医学杂志魏兹曼
医学杂志魏兹曼
日本东京大学Umeharu Ohto和日本京都大学Norimichi Nomura团队共同合作近期取得重要工作进展。他们研究发现胆汁酸转运蛋白NTCP的结构对乙型肝炎病毒进入至关重要。该项研究成果2022年5月17日在线发表于《自然》杂志上。
在这里,研究人员报告了人类、牛和大鼠NTCPs在apo状态下的低温电子显微镜(cryo-EM)结构,它揭示了跨膜隧道的存在和底物的可能运输途径。
此外,人类NTCP在LHBs的肉豆蔻酰化preS1结构域存在下的低温电镜结构以及突变和运输试验分析表明了一种结合模式,即preS1和底物竞争NTCP中细胞外通道的开口。重要的是,preS1域相互作用分析能够对人类NTCP中自然发生的HBV不敏感突变进行机理解释。综上所述,他们的研究结果为HBV识别和哺乳动物NTCPs对钠依赖性胆汁酸易位的机制的理解提供了结构框架。
据介绍,慢性乙型肝炎病毒 (HBV) 感染在全球影响超过2.9亿人,是肝硬化和肝细胞癌的主要原因,估计每年导致82万人死亡。HBV感染的建立需要病毒包膜糖蛋白L(LHBs)与宿主进入受体钠-牛磺胆酸共转运多肽(NTCP)之间的分子相互作用,NTCP是一种从血液到肝细胞的钠依赖性胆汁酸转运蛋白。然而,目前对于病毒-转运蛋白相互作用分子基础尚不清楚。
Source:
美国加州大学Arash Komeili研究小组在研究中取得进展。他们发现不同基因簇诱导细菌铁小体细胞器的形成。2022年5月18日出版的《自然》发表了这项成果。
在本研究中,研究人员发现一个与铁结合的隔室,在此命名为“铁小体”,是之前在厌氧细菌磁性脱硫弧菌中发现的。使用蛋白质组学方法,研究人员鉴定了三种铁小体相关(Fez)蛋白,它们在D. magneticus中参与形成铁小体。Fez蛋白由特定的操纵子编码,包括FezB,FezB是在系统发育和代谢不同的细菌和古细菌中发现的P1B-6-ATP酶。研究人员揭示了另外两种细菌物种,Rhodopseudomonas palustris和Shewanella putrefaciens,通过其六基因fez操纵子产生铁小体。
此外,研究发现fez操纵子还可以在外来宿主中形成铁小体。使用S. putrefaciens作为模型,研究表明铁小体可能在厌氧适应铁饥饿中发挥作用。总体而言,该工作发现铁小体可能是一类新的铁储存细胞器,并为研究它们在多种微生物中的形成和结构奠定了基础。
据了解,细胞内铁稳态对于机体至关重要,通过严格调节铁的输入、流出、储存和代谢来维持铁稳态。最常见的铁储存模式使用蛋白质隔室,例如铁蛋白和相关蛋白质。尽管发现了脂质结合的铁隔室,但它们的形成和功能基础仍然未知。
Source:
美国德克萨斯大学西南医学中心Peter M Douglas研究组发现小G蛋白香叶酰化可监测细胞内脂质稳态。2022年5月18日出版的《自然》杂志发表了这项成果。
他们描述了一种在秀丽隐杆线虫中进行细胞内脂质监测的机制,该机制涉及核激素受体 NHR-49 的转录失活,其通过与小 G 蛋白 RAB-11.1 结合的香叶基香叶酯结合到内吞囊泡进行胞质隔离。由脂质消耗引起的有缺陷的从头类异戊二烯合成限制了 RAB-11.1 香叶基香叶酰化,这促进了 NHR-49 的核易位和 rab-11.2 转录的激活,以增强转运蛋白在质膜上的驻留。因此,他们鉴定了一种细胞可感知的关键脂质,及与其相连 G 蛋白和核受体,它们的动态相互作用使细胞能够感知由于脂质消耗引起的代谢需求,并通过增加营养吸收和脂质代谢来做出反应。
据悉,脂质稳态失衡会对健康产生有害影响。然而,细胞如何感知由于脂质消耗导致的代谢需求并通过增加营养吸收做出反应仍不清楚。
Source:
英国牛津大学Sebastian M. Shimeld研究组探明Hmx基因保留确定了脊椎动物颅神经节的起源。2022年5月18日出版的《自然》杂志发表了该项成果。
他们表明同源盒转录因子 Hmx 是脊椎动物感觉神经节发育的组成成分,并且在小肠绦虫中,Hmx 是驱动双极尾神经元分化程序所必要且充分的,这些细胞以前被认为是神经嵴的同源物。使用绦虫和七鳃鳗转基因,他们证明了茎-脊椎动物谱系中,一个独特的、串联重复的增强子对调节的 Hmx 表达。他们还在绦虫中展示了明显强大的脊椎动物 Hmx 增强子功能,表明上游调控网络的深度保留跨越了脊椎动物的进化起源。这些实验证明了绦虫和脊椎动物 Hmx 之间的调节和功能保护,并指出双极尾神经元是颅感觉神经节的同源物。
研究人员表示,脊椎动物的进化起源包括与掠夺性生活方式的获得相关的感官处理方面的创新。脊椎动物通过由颅感觉神经节服务的感觉系统感知外部刺激,其神经元主要来自颅基板;然而,由于活体谱系之间的解剖学差异以及细胞类型和结构之间的同源性分配困难,阻碍了对基板和颅感觉神经节进化起源的理解。
Source:
美国斯坦福大学Anthony E. Oro团队近期取得重要工作进展。他们研究发现Gibbin中胚层调节模式上皮细胞的发育。该项研究成果2022年5月18日在线发表于《自然》杂志上。
在这里,研究人员鉴定了由Xia-Gibbs AT-hook DNA-binding-motif-containing 1(AHDC1)疾病基因编码的蛋白质Gibbin,它是早期上皮形态发生的关键调节因子。他们发现增强子或启动子结合的Gibbin与数十种序列特异性锌指转录因子和甲基-CpG 结合蛋白相互作用,以调节中胚层基因的表达。Gibbin的缺失导致GATA3依赖性中胚层基因的DNA甲基化增加,导致发育中的真皮和表皮细胞类型之间的信号通路的缺失。
值得注意的是,Gibbin突变的人类胚胎干细胞衍生的皮肤类器官缺乏真皮成熟,导致表达p63的基底细胞具有缺陷的角质形成细胞分层。体内嵌合CRISPR小鼠突变体揭示了一系列Gibbin依赖性发育模式缺陷,这些缺陷影响了反映患者表型的颅面结构、腹壁闭合和表皮分层。他们的结果表明,在Xia–Gibbs和相关综合征中看到的模式表型源于基因特异性 DNA甲基化决定而导致的异常中胚层成熟。
据介绍,在人类发育过程中正确的外胚层模式需要先前确定的转录因子,如GATA3和p63,以及来自区域中胚层的位置信号。然而,外胚层和中胚层因子对稳定基因表达和谱系定型的机制仍不清楚。
Source:
美国纪念斯隆-凯特琳癌症中心Vinod P. Balachandran等研究人员合作发现,新抗原质量可预测胰腺癌幸存者的免疫编辑。相关论文于2022年5月19日在线发表在《自然》杂志上。
研究人员表示,癌症免疫编辑是癌症的一个标志,它预示着淋巴细胞会杀死更多的免疫原性癌细胞,使免疫原性较低的克隆体在群体中占主导地位。虽然在小鼠身上得到证实,但免疫编辑是否在人类癌症中自然发生仍不清楚。
为了解决这个问题,研究人员调查了70个人类胰腺癌在10年内是如何演变的。研究人员发现,尽管有更多的时间积累突变,但罕见的胰腺癌长期幸存者在原发肿瘤中具有更强的T细胞活性,其复发肿瘤的遗传异质性较低,免疫原性突变(新抗原)较少。为了量化免疫编辑是否是这些观察结果的基础,研究人员通过两个特征来推断了新抗原是否具有免疫原性(高质量),这基于新抗原与已知抗原相似性的"非自体性",以及基于新抗原与野生型肽相比不同地结合到MHC或激活T细胞所需的抗原性距离的"自体性"。利用这些特征,研究人员估计癌症克隆的适应性是T细胞识别高质量新抗原的总成本被致癌突变的收益所抵消。
通过这个模型,研究人员预测了肿瘤的克隆进化,并发现胰腺癌的长期幸存者会发展出具有较少高质量新抗原的复发性肿瘤。因此,研究人员展示了人类免疫系统自然编辑新抗原的证据。此外,研究人员提出了一个模型来预测免疫压力是如何诱导癌细胞群随时间演变的。更广泛地说,这些研究结果表明,免疫系统从根本上监督宿主的基因变化来抑制癌症。
Source:
美国斯坦福大学Mark J. Schnitzer、Sadegh Ebrahimi等研究人员合作揭示感觉皮质编码和区域间通信的新兴可靠性。2022年5月19日,国际知名学术期刊《自然》在线发表了这一成果。
研究人员对小鼠执行视觉辨别任务的8个新皮层区域的神经元活动同时进行了5天的成像,产生了超过21000个神经元的纵向记录。分析显示,整个新皮层的事件序列从静止状态开始,到感知的早期阶段,并通过任务反应的形成。在静止状态下,新皮层有一种功能连接模式,通过共享活动共变的区域组来识别。在感觉刺激开始后约200毫秒内,这种连接重新排列,不同区域共享共变和任务相关信息。
在这个短暂的状态中(大约持续300毫秒),区域间的感觉数据传输和感觉编码的冗余都达到了顶峰,反映了任务相关神经元之间相关波动的短暂增加。刺激开始后约0.5秒,视觉表征达到一个更稳定的形式,其结构对单个细胞反应中突出的、逐日的变化是强大的。在刺激出现约1秒后,一个全局波动模式传达了小鼠对每个受检区域即将作出的反应,并与携带感觉数据的模式正交。
总的来说,新皮层通过在感知开始时感觉编码冗余的短暂提升、对细胞变异性稳健的神经群体编码以及广泛的区域间波动模式来支持感觉性能,这些模式以不干扰的渠道传递感觉数据和任务反应。
据了解,可靠的感觉辨别必须来自高保真的神经表征和脑区之间的交流。然而,新皮层感觉处理如何克服神经元感觉反应的巨大变异性仍未确定。
Source:
近日,美国斯坦福大学Jesse M. Engreitz及其团队的最新研究揭示人类增强子和启动子序列的相容性规则。相关论文于2022年5月20日在线发表在《自然》杂志上。
研究人员设计了一种名为ExP STARR-seq(增强子x启动子自转录活性调节区测序)的高通量报告试验,并应用它来研究人类K562细胞中1000个增强子和1000个启动子序列的组合相容性。研究人员确定了增强子-启动子兼容性的简单规则:大多数增强子以类似的数量激活所有启动子,内在的增强子和启动子的活动以倍数结合来决定RNA输出(R2=0.82)。
此外,有两类增强子和启动子显示出微妙的偏好效应。管家基因的启动子含有GABPA和YY1等因子的内置激活模体,这降低了启动子对远端增强子的反应性。表达不一的基因的启动子缺乏这些模体,对增强子表现出更强的反应性。总之,这种对增强子-启动子兼容性的系统评估表明,在人类基因组中,有一个由增强子和启动子类型调整的乘法模型来控制基因转录。
据了解,人类基因组中的基因调控是由远端增强子控制的,它能激活附近特定的启动子。这种特异性的一个模型是,启动子可能对某些增强子有序列编码的偏好,例如由相互作用的转录因子组或辅助因子介导。这种"生化兼容性"模型已被个别人类启动子的观察和果蝇的全基因组测量所支持。然而,人类增强子和启动子内在兼容的程度还没有得到系统的测量,它们的活动如何结合起来控制RNA的表达仍不清楚。
Source:
美国华盛顿大学医学院David J. Pagliarini和美国摩根里奇研究所Joshua J. Coon共同合作,近期取得重要工作进展。他们通过深度多组学分析来确定线粒体蛋白的功能。该项研究成果2022年5月25日在线发表于《自然》杂志上。
在这里,为了建立更完整的人类线粒体蛋白功能纲要,研究人员使用基于质谱的多组学分析方法分析了200多个CRISPR介导的HAP1敲除细胞系。这项工作产生了大约 830 万个不同的生物分子测量值,提供了对线粒体扰动的细胞反应的深入调查,并为蛋白质功能的机制研究奠定了基础。在这些数据的指导下,他们发现PIGY 游开放阅读框(PYURF)是一种S-腺苷甲硫氨酸依赖性甲基转移酶伴侣,它支持复合物I组装和辅酶Q生物合成,并且在以前未解决的多系统线粒体疾病中被破坏。
研究人员进一步将推定的锌转运蛋白SLC30A9与线粒体核糖体和OxPhos完整性联系起来,并将RAB5IF确定为第二个含有导致脑面胸腔发育不良的致病变异的基因。他们的数据可以通过交互式在线资源进行探索,表明许多其他孤儿线粒体蛋白的生物学作用仍然缺乏强大的功能表征,并定义了线粒体功能障碍的丰富细胞特征,可以支持线粒体疾病的基因诊断。
据了解,线粒体是真核生物新陈代谢和生物能学的中心。近几十年来的开创性努力已经确定了这些细胞器的核心蛋白成分,并将它们的功能障碍与150多种不同的疾病联系起来。尽管如此,数以百计的线粒体蛋白仍缺乏明确的功能,约40%的线粒体疾病的潜在遗传基础仍未得到解决。
Source:
美国加州大学洛杉矶分校Alcino J. Silva和Miou Zhou研究组合作揭示,C-C 趋化因子受体 5 (CCR5)可关闭记忆链接的时间窗口。相关论文发表在2022年5月25日出版的《自然》杂志上。
他们展示了CCR5(一种免疫受体,众所周知是 HIV 感染的共同受体)的表达延迟(12-24 小时)增加在环境记忆形成后决定时间窗口的持续时间,以便将该记忆与后续记忆关联或链接。小鼠背侧 CA1 神经元中 CCR5 的这种延迟表达导致神经元兴奋性降低,进而负调节神经元记忆分配,从而减少背侧 CA1 记忆集合之间的重叠。降低这种重叠会影响一个记忆触发另一个记忆的召回能力,因此关闭记忆链接的时间窗口。
他们的研究结果还表明,与年龄相关的 CCR5 及其配体 CCL5 的神经元表达增加会导致老年小鼠的记忆连接受损,这可以通过 Ccr5 敲除和美国食品和药物管理局(FDA)批准的药物逆转。抑制这种受体具有临床意义。总而言之,这里报道的研究结果提供了对塑造记忆链接时间窗口的分子和细胞机制的见解。
据介绍,现实世界的记忆是在特定的环境下形成的,通常不是孤立地获得或回忆的。时间是记忆组织中的一个关键变量,因为时间接近的事件更有可能有意义地关联,而间隔较长的事件则不是。大脑如何区分时间上不同的事件尚不清楚。
Source:
德国海德堡大学Rohini Kuner研究组发现错误连接和终末器官靶向异常可引起神经性疼痛。2022年5月25日出版的《自然》杂志在线发表了这项成果。
研究人员在神经损伤后超过10个月的时间里,以纵向和非侵入性地方式对基因标记的纤维群进行成像,这些纤维群在皮肤周围感知有害刺激(伤害感受器)和轻柔触摸(低阈值传入),同时跟踪这些小鼠与疼痛相关的行为。完全去神经支配的皮肤区域最初失去感觉,逐渐恢复正常敏感性,并在受伤几个月后出现明显的异常性疼痛和对轻触的厌恶。这种神经再支配引起的神经性疼痛与伤害感受器有关,这些伤害感受器延伸到去神经支配的区域,精确地再现神经支配的初始模式,由血管引导,在皮肤中显示出不规则的终端连接,并降低了模拟低阈值传入的激活阈值。
相比之下,低阈值传入神经(通常在损伤后完整神经区域中介导触觉以及异常性疼痛)没有重新建立神经支配,导致仅具有伤害感受器的迈斯纳小体等触觉末端器官受异常神经支配。敲除与伤害感受器有关的基因完全消除了神经再支配异常性疼痛。因此,该研究结果揭示了一种慢性神经性疼痛的发生机制,这种疼痛是由结构可塑性、异常末端连接和神经再支配过程中伤害感受器受损造成的,并为在临床观察到的对病人产生沉重负担的矛盾感觉提供了机制框架。
据了解,神经损伤会导致慢性疼痛和对轻柔触摸的过度敏感(异常性疼痛)以及受伤和未受伤神经聚集区域的感觉丧失。改善这些混合和矛盾症状的机制尚不清楚。
Source:
星形胶质细胞在不同疾病中的反应性转录调控不同,这一成果由美国加州大学Michael V. Sofroniew、Joshua E. Burda研究组经过不懈努力而取得。2022年5月25日出版的《自然》杂志发表了这项成果。
研究人员通过将生物学和信息学分析(包括RNA测序、蛋白质检测、转座酶可及染色质测定与高通量测序(ATAC-seq)和条件基因缺失)相结合的方法来预测转录调节因子,这些调节因子调控了超过12,000个与小鼠和人不同中枢神经系统疾病中星形胶质细胞反应有关的差异表达基因(DEGs)。与星形胶质细胞反应相关的DEG在疾病中表现出明显的异质性。转录调节因子也具有疾病特异性差异,但研究人员发现了一个在这两个物种多种疾病中常见的由61个转录调节因子组成的核心组。实验表明,DEG多样性是由不同转录调节因子与特定细胞内环境之间相互作用决定的。
值得注意的是,相同反应性转录调节因子可以调节不同疾病中显著不同的DEG队列。转录调节因子对DNA结合基序的可及性变化在不同疾病之间存在明显差异;对DEG变化至关重要的调控可能需要多个反应性转录调节因子。通过调节反应性,转录调节因子可以显著改变疾病结果,并可以将其作为治疗靶点。该研究提供了与疾病相关反应性星形胶质细胞DEG及可搜索的预测转录调节因子资源。该研究结果表明,与星形胶质细胞反应性相关的转录变化是高度异质的,并且可通过特定于细胞内环境的转录调节因子组合产生大量潜在的DEG。
据悉,星形胶质细胞对中枢神经系统疾病和损伤作出反应,反应性变化会影响疾病进展。这些变化包括DEGs,然而对DEGs背景多样性和调控知之甚少。
Source:
近日,以色列魏茨曼科学研究所Karina Yaniv、Rudra N. Das等研究人员合作发现,淋巴管转分化可产生专门的血管。相关论文于2022年5月25日在线发表在《自然》杂志上。
研究人员利用斑马鱼臀鳍的循环成像和系谱追踪,从早期发育到成年,发现了一种通过淋巴管内皮细胞(LECs)的转分化形成专门血管的机制。此外,研究人员证明了从淋巴与血液内皮细胞(EC)衍生出的臀鳍血管在成年生物体中的功能差异,揭示了细胞本体和功能之间的联系。研究人员进一步利用单细胞RNA测序分析来描述了转分化过程中涉及的不同细胞群和过渡状态。
最后,结果表明,与正常发育相似,在臀鳍再生过程中,血管从淋巴管中重新衍生出来,表明成年鱼的LEC保留了生成血液EC的效力和可塑性。总的来说,这项研究强调了通过LEC转分化形成血管的先天机制,并为EC的细胞个体发生和功能之间的联系提供了体内证据。
据了解,细胞的谱系和发育轨迹是决定细胞身份的关键因素。在血管系统中,血液和淋巴管的EC通过分化和特化来满足每个器官的独特生理需求。虽然淋巴管被证明来自多种细胞来源,但LEC不知道会产生其他细胞类型。
Source:
德国马克斯·普朗克免疫生物学和表观遗传学研究所Thomas Boehm、Dominic Grün等研究人员合作揭示两种双潜能胸腺上皮细胞祖先类型的发育动态。相关论文于2022年5月25日在线发表于国际学术期刊《自然》。
研究人员结合单细胞RNA测序(scRNA-seq)和一个新的基于CRISPR-Cas9的细胞条形码系统,在小鼠中确定胸腺上皮细胞随时间变化的质和量。这种双重方法使研究人员能够确定两个主要的祖先群体:一个早期双潜能祖先类型偏向皮质上皮,一个产后双潜能祖先群体偏向髓质上皮。研究人员进一步证明,连续提供Fgf7的自分泌导致胸腺微环境的持续扩张,而不会耗尽上皮祖细胞池,这表明有一种策略可以调节胸腺造血活动的程度。
据介绍,胸腺中的T细胞发育对细胞免疫至关重要,并取决于器官型的胸腺上皮微环境。与其他器官相比,胸腺的大小和细胞组成是异常动态的,例如在发育的早期阶段快速生长和高T细胞输出,随后随着年龄的增长,胸腺上皮细胞的功能逐渐丧失,初始T细胞的产量减少。scRNA-seq发现了年轻和年老的成年小鼠胸腺上皮细胞的意外异质性;然而,推定的产前和产后上皮祖细胞的身份和发育动态仍未得到解决。
Source:
美国西奈山伊坎医学院Filip K. Swirski、Wolfram C. Poller等研究人员合作发现,大脑运动和恐惧回路在急性应激期间调节白细胞。2022年5月30日,《自然》杂志在线发表了这项成果。
研究人员发现,在小鼠急性应激期间,不同的大脑区域塑造了白细胞的分布和整个身体的功能。利用光遗传学和化学遗传学,研究人员证明运动回路通过骨骼肌来源的吸引中性粒细胞的趋化因子诱导中性粒细胞从骨髓快速动员到周围组织。相反,室旁下丘脑通过直接的、细胞内的糖皮质激素信号控制单核细胞和淋巴细胞从二级淋巴器官和血液向骨髓排出。这些压力诱导的、反方向的、全群体的白细胞转移与疾病易感性的改变有关。
一方面,急性应激通过重塑中性粒细胞并引导它们被招募到损伤部位来改变先天免疫力。另一方面,促肾上腺素释放激素(CRH)神经元介导的白细胞转移可防止获得自身免疫,但会损害对SARS-CoV-2和流感感染的免疫力。总的来说,这些数据显示,在心理压力期间,不同的大脑区域会不同地、迅速地调整白细胞景观,从而校准免疫系统对身体威胁的反应能力。
据了解,神经系统和免疫系统有着错综复杂的联系。尽管人们知道心理压力可以调节免疫功能,但将大脑中的压力网络与外周白细胞联系起来的机制途径仍然不为人知。
Source:
老年人睡眠可以证明身体健康与否吗?
睡觉,一般是指人类睡眠,是人类不可缺少的一种生理现象。人的一生中,睡眠占了近1/3的时间,它的质量好坏与人体健康与否有密切关系,由此可见睡眠对每一个人是多么重要。从某种意义上说,睡眠的质量决定着生活的质量。可是一个人为什么要睡眠?这个问题一直是科学家想要彻底解决的问题。最近,据英国《新科学家》杂志报道,科学家们针对睡眠的原因提出了几种说法,从养精蓄锐的浅显理论到涉及记忆处理的复杂理论,都对人类的睡眠进行了全面的探讨。
每个人在忙碌一天之后,都要美美地睡上一觉。人要睡觉是一种生理
睡觉
反应,是大脑神经活动的一部分,是大脑皮质内神经细胞继续兴奋之后产生抑制的结果。当抑制作用在大脑皮质内占优势的时候,人就会睡觉。人们在生活中,有工作,有休息;在神经活动中,有兴奋,有抑制。抑制是为了保护神经细胞,以便让它们重新兴奋,让人们继续工作。每天的睡觉时长,孩子们必须达到11小时,小学生10小时,初中生8小时,高中生7小时。
睡觉同时是记忆细胞新陈代谢的过程:老化的细胞将每个记忆信息所使用的排列方式输入新细胞内,以备储存。其中包括运动、语言区、平衡键,以及日常生活中的一些往事和回忆。它们都是物质的,所以也以物质的方式存在。
如果一个人长期睡眠不足,导致记忆细胞无法健康生活,则容易产生某些健康问题,甚至疾病,比如失语症,痉挛,抽搐,或者强制性睡眠导致的休克和昏厥等。时间久了也容易产生癌变。
单纯从自然科学的角度来看,睡觉睡到自然醒是最好不过的了,不然都会折寿。规律生活是一个好的基础,但是为了“规律”而长期疲劳,是危险的。科学家建议,有经济能力的人最好顺其自然,不要为了标榜道德而损害健康。
因为,毕竟对农民来说,“早睡早起身体好”是和生产关系挂钩的。农民不早起干活,放牛,种地,就会没有饭吃。长期没有饭吃,身体怎么可能会好呢?所以,如果不是农民,或者只为了混饭吃,那就完全没有必要折磨、虐待自己。
哈欠是提醒我们睡眠不足的第一个标志。如果18个小时没有入睡,人类的反应时间将从0.25秒变为0.5秒并继续变长,而普通人会产生阵发性昏睡;大约每2到20秒,就会发现需要重新读一遍刚才读过的东西;眼皮变得越来越重;达到20个小时后,将开始打盹。研究表明,这时正常人的反应速度基本等同于血液中酒精含量为0.08的人———若保持这个数值驾车,很容易违章。还会忘记很多事情,例如写错名字或忘记拉手刹。
在动物王国中,睡眠是与食物、水和性交同等重要的大事。从果蝇到现代人,大家都是如此。不过科学家们都不能确切地了解睡眠究竟是为了什么。是为了使身体重新振作吗?不完全是。人们都知道,肌肉并不需要睡眠,只是要间歇性地放松。是为了使头脑保持清醒吗?差不多。良好的睡眠对大脑有好处,但对于大脑如何从睡眠中受益,学者们还没有统一的意见。
一种理论认为睡眠有助于使大脑保存人类在清醒时接受的一切信息。而另一种观点则称睡眠是为了恢复能量。还有一部分人提出睡眠往往利用一些神秘的形式帮助我们掌握各种技能。那么,睡眠到底是什么?
在上世纪90年代中期发生了两件事,将研究工作的重点引回了睡眠的实质目的。以色列魏茨曼科学院的科学家于1994年提出学者们的研究应着眼于关于错误的记忆处理问题上,而窥视睡眠状态下的大脑的技术也在那时大大提高了。
魏茨曼科学院的科学家们发现人们的“速眼动”睡眠量直接关系到他们在电脑屏幕上识别固定图案的能力。这种技术被称为程序记忆,需要重复操作和实践。而记忆事实,例如记忆美国总统的名字,便是陈述性记忆——一种与速眼动睡眠无关的能力。哈佛大学医药学院的神经学专家罗博特·斯蒂克高德说:“关于记忆,我们的理解总是很天真的。”
安静睡觉
但某次,科学家们突然明确了记忆研究的方向。在过去的几年间,斯蒂克高德与他的同事马修.沃克一起在美国波士顿的贝思医学中心研究睡眠对于运动技巧的程序记忆的影响。他们让使用右手的受训者使用左手一遍又一遍尽可能快地打一串数字。他们发现,不管这个实验是在一天中的什么时间进行,受训者的精确度都会在6分钟之后提高60%-70%,而如果受训者在早晨接受实验,12小时之后再重新测试一次,他们的精确度并没有什么大的提高。但是当受训者在晚间受训,并在起床之后再接受测试,他们的速度将提高15%-20%,精确度将提高30%-40%.令专家吃惊的是,那些提高程度最大的受训者花费了最多的时间在非速眼动睡眠上。而其他关于视觉或知觉能力的训练则要求受训者拥有较深的睡眠或同时拥有慢波睡眠和速眼动睡眠,有些时候,就算是合上眼睛一个小时也会有很大的不同。而其他时候,整晚的良好睡眠是非常必要的。
希望我能帮助你解疑释惑。
为什么要睡觉? 几乎每个人在忙碌了一天之后,都要香香地睡上一觉。
人为什么要睡觉?
人的一生中,将近三分之一的时间是用于睡觉的。刚出生的婴儿几乎每天要睡20个小时;即使成年后,每夭至少要睡 6~7小时。
不久前,英国皇家学会会报公布了一则历史记录,记叙了17世纪末叶一个特别会睡觉的人,名叫塞谬尔. 希尔顿。希尔顿 身体结实健壮,并不肥胖。1694年5月13日希尔顿一觉睡了1个星期,周围的人无论用什么方法都不能唤醒他。1695年4月9 日,希尔顿及大睡起来。人们请来医生给他放血,用火熏烫,施以各种刺激。可是全然无用。希尔顿这一次睡了17个星组, 到8月7日才醒来。
与此相反的是,有些人的睡眠时间却少得出奇。美国《科学文摘》杂志载文介绍了一个每天只睡两小时的人。他名叫列 奥波德·波林。每天又睡两小叶的波林并不是在床上辗转反侧,难以入睡,他象一般人—样安甜地入睡。而且波林白天要连续 工作10小时,从不感觉疲劳或头昏眼花。据波林自己回忆,在他五六岁时,每晚只睡6小时,而其他孩子在这样的年龄至少要睡10小时。
不管睡眠时间长短如何,睡觉看来是人必不可少的行为。这一点似乎已为众多的研究人员所接受。但是,科学家们至今还不能确切地回答人为什么要睡觉的问题。睡觉的功能成了脑科学中一个引人入胜的谜。许多研究人员从不同的角度提出了自己的见解。
最普遍的观点认为睡觉是为了消除体力的疲劳,弥补一天劳累的耗损。“体力恢复”观点的证据是:在睡眠的最初数小 时内,大脑基底部的脑垂体会释放出大量的生长激素,这种生长激素能促进体内蛋白质的代谢,从而促进体内组织的生长和修复。伦敦临床营养、代谢研究组织的彼得·加里克博士对此持否定态度。他认为:对体内蛋白质代谢影响最大的是饮食。 进食时组织蛋白质就增加,而禁食时则下降。蛋白质代谢在夜间变化的主要原因并非是睡眠本身,而是人们在夜间不进食。
加里克认为,一个人不管从事何种体力或脑力劳动,不管疲劳程度如何,即便一连8~11天不睡觉,身体功能仍无损害。 研究人员在一项睡眠实验中检查了3~5天不睡觉的人的尿液,发现这些人的尿液中氮的含量变化不足百分之一。氮是体内蛋 白质代谢的天然指标,由此可以判断,这些受试者的生理功能并未下降。此外,那些自愿减少睡眠达两个半小时的人,在一 年以后并无任何病态表现,也没有因睡眠减少而在白夭疲惫不堪。
最有说服力的观点要数美国波士顿精神健康中心睡眠实验室主任哈特曼教授。他认为,睡觉有两个功能:第一是消除 体力疲劳,第二是消除精神疲劳。而消除体力疲劳在他看来是无容置疑的,而消除精神疲劳的功能则是近年来他在研究短睡 眠者中发现的。哈特曼曾将每晚只睡4小时的短睡眠者与每晚要睡8~9小时的长睡眠者作一比较,他发现短睡眠者和长睡眠 者在生理上没有什么差异。他们的身高、体重,甚至智力都是相同的。而他们各自的心理状态却有很大区别:长睡眠者总是 忧心忡忡,而短睡眠者却极为乐观。哈特曼认为,消除体力疲 劳主要发生在睡眠初期的所谓慢波睡眠中,即从瞌睡、浅睡到 深睡这段时间内以及深睡以后的慢波睡眠中。短睡眠者和长睡眠者几乎以同等的比例经历了漫波睡眠。而恢复精神疲劳主要 发生在深睡以后的快动眼睡眠期。由于长睡眠者比短睡眠者有过多的忧虑,他们需要恢复精神疲劳的时间比短睡眠者长;而 短睡眠者则恰恰相反。哈特曼认为:这正是每天只睡两小时的波林的睡眠中未出现快动眼睡眠的原因所在。
另有一种观点认为,睡眠的主要功能是恢复大脑的疲劳。他们列举了海豚的睡眠事实。有一种海豚可以在清醒状态下使 身体休息,但是它们仍需睡眠,睡眠的方式很奇特:在一小时内轮流使一半脑子睡眠,另一半脑子保持清醒状态。据测定, 这一半睡觉的脑子是以深睡眠为主要睡眠方式的,由此看来,海豚的睡眠主要是恢复大脑的疲劳,而与体力恢复无关。海豚 在睡眠时,身作依然在水里游弋。
英国剑桥大学实用心理学专家威尔金森博士对海豚的例子不屑一顾。他认为:动物的睡眠模式不能说明人的睡眠,动物和 人的进化环境不同,各自的睡眠机理当然有能相提并论。威尔金森等人发现:在禁止睡眠的实验初期,不眠者仍能随着旭日 东升而精神振奋,在许多方面与平时并无差异。据统计,75%的人在一夜不眠之后,用脑电图反应正常。即使在长期的禁止 睡眠的实验中,受试者的中枢神经系统的机能也未见失调迹象。
有一种观点走得更远,认为人的睡眠根本没有恢复体力的作用,仅仅是人们打发黑夜的多余的本能行为。
以上数种观点究竟孰是孰非,目前还难以定论。由于脑内控制睡眠的神经环路极为复杂,这就给揭示睡眠的秘密带来了 很大的困难。
为什么人在睡着了或快睡着了,有时会全身抽下,人马上就清醒了啊
人要睡觉是一种生理反应,是大脑神经活动的一部分,是大脑皮质内神经细胞继续兴奋之后产生了抑制的结果。当抑制作用在大脑皮质内占优势的时候,人就会睡觉。人们在生活中,有工作,有休息,在神经活动中,有兴奋,有抑制。抑制是为了保护神经细胞,以便让它重新兴奋,让人们继续工作。 呵欠是提醒我们睡眠不足的第一个标志。如果18个小时没有入睡,人类的反应时间将从0.25秒变为0.5秒并继续变长。而普通人将开始体验阵发性昏睡,不管在任何地方,大约持续2到20秒,之后你会发现需要重新读一遍刚才读过的东西。你的眼皮变得越来越重,到了20个小时时,你将开始打盹。而根据研究表明,这时正常人的反应速度基本等同于血液中酒精含量为0.08的人———若保持这个数值驾车,你将在很多国家遭到拘留。你还会忘记很多事情,例如二次检查姓名的拼写或在山坡上停车时设置刹车。 在动物王国中,睡眠是与食物、水和性交同等重要的大事。从果蝇到现代人,大家都是如此。不过科学家们都不能确切地了解睡眠究竟是为了什么。是为了使身体重新振作吗?不完全。人们都知道,肌肉并不需要睡眠,只是要间歇性地放松。是为了使头脑保持清醒吗?接近了。良好的睡眠将使大脑受益。但对于大脑如何从睡眠中受益,学者们目前还没有统一的意见。 一种理论认为睡眠有助于使大脑保存人类在清醒时接受的一切信息。而另一种观点则称睡眠是为了恢复能量。还有一部分人提出睡眠往往利用一些神秘的形式帮助我们掌握各种技能。而睡眠到底是什么? 在上世纪90年代中期发生了两件事,将研究工作的重点引回了睡眠的实质目的。以色列魏茨曼科学院的科学家于1994年提出学者们的研究应着眼于关于错误的记忆处理问题上,而窥视睡眠状态下的大脑的科技也在那时大大提高了。 魏茨曼科学院的科学家们发现人们获取的速眼动睡眠量直接关系到他们在电脑屏幕上识别固定图案的能力。这种技术被称为程序记忆,需要重复操作和实践。而记忆事实,例如记忆美国总统的名字,便是陈述性记忆———一种与速眼动睡眠无关的能力。哈佛大学医药学院的神经学专家罗博特。斯蒂克高德说:“关于记忆,我们的理解总是很天真的。” 意外的发现 但某次,科学家们突然明确了记忆研究的方向。在过去的几年间,斯蒂克高德与他的同事马修。沃克一起在美国波士顿的贝思医学中心研究睡眠对于运动技巧的程序记忆的影响。他们让使用右手的受训者使用左手一遍又一遍尽可能快地打一串数字。他们发现,不管这个实验是在一天中的什么时间进行,受训者的精确度都会在6分钟之后提高60%-70%.而如果受训者在早晨接受实验,12小时之后再重新测试一次,他们的精确度并没有什么大的提高。但是当受训者在晚间受训,并在起床之后再接受测试,他们的速度将提高15%-20%,精确度将提高30%-40%. 令专家吃惊的是,那些拥有最大提高的受训者花费了最多的时间在非速眼动睡眠上。而其他关于视觉或知觉能力的训练则要求受训者拥有较深的睡眠或同时拥有慢波睡眠和速眼动睡眠,有些时候,就算是合上眼睛一个小时也会有很大的不同。而其他时候,整晚的良好睡眠是非常必要的。 隐藏的窍门 关于睡眠与其他有感知的技能的关系仍在继续着。德国卢比克大学的JanBorn和他的同事们公布了一项研究表明为什么睡眠往往给人们带来比较好的结果。他们让106名受训者利用简单但枯燥的数学等式将一串数字转换为另外一串。受训者们并不知道这其中有个隐藏的计算诀窍可以缩短他们的反应时间。而夜间良好的睡眠将参与者发现这种诀窍的几率从23%提高到了59%.也就是说,睡眠是非常重要的。 睡眠的过程 目前我们缺少一个统一的公认的理论解释我们为什么要睡眠,科学家们便将重点集中于阐述睡眠究竟是什么,并处理干扰睡眠的情况,例如焦虑、下肢不宁人综合征(忙腿症,症状为不可控制地不停摆动小腿或整个大腿)以及睡眠呼吸暂停症。他们发现多数哺乳动物(海豚和鲸或许除外)的睡眠被清晰地划分为两个阶段,其中之一表现为眼睛迅速转动,也就是著名的速眼动睡眠(浅睡),而另一阶段则直接被称为非速眼动睡眠(深睡)。人类通常在90分钟之内完成由速眼动睡眠过渡到非速眼动睡眠的过程。但根据某些观察,我们实际上在速眼动睡眠过程中花费的时间远大于这个时间。 如果你通过脑电图观察人类在速眼动睡眠过程中的状态,你会发现仪器将显示很多大脑的行为,如果你在这期间把睡眠者唤醒,他们会告诉你他们刚刚梦到了什么。而在非速眼动睡眠过程中的梦的组成不会超过一两幅简单的画面。不理会那些关于梦的神话,那些试图寻找梦境隐含意义的科学家们的工作进程却不容乐观。目前对于梦的解释最普遍的观点是梦境不过是重复了一小部分先前发生过的事。 脑电图描记器将非速眼动睡眠由浅至深划分为4个部分。第3、4部分表现为明显的低频率脑电波,被专家称为慢波睡眠。而人类在夜晚的头三个小时花在慢波睡眠状态的时间远大于起床前的一个小时。小孩最容易进入慢波睡眠状态,因此在把他们从车里抱到床上去的时候他们总是睡得非常好。另一方面,成年人拥有非常少的慢波睡眠,或许是因为他们在半夜起来的次数总是很多。 慢波睡眠 良好的仪器可以帮助研究者们更进一步了解慢波睡眠究竟为我们带来什么。在《自然》杂志上发表的一篇文章中,威斯康星州立大学的神经病理学家及精神病学家托诺尼表示大脑中那些在清醒时需要忙碌学习新技能的部分需要更长时间的慢波睡眠,这样才能表现得更好。 托诺尼的实验室有11名志愿者,他要求他们利用鼠标在电脑屏幕上点击目标。但志愿者们并不知道研究人员利用改变鼠标光标的形式加大了操作难度,他们需要对鼠标进行修正才能成功点击目标。志愿者被分成两组,一组在练习与测试之间拥有充分的睡眠,而另一组则不睡觉。睡觉的一组大脑电波强度远大于了另一组人,而他们第二天的表现也出色很多。 这到底意味着什么?托诺尼推测慢波睡眠其实削弱了所有神经之间的联系。听起来很有悖常理,但这其实只是一种自我保存。“总的来说,大脑消耗整个身体20%的能量。”托诺尼解释道。大多数能量用于神经元的连接,而你学习得越多便拥有越多的神经键。“因此最后,如果你的神经键非常强大,证明你运转大脑将消耗更多的能量。”托诺尼说:“或许是另一个20%.”然而几天后,大脑中一些新的神经键需要更多的能量而身体或许不能给予。因此其中一些神经线连接将会变弱———这被猜测是在慢波睡眠过程中发生的。这种解释仍然是个假设,但托诺尼认为他已经拥有了证据。“在慢波行为中,所有的神经细胞都活跃半秒钟再沉寂半秒钟。”他说,或许睡眠只是重复修剪并加固神经细胞之间的连接以确保我们在学习新东西的同时不至于忘掉以前学过的。
上一篇:比较医学杂志社
下一篇:老年人医学杂志