,如果“超级玉米”研究成功,每年种植4000万亩,我国每年玉米产量就能增加60亿公斤,相当于新增1500万亩土地。但需要玉米“DNA指纹”鉴定帮助打假、推广良种,这一效益才能真正实现。
“指纹”鉴定市场需求大
玉米“DNA指纹”之所以称为“指纹”,是因其像人类指纹可以准确区分不同的人一样,也具有准确的鉴别能力,可以准确区别不同品种的玉米。
玉米“DNA指纹”长在玉米哪个部位,什么“模样” 赵久然说,DNA存在于各种生物体的每个细胞内,存在于玉米的根、茎、叶、花、果实各处。不同的玉米品种具有不同的DNA,但肉眼是看不到的。在北京市农林科学院玉米研究中心实验室内,记者看到,科研人员取出玉米种子内乳白色的胚,加入试剂,制成玉米DNA溶液,运用一系列生物分子检测技术,通过数量扩增、电泳、染色等一系列环节,放大的呈带状的千姿百态的玉米“DNA指纹”图谱在玻璃板上一一呈现。
近年来到该中心鉴定玉米“DNA指纹”的客户,几乎遍及全国所有玉米主产区,还有国际大种子公司。赵久然认为,随着该项技术的普及推广,其应用前景将很可观。
不仅限于维权、打假两方面,玉米“DNA指纹”鉴定的应用领域还很多,这体现在该中心承担完成的多项国家、地方项目上。比如,受农业部种子质量监督检测中心委托,确定了我国200多个主要杂交种的纯度鉴定专用“DNA指纹”;受农业部有关主管部门委托,负责每年200多个参加国家区试玉米品种的监测;受国家植物新品种保护办公室委托,负责玉米品种特异性DNA标准制定和检测;受科技部知识产权事务中心委托,承担品种真实性鉴定等。
“指纹”库不可或缺
面对迅速扩大的市场需求,提供玉米“DNA指纹”鉴定的科研人员也有苦恼。在这项研究中达到国际领先水平的北京市农林科学院介绍,目前全国推广使用的国审 适用生态区较广 品种有100多种,省审 在省内推广使用 品种上千种。而他们目前只掌握500多种样本。苦于没有“指纹”库,遇到没接触过的品种,只能增加检测位点,多时高达四五十个,既重复浪费,也影响效率。有了“指纹”库,就能掌握“指纹”概率,只检测一二十个位点即可。构建玉米“DNA指纹”库成为当务之急。
适应这一需要,作为由北京市科委倡议发起的“北京农业育种基础研究创新平台”首批启动项目,全国第一个玉米“DNA指纹”库日前在北京市农林科学院开始构建。该平台由北京多家部门与国家有关部委共建,协作攻关,力度很大。
专家认为,该“指纹”库在玉米种子和品种的纯度及真实性鉴定、新品种测试、品种权登记保护、品种质量监控、新品种侵权司法鉴定等方面具有广阔的应用前景;对理清我国玉米种质的血缘关系、解决品种多、乱、杂问题、种质创新等有重要意义;将在玉米“DNA指纹”鉴定应用中发挥重大的推动作用。
DNA指纹技术分析畜禽亲缘关系的原理及应用
DNA指纹技术是分子生物学各种新兴技术中的一种,目前已被广泛应用于法医学、疾病诊断、肿瘤研究等领域。本文就DNA指纹技术的建立、发展及其应用作一综述。
1 DNA指纹图的建立及发展
近百年来的研究认为,任何遗传分析都是以遗传标志为基础的,而任何一个遗传标志的价值又在于其变异 性(即多态性)的大小。有关遗传多态性的研究对促进人类学、遗传学、免疫学以及法医学的发展, 以及对阐明某些疾病的发病机理乃至协助诊断等方面都起了十分重要的作用。但以往的研究都是利用各种外部表现型、生理缺陷型、同工酶、多态蛋白等作为遗传标志,用间接分析来推论相应的遗传基因。
70年代末,限制性内切酶和重组体DNA技术的出现以及分子生物学的飞速发展,使人们对遗传标志的研究转向DNA分子本身。由于各种遗传信息都蕴藏在DNA分子上,生物个体间的差异在本质上是DNA分子的差异,因此DNA被认为是最可靠的遗传标志。某些DNA序列的差异可通过限制性酶切片段长度的改变来反映,此即限制性片段长度多态性(restriction fragment length polymorphisms,RFLP),其产生是由于点突变、DNA重排、插入或缺失引起的〔1〕。随着对RFLP研究的深入,人们发现了基因组中最有变异性的一类序列——高变异DNA序列,使DNA遗传标志的发展和应用得到了一次飞跃。
1980年,Wyman和White描述了第一个多等位性的具有高度多态性的人类DNA标志。不久,在胰岛素基因(Insulingene)的5′端区域、致癌基因(C-Haras I Oncogene)的3′端分别发现了相同的高度可变的标志(hypervariable marker)。在α-球蛋白(α-globin)基因群周围还发现了其它三个标志〔2〕。1982年,Bell等〔3〕证实:这些高度多态性区域串联着重复的短序列单位,重复单位数目的差异导致了这种高度的可变性,由于这些结构特征,人们称这些区域为小卫星(minisatellite)或高度可变区域(hypervariable)或可变数目的串联重复(variable number of tandem repeats)。
1985年,Jeffreys 等〔4〕用肌红蛋白基因第一内含子中的串联重复序列(重复单位含33bp)作探针,从人的基因文库中筛选出8个含有串联重复序列(小卫星)的重组克隆。序列分析表明,这8个小卫星重复单位的长度和序列不完全相同,但都有相同的核心序列(core sequence)即GGCCAGGA/GGG。他们先后用两个多核心小卫星(poly coreminisate
-llite)33.6和33.15探针进行southern杂交,在低严谨条件下杂交得到了包含10多条带的杂交图谱,不同个体杂交图谱上带的位置就象人的指纹一样千差万别,Jeffrey称之为DNA指纹(DNA fingerprint)〔5〕,又名遗传指纹(genetic fingerprint)。
RFLP DNA指纹分析技术由于方法繁杂、周期长、实验条件高等缺陷而无法大范围推广。1990年,Williams等〔6〕首次报道了AP-PCR技术,Welsh和McCelland〔7〕亦独立地进行了这方面的工作,从而使DNA指纹技术应用更加广泛。AP-PCR技术是采用随意设计的1个或2个引物,对模板DNA进行PCR扩增,一般先是在低严格条件,即在高Mg2+浓度(大于传统PCR Mg2+浓度1.5mmol/L)、较低退火温度(36℃~50℃)下进行1~6个循环的PCR扩增,随后在严格条件下进行PCR扩增,产物经2%琼脂糖凝胶电泳或6%变性聚丙烯酰胺凝胶电泳分离,可得到DNA指纹图谱。其基本原理是:在低严格复性条件下,引物与模板DNA非完全互补序列形成错配,错配引物在DNA聚合酶作用下沿模板链延伸,合成新链,当在一定距离内模板DNA另一单链也发生引物错配时,即可对两错配引物间的DNA进行扩增。但是此种错配并非随机发生,引物和模板间,特别是在引物3′端必须存在一定的互补序列,即可产生不同的扩增片段或组合,通过DNA指纹图谱,可得到配对DNA样品中的差异片段,用于克隆、测序、染色体定位和基因片段的生物学功能研究。
我国杨建厂等〔8〕利用PCR的原理成功地建立了一种全新的DNA指纹检测技术,称之为随机引物PCR人DNA指纹检测技术(arbitrarily primed PCR human DNA fingerprinting,APHDP),此外还开发出处理DNA指纹数据应用软件,应用于个人识别、遗传素质与疾病的相关特征研究等。
2 DNA指纹技术所用的探针
自DNA指纹技术建立以来,这一技术迅速在动植物的进化关系、亲缘关系分析以及法医学方面得到广泛应用。也正是由于DNA指纹技术在核酸分析中显示出了强大的生命力,因而许多学者围绕此技术所用的探针作了大量的工作,除Jeffrey等〔5〕的探针外,用人工化学合成或从生物组织中提取后再扩增的办法生产出了一批高水平的探针。迄今,在DNA指纹技术中所用的探针大概有probe33.15、33.6〔5〕、bacteriophage MB〔9〕、pig repetitire clone p83、PGB 725、poly(GT) containing 18.1、(GTG)5/(CAC)5〔10,11〕、(CAC/TA)4及(GT)12等。同时,在探针的标志上也有了很大的发展,根据它们的结构可大致分为小卫星探针和简单重复序列探针,简单重复序列包括微卫星探针(microsatellite probe)和寡聚核苷酸探针。小卫星探针的核心序列为33bp,常定位在人常染色体前的末端(proterminal)区域,微卫星探针则在10~20bp之间,而寡聚核苷酸探针在10bp以下,普遍散布在人类整条染色体上,或者在基因间区域或者位于内含子内。
1988年,我国伍新尧等〔12〕根据DNA指纹是人基因组中重复序列的RFLP的原理和人与鼠的髓鞘碱性蛋白(MBP)基因cDNA同源序列性高于90%的事实,选用鼠MBP cDNA3′端的一段序列(非表达区高度重序列,与人基因组中该类重复序列几乎完全同源),长度为0.81kb的片段作探针,检测用HaeⅢ酶解的人DNA限制性片段(RF),在人群中可分出22条谱带,受检 的30例无血缘关系的个体之间没有两个人的谱带是完全相同的,显示这一方法的高度个体特异性,这是国内首次用自已的力量找到DNA指纹的探针。
3 DNA指纹的应用3.1 法医学方面 同以往的血型测定法相比,DNA指纹技术在法医学领域上具有无可比拟的优越性。已成为鉴定犯罪、亲子鉴定和确定个体间亲缘关系的工具〔5,13〕。随后,国内学者李伯龄〔14〕、姜先华〔15〕、伍新尧等〔12〕也先后对此项技术进行了研究,并应用于实际案件的鉴定中,解决了过去无法解决的疑难案例,如微量血痕、部分腐败的碎尸块的个人认定等。
3.2 在动植物科学中的应用
3.2.1 生物种群学研究 利用DNA指纹图可以估算连锁不平衡,比较等位基因的频率,还能估计不同个体之间的重组率,在种群学研究上有助于建立某一个体在种群中的地位和关系,特别是对真菌的种群研究,有很多真菌可以通过有性和无性的方式繁殖,但是何时以何种方式繁殖,程度如何,并不清楚,而利用DNA指纹图就能区分以有性和无性方式产生的后代,并能确定某一区域真菌的自然分布〔1,16〕。
3.2.2 测定物种之间的遗传距离、物种分类鉴定 Jeffreys等〔5〕认为在一个群体的不同成员间拷贝数的串联重复序列(VNTR)由于多态性程度高,在遗传分析中尤其适合作为多态性标志,简单重复的不稳定性可导致VNTR长度的迅速变化,根据家族中或育种群体中VNTR的分离重组频率,可以测定出遗传距离,可用统计学公式确定个体间的亲缘关系:D=2Nab/(Na+Nb),,D值越大,亲缘关系越近,遗传距离就越小;D值越小,亲缘关系越远,遗传距离就越大。为此,运用DNA指纹技术可检测不同物种、同种及同种不同个体的亲缘关系,用于物种分类鉴定,也可用于杂交后代亲本决定,杂交后代群体分开,检测近等基因系(或同类系)种的多态性,并对检测基因进行定位。Welsh等〔7〕对布氏疏螺旋体菌株的DNA指纹进行分析,发现这种lyme病的病原菌实际上是由三个不同的种群组成。罗超权等〔12〕运用AP-PCR鉴定弓形虫虫株,在国内开创了运用DNA指纹技术作生物分类的先例。
3.3 在流行病学方面的运用 由于DNA指纹具有以下几个特点:①能反映基因组的变异性;②具有高度的变异性;③具有简单的稳定的遗传性;④DNA指纹谱具有体细胞稳定性。所以,它同一般的流行病学方法相比较而言,具有无比的优越性,使其成为流行病调查的一种有效工具。Jan DA等〔17〕,Denise Chevrel-Dellagi等〔18〕运用IS6110序列作探针对结核病分支杆菌株进行DNA指纹分析,调查国际间结核病的种型、分析流行情况,改进了控制结核病的方法。而ZhenHua Yang等〔19〕从67个病人中分离出结核病分支杆菌株进行DNA指纹分析,发现分离到PTBN12型时易查明流行环节,从而为快速进行疾病控制提供了一个有力证据。在我国,童笑梅等〔20〕采用随机扩增多态DNA指纹图技术对医院内感染的14例新生儿进行病原流行病学分析,发现患儿体内携带的与医务人员鼻中携带的华纳葡萄球菌菌株的DNA指纹图完全一致,从而证明此次感染的病原菌为华纳葡萄球菌,传染源是携带病菌的医务人员。郭永建等〔21〕在6个月内对121名产科新生儿中的30名检出的31株铜绿假单胞菌进行RAPD指纹图谱分析和血清学分型,结果表明,铜绿假单胞菌在产科新生儿中暴发流行,0∶6/R∶1型为暴发流行性菌株,对医院感染病原菌分型、精确确定传染源、阻断传播途径、控制和预防医院感染具有重要的指导意义。
3.4 疾病诊断及治疗 鉴于DNA指纹所具有的上述特点,故DNA指纹广泛应用于一些疾病的诊断及治疗。Morral〔22〕等发现CF基因9号外显子侧翼含有一小卫星区,且此等位基因2.6带常与△F508连锁,相伴率为50.6%、41.6%,△F508是最主要的致病突变,可疑患者电泳图只要发现2.6等位基因,就可对此病进行初步诊断。现已在Wilson病、外周神经纤维瘤、成人多束肾、多巴性肌紧张、Frecbreich共济失调、Kallmunm综合征性连锁、视网膜病等基因内或旁侧发现有高度的小卫星区域,从而可进行基因诊断。Okamoto R〔23〕用DNA指纹法预测慢性粒cell性白血病骨髓移植术后复发,取得了成功。
3.5 肿瘤的研究 肿瘤是多因素、多阶段的变化过程,病因复杂、变化多样,但归根到底还是在DNA的变化上。一般说来,癌组织、转移灶与正常组织或外周血细胞DNA指纹有差别,常见的是某条带或几条带的缺失,某一条或某几条带密度降低,或者癌组织中出现新的带。Thein等〔24〕用33.6和33.15为探针研究患者DNA指纹谱变化,发现胃肠肿瘤患者癌组织DNA指纹谱全有改变,并认为体细胞突 变还有种属特异性。刘霜等〔25〕应用RAPD(随机扩增多态性DNA)分析技术对6例肝癌患者的癌组织与非癌组织进行分析,发现所有肝癌组织基因组DNA的RAPD指纹图谱均存在差异,其中3例配对肝癌基因组中均存在一相同的0.9Kb的随机扩增片段。杨建厂等〔8〕用APHDFF技术对28例确诊为鼻咽癌病人血DNA指纹图的检测,发现有3条DNA片段出现的频率明显低于健康人群。王黛等〔26〕用LE11.8、MYO和Mb探针,经Southern杂交法检测12例儿童急性粒cell白血病患者的外周血或骨髓细胞的基因重排,结果发现初始或复发与完全缓解时的DNA指纹图相比,谱带有增加或减少,从而认为急性粒细胞白血病患儿的白血病细胞存在基因重排。
林文珍(广西医科大学生化教研室 南宁市 530021)
舒雨雁(广西医科大学生化教研室 南宁市 530021)
参考文献
1,Goodwin SB,Drenth A,Fry g and genetic analyses of two highly polymorphic,moderately repetitive nuclear DNAs from phytophthora Genet,1992,22(2):107
2,Copon DJ,Chen EY,Levinson te nucletide sequences of the T24 human bladder carcinoma oncogene and its normal ,1983,302:33
3,Bell GI,Selby MJ,Rutter highly polymorphic region near the human insulin gene is composed of simple tandemly repeating ,1982,295:31
4,Jeffreys AJ,Wilson V,Thein ariable `minisatellite' regions in human ,1985,314:67
5,Jeffreys AJ,Wilson V,Thein dual specific `fingerprints' of human ,1985,316:76
6,Williams JG,Kubelik AR,Livak KJ,et polymorphisms amplified by arbityary primers are useful as genetic c Acids Res,1990,18:6531
7,Welsh J,McCelland printing genomes using PCR with arbitrary c Acids Res,1990,24:7213
8,杨建厂,伍新尧,罗超权,等.一种全新的人脱氧核糖核酸指纹检测技术及其初步应用.新医学,1997,28(10):562
9,Vassart G,Georges M,Monsieui nce in M13 phage detects hypervariable minisatellitrs in human and animal e,1987,235:683
10,Renate Schafer,Hans Zischler and Jorg T Epplen.(CAC)5,a very informative oligonuclectidde probe for DNA c Acids Res,1988,16:5196
11,蓝翎,张小为,霍振义,等.用寡核苷酸探针DNA指纹分析在法医学上应用的评价.遗传学报,1993,20(5),404
12,伍新尧,杨英浩,罗超权,等.基因工程DNA多态性分析及应用.中山医科大学学报,1994,15(4):241
13,Gill P,Jeffreys AJ,Werrett ic application of DNA `fingerprints'.Nature,1985,318:577
14,李伯龄,叶 健,丁 焰,等.DNA指纹技术在强奸案和亲子鉴定中的应用.中国法医学杂志,1989,4(4):210
15,姜先华,吕世惠,王国林,等.DNA指纹图在法医鉴定中应用的研究(Ⅰ).中国法医学杂志,1990,5(1):11
16,Milgroom MG,Lipari SE,Powell fingerprinting and analysis of population structure in the chestnut blight fungus,cryphonectria cs,1992,131(2):297
17,Jan DA,Cave MD,Crawford identification of mycobacterium tuberculosis by DNA fingerprinting:recommendations for a standardized methodology.J Clin Mic,1993,31(2):406
18,Denise Chevrel-Dellagi,Amel Abderrahman,Raji -scale DNA fingerprinting of mycobacterium tuberculosis strains as a tool for epidemiological studies of tuberculosis.J Clin Mic,1993,31(9):2446
19,Zhenhua Yang,Fernando Chaves,Barenes tion of method for secondary DNA typing of mycobacterium tuberculosis with PTBN12 in epidemiologic study of tuberculosis.J Clin Mic,1996,34(12):3044
20,童笑梅,鲁凤民,范凤立,等.一次新生儿医院内获得性葡萄球菌感染的分子流行病学调查.中华儿科杂志,1997,35(7):381
21,郭永建,戴以聪,周惠平.新生儿铜绿假单胞菌随机扩增多态DNA分子流行病学研究.中华医院感染学杂志,1997,7(2):69
22,Morral N,Nunes V,Casals GT microsatellite alleles within the cystic fibrosis transmembrane conductance regulator (CFTR) gene are not generated by unequal cs,1991,10(3):692
23,李国雄.以Bcr-ab1 mRNA和DNA指纹法预测慢性粒细胞性白血病骨髓移植术后复发.国外医学遗传学分册,1997,20(2):111
24,Thein SL,Jefferys AJ,Gooi ion of somatic changes in human -J-Cancer,1987,55(4):353
25,刘 霜,芮静安,王少斌,等.配对肝癌组织与非癌肝组织基因组差异的随机扩增多态DNA分析.北京医科大学学报,1996,28(6):408
26,王 黛,辛德丽,张小为,等.用DNA指纹技术检测儿童急性粒细胞白血病的基因重排.北京医科大学学报,1997,29(2):129
DNA指纹图谱的产生的原理
1.1 高变异DNA 序列的发现1980 年,Wyman 和 White 在进行人体DNA 基因文库的研究中,筛选到一个随机DNA 片段,以其为探针进行RFLPs 分析,检测到8 个等位基因,平均杂合率超过75%,因此推测该位点的多态性来源于DNA 重排而非碱基突变,这是人类基因组中发现的第一个高变区(hypervariable regions,简称HVRs)。此后,人们在人类基因组中又陆续发现了其他一些高变区,如α-珠蛋白基因(Higgs 等 1981,1986)、胰岛素基因(Bell 等 1982)、脂蛋白基因(Knott等 1986)、D-Ha-ras 癌基因(Capon 等 1983)、Zata-珠蛋白基因(Goodbourm 等 1983)等基因的侧翼及肌红蛋白基因(Weller 等1984)的第一个内含子区域,都含有这种HVRs。这些高变区的共同特点为:都是由一短序列(即重复单位)首尾相连、多次重复而成,其多态性来源于重复单位的重复次数不同。同一高变区的这些重复单位还具有高度的保守性,但因重复单位的重复数目不同,形成了众多的等位基因。这些高变区后来被叫做小卫星(minisatellite)(Jeffreys 等 1985a),有的人又称其为可变数目串联重复序列(variable number of tandemrepeat,简称VNTR)(Nakmura 等1987)。在小卫星DNA 内,重复单位数目的高度变异是由于不等交换所造成的,换言之,即在有丝分裂时的姊妹染色单体(sister chromatids)或减数分裂时的同源染色体间互换所致。有时候,发现DNA 链架突变的发生频率高于点突变,其频率为每世代每千个核苷酸对在10- 5~10- 2。虽然不等互换导致重复单位数目增加或减少,但不同重复的形成却是由于点突变造成的。此外,基因转换(gene conversion)与重组似乎在同源性的维持上扮演着重要的角色。在DNA 复制期间的滑动复制(slippage)是重复单位内简单序列 (1~4 个核苷酸对)演化的机制(Wolf 等 1989)。故有丝分裂或减数分裂时不等互换、基因转换及滑动复制,均足以导致重复单位间同源性的维持及重复单位数目的变化。大多数重复序列单位共有一个约 10~15 个核苷酸对的核心序列(core sequence),此核心序列高度地保留于相关的小卫星DNA 家族中,它是重组信号,可能是真核生物DNA 重组交换的热点,可促进小卫星DNA 的不等交换(Jeffreys 等 1985a;Wyman 等 1990)。核心序列是重复单位间序列相似的基础。在小卫星DNA 区域内,同源染色体可能有不同数目的重复单位,利用限制性内切酶可产生DNA 指纹。由此可见,串联重复序列的高度变异性与其特殊的结构密切相关。然而,基因组中此类串联重复序列的真实生物学功能至今仍不清楚。1.2 DNA 指纹图谱的发现1985 年,英国来斯特大学遗传系的Jeffreys(1985a)及其同事在《Nature》杂志上报道了他们对人体基因组高变区的突破性研究。他们用肌红蛋白基因第一个内含子中的串联重复序列(重复单位长33bp)作探针,从人的基因文库中筛选出8 个含有串联重复序列(小卫星)的重组克隆。经序列分析,发现每个克隆都含有一个长0.2~2.0kb、由重复单位重复3~29 次组成的小卫星DNA。尽管这8 个小卫星的重复单位的长度(16~64bp)和序列不完全相同,但都含有一段相同的核心序列,其碱基顺序为 GGGCAGGAA。他们用 16bp 重复单位(主要为核心序列)重复29 次而成的小卫星33.15做探针,与人基因组酶切片段进行Southern 杂交,在低严谨条件下杂交产生由10 多条带组成的杂交图谱,不同个体杂交图谱上带的位置是千差万别的。随后他们用另外一个小卫星探针33.6 进行测试,获得了类似的图谱。这种杂交图谱就像人的指纹一样因人而异,因而Jeffreys(1985b)等人称之为DNA 指纹图谱(DNA finger print),又名遗传指纹图谱(genetic finger print)。产生DNA 指纹图谱的过程就叫做DNA 指纹分析(DNA finger printing)。1.3 DNA 指纹图谱的特点DNA 指纹图谱具有以下3 个基本特点:(1)多位点性:基因组中存在着上千个小卫星位点,某些位点的小卫星重复单位含有相同或相似的核心序列。在一定的杂交条件下,一个小卫星探针可以同时与十几个甚至几十个小卫星位点上的等位基因杂交。一般来说,一个DNA 指纹探针(又称多位点探针)产生的某个个体DNA 指纹图谱由10~20 多条肉眼可分辨的图带组成。由于大部分杂合小卫星位点,仅一个等位基因出现在图谱的可分辨区内(两个等位基因由于重复单位、重复次数不同,在长度上差异很大),因而每条可分辨图带代表一个位点。很多的研究表明,个体DNA 指纹图谱中的带很少成对连锁遗传,所代表的位点广泛地分布于整个基因组中(Burke 等1987;Hiu 等1985)。一个传统的RFLPs 探针一次只能检测一个特异性位点的变异性,所产生的图谱一般由l~2 条带组成,仅代表一个位点。因此两者比较而言,DNA指纹图谱更能全面地反映基因组的变异性。(2)高变异性:DNA 指纹图谱的变异性由两个因素所决定,一是可分辨的图带数,二是每条带在群体中出现的频率。DNA 指纹图谱反映的是基因组中高变区,由多个位点上的等位基因所组成的图谱必然具有很高的变异性。DNA 指纹图谱在个体或群体之间表现出高度的变异性,即不同的个体或群体有不同的DNA 指纹图谱。一般选用任何一种识别4 个碱基的限制性内切酶,这种变异性就能表现出来。Jeffreys 等 (1985b)对人的DNA 指纹图谱的研究表明,DNA 指纹图谱中的大部分谱带都以杂合状态存在,平均杂合率大于70%,某些大片段的杂合率甚至高达100%。用探针33.15 进行DNA 指纹分析时,发现两个无血缘关系的个体具有相同DNA 指纹图谱的概率仅为3× 10-11;而将探针33.15 和33.6 产生的DNA 指纹图谱综合起来分析时,则这种概率为5×10-19,可见DNA 指纹图谱具有高度的个体特异性。但是,同卵双胞胎的DNA 指纹图谱是相同的,因其有完全相同的基因组(Hiu 等1985)。值得注意的是,由于琼脂糖凝胶电泳分辨率的限制,DNA 指纹图谱大片段区域的变异性往往很高,而小片段区域的变异性则很低,因此在实际操作时往往将小于 2kb 的小片段跑出胶外或不作统计。(3)简单而稳定的遗传性:Jeffreys 等(1985a)通过家系分析表明,DNA 指纹图谱中的谱带能够稳定地从上一代遗传给下一代。子代DNA 指纹图谱中的每一条带都能在其双亲之一的图带中找到,而产生新带的概率(由基因突变产生)仅在0.001~0.004 之间。DNA 指纹图谱中的杂合带遵守盂德尔遗传规律,双亲的各图带平均传递给50%的子代。DNA 指纹图谱还具有体细胞稳定性,即用同一个体的不同组织如血液、肌肉、毛发、精液等的DNA 做出的DNA 指纹图谱是一致的(Gill 等1985),但组织细胞的病变或组织特异性碱基甲基化可导致个别图带的不同。1.4 DNA 指纹图谱的应用由于DNA 指纹图谱具有多位点性、高变异性、简单而稳定的遗传性,因而自其诞生就引起了人们的重视,表现出巨大的实用价值。DNA 指纹图谱的高变异性和体细胞稳定性可用于鉴定个体,这对法医学上鉴别犯罪分子和确定个体间的血缘关系极有价值(Jeffreys 等1985b,1985c)。如我国公安部利用DNA 指纹图谱已侦破数百例疑难案件。其简单的遗传性可用来鉴定亲子关系,其多位点性可用来检测目标基因组的病变及治疗等过程中的改变情况。1987 年Burke、Jeffreys 和Wetton 等报道了用人源核心序列小卫星探针33.6 和33.15 检测到哺乳动物到鸟类、爬行动物、两栖动物、鱼、昆虫等的高变异小卫星,产生具有个体特异性或类群特异性的DNA 指纹图谱。1988 年,Dallas 用人源小卫星探针33.6 获得了水稻的DNA 指纹图谱。随后,美国华盛顿大学生物系Nybom 等人对果树植物的DNA 指纹图谱进行了大量的研究。1989年,Braithwaite 和Manners 首次将人源小卫星探针33.6 和33.15 用作真菌的DNA 指纹分析获得了成功,从而进一步证明DNA 指纹技术具有广泛的适用性。这些发现使DNA 指纹图谱成为研究动植物群体遗传结构、生态与进化、分类等很有价值的遗传标记。1.5 DNA 指纹图谱的研究进展1.5.1 DNA 指纹分析的探针两个最早的DNA 指纹探针是1985 年Jeffreys 及其同事所发现的人源小卫星探针33.6 和33.15(Jeffreys 等 1985a)。1987 年,Vassart 等发现无外源DNA 片段的细菌噬菌体M13 本身就能够作为一个DNA 指纹探针检测出人和动物基因组中的高变异小卫星DNA,其有效序列是蛋白质 Ⅲ 编码区内的两个小卫星序列。从此,M13 便也成为各种动植物重要的DNA 指纹探针(Gatei 等 1991;Kuhnlein 等 1989)。另一个在人和动物上广泛应用的 DNA 指纹探针是3´HVR(Jarman 等 1986),它来源于人α-珠蛋白的3´端的一个高度重复区。以上4 个小卫星探针的重复单位的序列结构如下所示:33.6(AGGGCTGGAGG)333.15(AGAGGTGGGCAGGTGG)M13(GAGGGTGGNGGNTCT)3´HVR(GNGGGGNACAG)从迄今已有的报道来看,在DNA 指纹分析中用得最多的多位点小卫星探针为33.6、33.15、M13 及3´HVR。此外,人们还从某些动物的基因组中分离克隆了一些小卫星DNA 用作DNA 指纹探针。如牛的小卫星探针PSRC-7( Plante 等 1991)和猪的小卫星探针pS35(Coppieters 等 1990)。人工合成的简单重复序列微卫星探针也广泛地用于DNA 指纹分析,如(GTG)5 、(TG)8、(AT)8、(TCC)5 、(GACA)4。从基因组中分离克隆的微卫星DNA 指纹探针有PGB725 (牛)(Kashi 等 1990)和 R18.1 (猪)(Haberfield 等 1991)。 孟安明(1993)发现,任何一个动物个体的基因组总DNA 可标记作为DNA 指纹探针(基因组探针),在该个体所属物种及其他相关物种上产生具有个体特异性的杂交图谱。以基因组探针进行DNA 指纹分析不需通过复杂的操作来获得探针DNA,有利于DNA 指纹技术的推广。1.5.2 DNA 指纹图谱的重要发展DNA 指纹图谱的重要发展是微卫星DNA 指纹图谱。微卫星(microsatellite)是由2~6 个核苷酸组成的重复单位串联排列而成的DNA 序列。据估计,在真核生物基因组每10kb 的DNA 序列中至少有一个微卫星(Tautz 1989),如人体基因组中仅二核苷酸串联重复的微卫星就多达 50 000~100 000 个。大多数微卫星的长度小于 200bp,但也有更长的微卫星。微卫星不同于小卫星,它们广泛分布于很多结构基因的内含子、基因间隔区甚至调控序列中(Tautz 等 1984;Weising 1989;Ishii 等 1985)。早在1974 年,Skinner 等就在寄居蟹(hermit crab)基因组中发现了微卫星DNA,当时叫做简单串联重复序列(simple tandem repeat)。Singh 等人在1980 年发现蛇的W 性染色体上也存在着这种序列,它是由GATA/GACA 重复单位组成的。以后的研究表明,在真核生物甚至原核生物的基因组中都普遍存在这种序列(Jones 等 1981;Tautz 等 1986)。直到1986 年,Ali 等人首次用合成的GATA/GACA 寡聚核苷酸作探针用于人的DNA 指纹分析,成功地开创了利用微卫星DNA 探针进行DNA 指纹分析这一新的领域。微卫星探针易于合成,可直接与固定在干胶中的DNA 片段杂交,所检测的位点普遍具有高度的变异性。1988 年,Schafer 等人进一步发展了这门技术,使寡聚核苷酸(微卫星)分析技术又一次得到了完善。迄今为止,合成的各种寡聚核苷酸(微卫星)已成功地应用于人和近百种动植物的DNA 指纹分析(Buitkamp 等 1991a,1991b;Schafer 等1988;May 等 1991;Nuraburg 等 1989;Hubert 等 1990;Lonn 等1992;Biermerth 等 1992;Caetano-Anolles 等 1991)。从已有的报道来看,适用范围广、变异性高的微卫星探针主要有(GTG)n、(GT)n、(GATA)n、(GACA)n、(GAG)n 等(Buitkamp 等1991a,1991b)。1.5.3 PCR 在DNA 指纹分析中的应用PCR 是一种在体外大量扩增DNA 的方法。在法医研究上,由于所检验的材料量(如血斑、精斑、发梢)极微,因此很难获得常规Southern 杂交所需的DNA 量,利用PCR 就可以解决这一问题。Jeffreys 等(1988)根据多个小卫星的已知侧翼序列来合成引物(每个小卫星两个引物)。先以极微量( 甚至单个细胞 )的人类基因组DNA 为模板进行体外扩增(产物可长达10kb),然后再用这些小卫星的混合探针进行Southern 杂交,得到了可以重复做出的具有高度变异性的DNA 指纹图谱。1.5.4 单位点高变异性小卫星和微卫星探针的开发DNA 指纹图谱虽然具有很多的优点,但并非完整无缺。第一,DNA 指纹图谱中每一个个所含图带数很多,给统计分析带来了许多麻烦。例如,在比较个体之间的DNA 指纹图谱时,如果某两条带的位置相差很小,那么就很难判断它们是否来自同一位点上的同一等位基因,也许是由于实验操作过程中凝胶变形等引起的误差影响了分析结果的准确性。第二,DNA 指纹图带的分辨率很难提高,特别是较小的DNA 片段因难以分开而呈现很低的变异性;长度相差不大的DNA 片段无法通过电泳分开。第三,DNA 指纹图谱不能区分杂合体和纯合体。在进行DNA 指纹图谱统计分析时,人们假定图中每一条带分别代表不同的位点,但实际上,如果某一位点是杂合的,那么此位点在DNA 指纹图谱上会拥有两条带,也就是说在DNA 指纹图谱上应有两条带代表同一个杂合位点上的不同等位基因。因此,有时以DNA 指纹图谱分析得到的结果与真实情况也会有所不同。第四,对于某一个位点来说,往往只有一个等位基因出现在DNA 指纹图谱上,因此无法根据DNA 指纹图谱确定个体在该位点上的基因型。为了克服DNA 指纹图谱的上述缺点,人们已开始重视单位点探针的开发。所谓单位点探针,是指只是特异性与某一位点上的等位基因杂交的探针。由于真核基因组中的小卫星和微卫星位点普遍具有高度的变异性,因此它们是高变异单位点探针的重要来源。基因组中的小卫星位点有数千个,微卫星位点更达数十万个,通过用现有的多位点小卫星和微卫星探针筛选基因文库,可以得到众多的高变异单位点探针。迄今为止,国外一些单位已从猪、马、鸡、牛等的基因组中分离、克隆了数百个小卫星和微卫星探针,这些探针将是构建有关畜禽基因图谱的基础。1.5.5 其他方面的进展双向电泳(two-dimensional electrophoresis)的应用,使 DNA 指纹图谱的容量大大增加(Uitterlinden 等 1989)。变性凝胶电泳可以更有效地分辨等位基因(Uitterlinden 等1989);电极反转电泳(field inversion gel electrophoresis)提高了 DNA 指纹图谱中大片段的分辨率(Fowler 等 1988)。由于DNA 指纹图谱在实验技术和统计方法上一直处于不断的改进之中,因此我们深信在不远的将来,DNA 指纹分析技术必将在医学、畜牧业、农业乃至整个生物领域得到更加广泛的应用。
PCR技术中的缓冲液
聚合酶链式反应(polymerase chain reaction , PCR)是体外扩增DNA序列的技术。它与分子克隆和DNA序列分析方法几乎构成了整个分子生物学实验工作的基础。在这三种技术中,PCR方法理论上出现最早,实践中应用也最广泛。PCR技术使对微量的核酸(DNA或RNA)操作变得简单易行,同时还可以使核酸研究脱离活体生物。PCR技术的发明是分子生物学的一项革命,它极大地推动了分子生物学以及生物技术产业的发展。
PCR技术发展简史
人类对于核酸的研究已经有100多年的历史。20世纪60年代末70年代初,人们致力于研究基因的体外分离技术。但是,由于核酸的含量较少,一定程度上限制了DNA的体外操作。Khorana于1971年最早提出核酸体外扩增的设想。但是,当时的基因序列分析方法尚未成熟,对热具有较强稳定性的DNA聚合酶还未发现,寡核苷酸引物的合成仍处在手工、半自动合成阶段,这种想法似乎没有任何实际意义。
1985年,美国科学家Kary Mullis在高速公路的启发下,经过两年的努力,发明了PCR技术,并在Science杂志上发表了关于PCR技术的第一篇学术论文。从此,PCR技术得到了生命科学界的普遍认同,Kary Mullis也因此而获得1993年的诺贝尔化学奖。
但是,最初的PCR技术相当不成熟,在当时是一种操作复杂、成本高昂、“中看不中用”的实验室技术。1988年初,Keohanog通过对所使用的酶的改进,提高了扩增的真实性。尔后,Saiki等人又从生活在温泉中的水生嗜热杆菌内提取到一种耐热的DNA聚合酶,使得PCR技术的扩增效率大大提高。也正是由于此酶的发现使得PCR技术得到了广泛地应用,使该技术成为遗传与分子生物学 分析的根本性基石。在以后的几十年里,PCR方法被不断改进:它从一种定性的分析方法发展到定量测定;从原先只能扩增几个kb的基因到目前已能扩增长达几十个kb的DNA片段。到目前为止,PCR技术已有十几种之多,例如,将PCR与反转录酶结合,成为反转录PCR,将PCR与抗体等相结合就成为免疫PCR等。
PCR技术的基本原理和操作
1. PCR的基本原理
PCR的基本工作原理就是以拟扩增的DNA分子为模板,以一对分别与模板互补的寡核苷酸片段为引物,在DNA聚合酶的作用下,按照半保留复制的机理沿着模板链延伸直至完成新的DNA合成。通过不断重复这一过程,可以使目的DNA片段得到扩增。另一方面,新合成的DNA片段也可以作为模板,因而PCR技术可使DNA的合成量呈指数型增长。
2. PCR的基本成分
PCR包括7种基本成分:模板DNA、特异性引物、热稳定DNA聚合酶、脱氧核苷三磷酸(dNTP)、二价阳离子、缓冲液及一价阳离子。
模板DNA:包括基因组DNA、质粒DNA、噬菌体DNA、预先扩增的DNA、cDNA和mRNA分子等几乎所有形式的DNA和RNA都能成为PCR技术反应的模板。除此之外,PCR反应还可以直接以细胞为模板。
特异性引物:是一段与模板DNA链结合的寡核苷酸片段,对于DNA的扩增起到引发的作用。
热稳定DNA聚合酶:这是PCR技术实现自动化的关键。热稳定DNA聚合酶是从两类微生物中分离的:一类是嗜热和高度嗜热的真细菌,另一类是嗜热古细菌。现在又出现了一种兼顾了几种DNA聚合酶特点的混合型酶。
脱氧核苷三磷酸(dNTP):是DNA合成的原料,包括dATP、dGTP、dTTP、dCTP。
二价阳离子:常用到Zn2+和Mg2+,作为构成热稳定性DNA聚合酶的成分之一。
缓冲液:一般使用Tris-Cl缓冲液,标准的为10mmol/L,并将其调节到8.3~8.8之间。
一价阳离子:一般使用50mmol/L的KCl溶液,有利于改善扩增的产物质量。
PCR的基本操作
PCR是一种级联反复循环的DNA合成反应过程。PCR技术的基本反应由三个步骤组成:
1. 变性:通过加热使模板DNA完全变性成为单链,同时引物自身和引物之间存在的局部双链也得以消除;
2. 退火:将温度下降至适宜温度,使引物与模板DNA退火结合;
3. 延伸:将温度升高,热稳定DNA聚合酶以dNTP为底物催化合成DNA链延伸。
以上三部为一个循环,新合成的DNA分子又可以作为下一轮合成的模板,经多次循环后即可达到扩增DNA片段的目的。
PCR的主要应用
最初建立PCR是为了扩增已知序列的靶基因。因为在PCR方法问世以前,要获得一个靶基因,必须建立基因文件库,然后从成千上万的菌落中通过Southern blot 杂交筛选含有靶基因的克隆。这样既费时又费钱,特别是在克隆真核生物基因时难度更大。自从建立了PCR方法以后,使克隆已知序列的基因变得非常容易。为了适应分子生物学的快速发展,PCR方法也得到了不断发展,现在PCR已应用到生命科学的各个领域。
1. 基础研究方面的应用
目前从事分子生物学的实验室和研究人员,几乎每天都在使用PCR,可以说几乎没有一个分子生物学家没有使用过PCR。因此,PCR与分子克隆一样是分子生物学实验室的常规方法,可用于达到以下目的:
l 扩增目的基因和鉴定重组子;
l 克隆基因;
l 基因功能和表达调控的研究;
l 基因组测序;
l 制备单链模板;
l 致突变;
2. PCR在临床上的应用
l 在遗传学上的应用:人类的遗传性疾病是因为某一碱基序列发生了突变,使之缺失或形成某一限制性内切酶的识别位点,通过PCR结合限制片段长度多态性分析(PCR-RFLP),就可以从基因的水平对遗传性疾病进行分析。例如,血友病甲是一种常见的遗传性出血性疾病,患者体内缺乏凝血因子FVIII这是由于基因第14个外显子的第336位氨基酸的编码基因发生了突变,产生了一个新的PstI酶切点,因此可以使用PCR-RFLP对血友病进行诊断。PCR还可以用来检测遗传性耳聋和Leber遗传性视神经病。
l 在肿瘤研究中的应用:PCR已日益广泛应用于肿瘤的病因与发病机理研究以及肿瘤诊断与治疗的研究中。例如,差异显示PCR技术能针对不同肿瘤寻找其特异而敏感的标志物,并用于肿瘤早期诊断、判断预后及疗效评估。另一方面,在使用普通放疗、化疗的同时可结合定量PCR技术检测微小残留病灶,以进一步改进治疗方案。此外,由于癌症的发生在一定意义上是单个细胞分子发生变化,因而可以使用单细胞PCR技术对癌症的发病机理进行研究。
l 检测病原体
l 在基因分型中的应用:当进行器官移植时并须先组织配型工作,此时常应用序列特异性寡核苷酸多态性PCR(PCR-sequence specific oilgonucleotide polymorphism,PCR-SSOP)对人类白细胞抗原(human leukocyte antigen,HLA)进行分型,使移植成功率大大提高。此外PCR-限制性片段长度多态性也可以用于对HLA的分型。
3. 在法医学中的应用
例如:最早应用DNA限制性片段长度多态性结合PCR-RFLP来进行法医学个体识别和亲子鉴定。目前发现在真核生物基因组编码和非编码序列中的短串联重复序列的重复次数在个体间存在着差异,因此可以使用短串联重复PCR技术对其进行分析。使用PCR技术进行法医鉴定的优点是样品用量小并且适于对高度降解材料的检测。除刚才提到的之外,可变数目串联重复序列(variable number tandem repeat,VN-TR)PCR也可以用于法医学个体识别和亲子鉴定。
所以,综上所述,PCR的确是一种分子生物学研究的基础技术。在它30多年的发展中衍生出了诸如PCR-RFLP、PCR-SSOP、VN-TR,以及免疫PCR、致突变PCR和定量PCR等十几种不同的技术方法。PCR技术可以为基因工程提供目的基因,并广泛地应用于个体识别、亲子鉴定、免疫配型、疾病诊断等方面。可以说,PCR已经渗透到了生命科学的各个领域。21世纪是生物工程的世纪。我相信,在今后的发展中PCR技术会不断地得到扩充和完善,PCR技术也将发挥着越来越重要的作用。
袁丽的中国政法大学
袁丽,1971年7月,医学硕士,诉讼法学博士,四川大学在站博士后,中国政法大学证据科学研究院(证据科学教育部重点实验室)副教授,法大法庭科学技术鉴定研究所副主任法医师。主要从事法医学的教学、科研及鉴定工作。1994年赣南医学院临床医学专业毕业,获医学学士学位;2004年中国人民公安大学法医学专业毕业,获医学硕士学位;2010年中国人民公安大学诉讼法专业物证技术方向毕业,获法学博士学位;2011年四川大学基础医学与法医学院,在站博士后。 1、参与教育部重点课题攻关项目《医疗纠纷解决机制的法律问题研究》,2006;2、参与教育部规划基金项目《DNA科学证据规则研究》的研究工作,2006;3、参与国家自然基金项目《Y染色体miniSTR国产化试剂的研究与法医学应用》的研究工作,2007;4、主持北京市教育委员会共建项目《道路交通事故中困难检材的DNA分析》,2007;5、主持中国政法大学2009年校级人文社会科学研究项目《DNA证据应用研究》;6、主持上海市法医学重点实验室开放课题《非CODIS系统STR在中国多个群体遗传多态性的研究》,2010,项目批准号KF1003;7、主持教育部一般人文项目《DNA证据相关问题研究》,2011,项目批准号11YJC820158。 论文:1、袁丽. 法医学专业法医学教学存在的问题与对策研究[J]. 公安学刊, 2010(6), 104-106.2、袁丽, 鲁涤, 姜伯玮, 等. 手部皮肤脱落细胞的DNA检验[J]. 中国法医学杂志, 2010(4): 270-271.3、袁丽, 叶健, 姜成涛, 等. 3个STR基因座在岫岩满族及广州汉族群体遗传多态性[J]. 中国人民公安大学学报, 2010, 2, 15-18.4、袁丽, 叶健, 姜成涛, 等. 山西地区汉族人群六个短串联重复序列基因座的遗传多态性[J]. 中华医学遗传学杂志, 2010, 27(2), 225-228.5、袁丽, 鲁涤, 杨雪, 印佳. 车辆上脱落细胞STR检验[J]. 证据科学, 2010, 18(1): 120-124.6、袁丽, 叶健, 姜成涛, 等. 荧光复合扩增调查北方汉族6个STR基因座遗传多态性[J]. 中国人民公安大学学报, 2010, 1, 30-34.7、袁丽, 鲁涤, 刘耀. 低拷贝DNA模板检验方法探讨[J]. 中国法医学杂志, 2009, 24(6): 383-385.8、袁丽, 狄胜利. 早产和胎盘早剥的损伤程度鉴定(附1例分析)[J]. 证据科学, 2009, 17(5):635-639.9、袁丽, 常林. 试论医疗过失司法鉴定文书[J].(收录在“第十七届医学法学大会”国际研讨会论文全文光盘),中国司法鉴定. 2008, 12:27-29.10、袁丽, 鲁涤. 动物STR遗传标记检测与应用. 法医遗传学进展与应用.2008, 11-16.11、袁丽. 论DNA鉴定结论的证据效力的研究[J]. 中国司法鉴定, 2008, 3:79-82.12、袁丽, 王旭. 车祸后孤立性颅脑深部血肿1例伤残评定[J].法律与医学, 2007, 14(4):320-S1.13、袁丽.微量DNA的STR分型策略[J]. “证据理论与科学”国际研讨会论文集, 2007: 403-406.14、袁丽, 姜成涛, 叶健. 用克隆技术制备STR等位基因分性标准物的研究[J].中国人民公安大学学报, 2007, 3:39-42.15、袁丽, 张俊.DNA证据审查初探[J].中国人民公安大学学报, 2007, 2:42-44.16、袁丽, 鲁涤, 杨雪.甲醛固定石蜡包埋组织的DNA鉴定2例[J].中国人民公安大学学报, 2006, 10(4): 34-35.17、袁丽, 鲁涤.动物PCR-STR分型技术在法庭科学中的应用[J].第八届全国物证鉴定技术破案研讨会论文选, 2006:739-744.18、袁丽, 鲁涤, 毋丽娜.石蜡包埋人体组织STR检验的探讨[J].法律与医学杂志, 2006, 13(1):50-52.19、袁丽, 鲁涤, 杨雪.中国北方汉族人群D6S1043、D2S1338和PentaE基因座遗传多态性[J].中国法医学杂志, 2006, 21(1):47-48.20、袁丽, 叶健, 鲁涤, 等。等位基因分型标准物的法医应用和制备研究[J].法律与医学杂志, 2005, 12(3):231-233.21、袁丽, 鲁涤, 杨雪.国产STR荧光复合试剂盒DNAtyper15应用结果分析[J].刑事技术, 2004, 增刊:56-57.22、袁丽, 陈帅峰, 胡盟, 等.D2S1338基因座在华北汉族的遗传多态性分析[J].中国人民公安大学学报, 2004, 10(2):7-9.23、袁丽, 赵兴春, 张志强, 等.CTAB+磁珠法提取火烧骨DNA的研究[J].中国人民公安大学学报, 2003, 9(4):28-31.24、袁丽.SNPs在法庭科学中的应用[J]. 浙江公安高等专科学校学报, 2002, 6:118-119.参编:1、中国证据法治发展报告1978-2008,中国政法大学出版社,2011年3月出版;2、中国证据法治发展报告2009,中国政法大学出版社,2011年5月出版。 《常染色体非CODIS系统STR荧光复合扩增试剂的研制及其法医学应用》,2011年获中国人民公安大学优秀博士学位论文奖。
上一篇:医学杂志记叙文
下一篇:卫生部医学杂志