jve论文发表
jve论文发表
宁波的大学有宁波大学、浙江万里学院、公安海警学院、宁波工程学院和宁波职业技术学院等。
1、宁波大学:位于宁波市,是教育部、浙江省、国家海洋局、宁波市共建高校,是浙江省首批重点建设高校,是国家“双一流”世界一流学科建设高校、“111计划”建设高校,教育部“卓越医生教育培养计划”、“卓越农林人才教育培养计划”改革试点高校。
2、浙江万里学院:浙江万里学院的办学历史可以追溯到1950年创办的浙江省立宁波农业技术学校,其后经历了浙江农业大学宁波分校、浙江农村技术师范专科学校等发展阶段。2002年,更名为浙江万里学院。
3、公安海警学院:位于浙江省宁波市北仑区,是一所经教育部批准成立的公安部直属现役制普通高校,现在是武警部队一所高等院校,全国唯一一所专门培养武警海上执人才的高校。主要承担武警海警部队干部的培养任务,负责武警海警部队通信、计算机、机要、后勤等专业技术干部的培养。
4、宁波工程学院:是由宁波市人民政府创办的全日制普通本科院校,创建于1983年。2004年,宁波工程学院从宁波高等专科学校成功升格为最年轻的本科院校,2008年,学校顺利通过浙江省教育厅组织的学士学位授予权评估,实现了专科向本科的实质性转变。
5、和宁波职业技术学院:是一所由中华人民共和国教育部批准设立的从事高等职业教育的普通全日制高等学校,国家建设类技能型紧缺人才培养试点高校、浙江省重点建设高职院校,2017年入选全国第二批深化创新创业教育改革示范高校。
参考资料来源:百度百科-宁波职业技术学院
参考资料来源:百度百科-宁波工程学院
参考资料来源:百度百科-宁波大学
参考资料来源:百度百科-浙江万里学院
参考资料来源:百度百科-公安海警学院
宁波有哪些大学?
宁波的大学有宁波大学、宁波理工学院、宁波诺丁汉大学、宁波财经学院、浙江医药高等专科学校等等。
一、宁波大学
宁波大学于1986年由世界船王包玉刚先生捐资创立,邓小平同志题写校名,建校之初,由浙江大学、复旦大学、中国科学技术大学、北京大学、原杭州大学五校对口援建。1996年,原宁波大学、宁波师范学院和浙江水产学院宁波分院三校合并,组建新的宁波大学。
二、宁波理工学院
宁波理工学院成立于2001年6月,是一所由宁波市人民政府和浙江大学合作创办全日制普通本科院校,2015年12月,被确定为浙江省应用型建设试点示范学校。
三、宁波诺丁汉大学
宁波诺丁汉大学创建于2004年,由英国诺丁汉大学与浙江万里学院合作创办的具有独立法人资格和独立校区的中外合作大学,是中外合作大学联盟成员。
2005年5月20日,教育部正式批准设立宁波诺丁汉大学; 2008年12月获教育部批准开展博士研究生教育。
四、宁波财经学院
宁波财经学院创办于2001年,前身为宁波大红鹰职业技术学院,2008年升格更名为宁波大红鹰学院,2015年成为浙江省首批应用型本科建设试点示范高校,2018年更名为宁波财经学院。
截至2018年12月,学校本部和杭州湾两个校区,占地面积约1700亩;有35个本科专业;在校全日制本科生近2万人。
五、浙江医药高等专科学校
浙江医药高等专科学校前身为创建于1984年的浙江省医药学校,1986年招生,1999年12月,经浙江省人民政府批准筹建浙江医药职业技术学院,2002年2月,升格大专,2017年,学校升本正式列入浙江省院校设置“十三五”规划。
参考资料来源:百度百科-宁波大学
参考资料来源:百度百科-宁波理工学院
参考资料来源:百度百科-宁波诺丁汉大学
参考资料来源:百度百科-宁波财经学院
参考资料来源:百度百科-浙江医药高等专科学校
急求英语构词法的国内外研究动态,毕业论文开题答辩在即
英语快速记忆-构词法
语言是随着人类社会的不断发展而发展的。一些旧词的过时意味着需要人们创造出一些新的词,而新的词的产生,大抵服从语法的法则,有其规律可循。语言的这种"弃旧创新"不断完善和发展的过程体现出一种规律--构词法(word-formation)。
为何在学构词法?我们认为,对于普通的医务专业人员来说,学点英语的构词方式,有以下几方面的益处:
(1)了解词的结构,扩大巩固所学的词汇。在阅读科技文章和专业资料时,碰到生字可以由已知的成分去分析未知词的含义,甚至可以"猜字"。比如说,如果我们知道了词根anthropo-[man](人)的意思,就有难理解下面几个词的含义:anthropolgy(人类学)、anthropid(类人的)、anthropologist(人类学家)、anthropolgical(人类学的)、philanthropist(慈善家)、
misanthropist(厌世者)。其次,学习构词的方法对词汇的记忆和联想也是大有帮助的。
(2)为深刻理解词义有一定的帮助,如:人称外词后缀-ster有时含有轻蔑意味:trickster(骗子手)、gamester(赌棍)、rhymster(打油诗人)、gangster(歹徒)、monster(恶人)等。
(3)培养灵活运用词语的能力和善于造词的本领。比方,on-the-spot(现场的)、sixteen-in-one-group(十六进制的)、blue-black(蓝黑)、under-develop(发育不全)、middle-of-term(期中)、fecal-borne(粪便传播的)、hair-bulb(毛球)、fever-blister(发热性疱疹)、Mikulicz-Vladimiroff(米弗二氏)、mind-blindness(精神性盲)等等。
以上谈了构词的三种好处,但是也不能夸大其作用,因为词只是语言的基本素材,不能孤立看待。构词往往没有一定成规,有时还要靠惯用法(us-age)决定。初学者容易造出类似My doctor disadvised me to redouble my dosage(我的医生没有劝我加倍剂量)。的句子。这说明他们只是知其一而不知其二。因此,为初学英语者来说,最好是先扩大词汇,再学点构词法,以避免错误的发生。
最常用的英语构词方法有以下三种
(1)转化法conversion 转化法就是把一个词从一种词类转成另一种词类。例如:black a.(黑)→to blacken v.(使黑),这种转化被称为缀后(affixation)或派生(derivation).可以用改变词根的元音或辅音的方法,例如:hot a.(热)→to heat v.(热)、full a.(满)→to fill v.(装满)、whole a.(健康)→to heal v.(医治)、blood n.(血)→to bleed v.(出血)等,这叫做元级派生(primary derivation).也可以不改变词本身的拼法,转成其它词类,如:gangrene n.(坏疽)→gangrene v.(使生疽)、gargle n.(嗽喉)→gargle v.(嗽喉)、correct a.(正确的)→correct v.(纠正)、second num.(第二) →second vt.(支持)、image n.(影像)→image v.(作图像)sample n.(样品)→sample v.(取样),这些就属于转化(conversion)了。除此之外,还可以有种种的词类转化。
(2)合成法(composition)合成法就是把两个以上的词、组合成一个复合词。如:three year-old(三周岁的)、up-to-date(最新式的)、up-to-the-minute(非常时髦的)、peace-keeping(维持和平的)、take-off(飞机的起飞)、film-goers(电影观众)、easy-chair(沙发)、consulting-room(诊室)、over-estimate(估计过高)、outnumber(超过数目)、furrow-keratitis(勾状角膜炎)、esimate-ray (r射线)、gas-forming (产气)、giant-cell(巨细胞)、group-specific(类属特异性的),等等。
(3)缀后法(affixation)缀后法指在词上附加前缀或后缀,构成新词。比方名词兼动词的care的派生词有:careful a.→care n.+-ful (a. suf)、carefully adv.→careful a.+-ly (adv. suf)、carefulness n.→careful a.+-ness (),又比方:动词connect 的派生词有:disconnect v.→dis-+con-nect n.( 使分开)、connective a.→connect v.+-jve(有连接作用的)和connection n.→connect v.+ -ion(连接)。
除了上面三种最常用的构词法外,还有其它的构词方式,如:反成法(back-formation)缩略法(shortening),拟声法(imitation)和混合法(blend).因它们都不是本书讨论研究的重点,故这里就不再一一举例赘述了。
在开始研究本书的重点内容--缀合构词法之前,为方便起见,有必要先介绍几个有关词结构方面的概念。
(1) 词根和词干(root and stem)长期以来,语言学家对词根root有两种不同的理解,其一中把词根严格看作单章节的原始意义单位,这种词根为数不多,在英语 里,大约有460多个(见,a primet if English etymology §102..)这对于研究词源学( etymology)或许是必要的,但对于普通的英语学习者,词不达意根就成了难以辩认的了,因此,它的用处不大。例如:narrow,narcissus,nerve,snare等词不达意的词不达意根都是sne.其二是把词不达意根看作同根词不达意共有的可以辩认的部分,不一定是单音节,也不一定是原始形式。比如:医学方面的词根有:ophthalmo-(眼),esophage-(食道),epithelio(上皮),reticulo-(网状),erythro-(红)等。换名话说,词不达意根指的是有些音节(不是前缀或后缀)在不同的词不达意里出现,而其根本形式和含义相同,如:error(错误),erratum(印刷错误),aberration(迷误),errkoneous(错的)的词不达意根都有是err-[to wander](离)。
(2) 词干(stem) 指的是未经词形变化的原形词。例如:动词to impede(hinder)的词根是impede,必须注意,词的词形变化(inflection)不属于构词法研究的对象,这是因为词的这些变化既不能改变词不达意的原意,又不能改变词类。比如:动词teach有时态的变化,即可以在其后加时态的词尾-ed或-ing,但这并不表明构造 出新的词来了。
(3) 前缀和后缀(prefix and suffix)前缀的后缀都是词根或单词,它们原来故地是独立的词或词根,但由于经常缀在其它词或词根的前后,辅助中心意义,逐渐就失去了独立的形式,读音意义而成为附加部分。前缀有一定的含义,缀前缀构成的词叫做合成词(compound).如:cohost →co-[together,with]+host.后缀只具有转变词的词类的功能,不改变其含义,但医学上,有些后缀本身有一定的含义。例如:-ate(盐酸),-ase(酶)等。缀后缀而成的词叫作派生词(derivative),例如:helpful a→help n. + -ful(),quickly adv. →quick a. + -ly ()等
求一篇关于温度检测及上下限报警的论文 最好是翻译成英文的。
Testing the "System on a Chip"
Much has been written about the concept of a "system on a chip," the ever-increasing integration of logic and analog functions on one silicon die or chip. This paradigm is about to change. The results of work by universities, national labs, and companies such as Motorola, Inc., are paving the way for a true system on a chip, or SOC. These new SOCs will not only analyze data, but will measure, analyze, and react to their environment.
The integration of power and analog elements with a CMOS microcontroller unit (MCU) has been possible for several years. Products have been introduced such as an integrated 68HC05 motor controller with integral power devices in an H-bridge configuration (1990). In 1993, a product called a System Chip MCU was introduced that provided a Society of Automotive Engineers J1850 interface, including the physical layer. This chip could withstand 40 V, based on the combination of power and analog capability with the MCU. However, the system input was not included in previous monolithic designs.
What is the most recent development that promises to truly enable a system on a chip? It is the ability to combine CMOS and MEMS (microelectromechanical systems) structures into one process flow. Photo 1 illustrates a 68HC05 microcontroller with a 100 kPa pressure sensor integrated onto a single silicon die. A likely application is a side air bag sensor.
A pressure sensor, inside the door panel of a car, could detect the change in pressure when the panel crumples under an impact. The ability to program the onchip microcontroller will enable the auto manufacturer to embed the control algorithm inside the chip. To complete an entire system, only a mechanism for actuating the air bag need be added. This actuation capability could be yet another step in the continuous integration of silicon and electronics/electromechanical systems. This platform provides a first step in the integration of electronics with electromechanical structures and at the same time raises several issues that must be resolved before a low-cost, high-quality product can be mass produced. One of these issues is that of testability.
Typical logic circuits have many years of accumulated test data that can be used as a foundation for building the next generation of product. With sensors, however, very little previous technology can be reused. The reasons are the relative infancy of sensor technology and the uniqueness of each type of sensor. For example, the technology used to measure pressure (a thin diaphragm with integral strain gauge) is much different from that used for measuring acceleration (a proof mass forming a moving capacitor). The testing technology is different as well. Pressure measurements require a pressure source to be connected to the sensor; acceleration or shock detection requires shaking the device at some known frequency and force.
System Configuration
To develop a proof-of-concept vehicle (see Figure 1), a 100 kPa pressure sensor was integrated onto Motorola's standard 8-bit 68HC05 microcontroller core along with the associated analog circuitry [1]. To this basic core was added analog circuitry for signal conditioning, a voltage and current regulator, and 10-bit A/D and 8-bit D/A converters. A temperature sensor was also incorporated into the design for compensation purposes.
The pressure transducer is temperature dependent and has an inherent nonlinearity. To increase the accuracy of the system, a calibration or conditioning algorithm must be programmed into the microcontroller.
The pressure transducer's output is conditioned by a variable gain and input offset amplifier that is controlled by the program stored in the MCU. The A/D converter is used to read the temperature sensor's and the pressure transducer's outputs. The band gap voltage regulator supplies a constant voltage for the pressure sensor, amplifier, and A/D converter. The band gap current regulator provides a constant current source for the temperature sensor.
Calibration Method
The MCU calibrates and compensates the pressure sensor's nonlinearity and temperature drift. To provide the maximum accuracy, an A/D input resolution of 10 bits was chosen and the calculation resolution was set at 16 bits, fixed point. To calibrate span and offset and compensate the nonlinearity of the sensor output, calibration software performs a second-order polynomial correction of sensor output described as:
Vout = c0 + c1Vp + c2Vp2 (1)
Cp = (c0, c1, c2 ) (2)
where:
Vout = calibrated output
Vp = uncompensated pressure sensor output
To compensate the temperature dependency of Cp, calibration software is used to calculate Cp using a second-order polynomial fitting equation to temperature:
c0 = c00 + c01Vt + c02 Vt2 (3)
c1 = c10 + c11Vt + c12 Vt2 (4)
c2 = c20 + c21Vt + c22Vt2 (5)
(6)
where:
Vt = temperature sensor output
The Cts are read during the calibration procedure and stored in EPROM. The MCU calculates Cp from the temperature sensor output, Vt, and Ct. Cp is then used to calculate the calibrated pressure sensor output using the pressure transducer's output, Vp.
Calibration Procedure
The calibration system first adjusts the gain and offset of the amplifier to use the full A/D range. Then the characteristics of the uncompensated pressure sensor output are examined over several temperature points. At each temperature, a second-order polynomial described in Equation 1 is obtained by least square fitting and the coefficient set, Cp, is determined. After completing the calculation of Cp over all temperature points, Ct is determined by the least square fitting of Equations 3, 4, and 5 to determine Cp over the temperature points. At present, at least three separate temperature sampling points are required to complete the fitting calculation.
Figure 2. The uncompensated output of the sensor-based system on a chip is plotted at four different temperatures.
Characteristics
Figure 2 shows the uncompensated sensor output characteristics over various temperatures after adjusting gain and offset. Based on these data, the coefficients for calibration were calculated and written into the onchip EPROM by the calibration system. The compensation value was rounded off to 8 bits. Figure 3 shows the calibrated and compensated output of the integrated MCU. Figure 4 shows the error from expected values. Since 1 bit is 0.4% error, the result indicates the error is within 0.4% of full-scale output.
Figure 3. Compensated output of the system on a chip is improved through testing and calibration at three temperatures.
Test Issues
Several issues are raised by this initial work, including the different types of testing required, unique test equipment, and the need for multipass testing. To make a low-cost integrated solution possible, these concerns must be addressed.
The integration of a physical measurement function onto the already complex mixed-mode analog-digital chip raises the need for an additional type of testing. The physical medium being tested must be applied to the device and the response must be measured. Measuring the response to a physical stimulus is not a
Figure 4. Bit error in the compensated output is within 1 bit at both 30°C and 85°C
standard test for the semiconductor industry, especially under multiple temperatures. Standard equipment can test the digital and analog portions of the chip, but the application of a physical stimulus and the procedure of heating and cooling the device under test rapidly and accurately drive the need for a modified and unique tester. These testers are one of a kind and are not available as a standard. The tester therefore represents a large part of the final unit's cost.
Not only are the testers expensive, but the throughput is limited. This raises the cost of each part because of the increased depreciation costs allocated to each device. The cost is further increased by the need for multipass testing. Remember that each part is first tested, using at least three different temperatures, to determine the transducer's output characteristics over temperature. Then these values are used to derive the compensation algorithm, which is loaded into the onchip EPROM. To complete the cycle, the device is once again tested over temperature to prove accuracy. Hence, not only is a special tester required, but it becomes a bottleneck since it must be used twice to complete each device—once to measure the characteristics and a second time to verify the result.
Future Directions
Finding ways to reduce the cost of testing is one of the keys to making a low-cost integrated sensor and MCU a reality. Ideas that could prove promising include:
Thoroughly characterizing the design
Limiting the operating temperature
Limiting the accuracy
Programming the MCU to take data during testing
Loading the test and compensation algorithm into the MCU before testing
Since this is a first proof-of-concept device, further characterization could provide a way to limit the number of temperatures required for compensations. Limiting the operating temperature range could also reduce the number of temperatures required for compensation testing. Data shown in Figure 3 indicate a 5% accuracy from 5°C to 25°C. Another potential cost reduction step would be to use the MCU's programmability for data logging during test. By storing the compensation program in the onchip EPROM prior to test, and then logging the uncompensated output into the EPROM during test, it might be possible to develop an algorithm for a one-pass test over temperature.
Without a breakthrough in lowering the cost of testing this new integrated sensor and MCU, the system designer may be limited to the continued use of the present day solution—separate MCU and sensor.
----------
All the DS18B20 sensors, used for the multipoint test temperature, are connected with MCU on one of IO bus, and temperature data are collected by turns. If the system has a large amount of sensors, the time of MCU used in processing the temperature data is obviously prolonged, so the cycle of alternate test gets longer. In this paper, a new method that DS18B20 are rationally grouped is presented, and some measures are taken in software; as a result, the speed of alternate test advances distinctly.
---------
有关.。。个性心理自我分析及完善计划。。。的论文 800字左右 急啊 今天下午要交!
望采纳!
上一篇:amc发表论文
下一篇:论文发表dio