首页 > 学术论文知识库 > 人脸识别怎么发学术论文

人脸识别怎么发学术论文

发布时间:

人脸识别怎么发学术论文

操作步骤/方法 1 1.首先在手机上下载一个看看社保的APP,进入主页面之后找到社保认证。 2 2.进入【社保认证】的页面以后,输入别人的身份证号码和名字或者将身份证的正面放好拍照识别。 3 3.之后将别人的个人资料填写完毕,接着进行人脸检测。

身边的图像识别、人脸识别、文字识别应用案例,还有网络延迟方面的改进或创新之处。

1、金融领域。人脸识别当前在金融领域的应用最为广泛,当前国内金融领域监管要求严格,金融相关产品都需要实名认证,并且具有较高的安全性要求,活体识别,银行卡ocr识别,身份证ocr识别,人证对比等在各大手机银行,金融app,保险app等都已经成为不可或缺的一个环节。

2、安保领域。目前大量的企业,住宅,社区,学校等安全管理越来越普及,人脸门禁系统已经成为非常普及的一种安保方式。

3、通行领域。很多城市的火车站已经安装了人脸识别通行设备,进行人证对比过检,有些城市的地铁站也可以通过人脸识别的方式进行地铁进出站通行。

随着我国城市化进程的加速,社会稳定、城市安全等问题逐渐显现,而人脸识别技术是实现安全、安心城市的关键技术。因此,随着智慧城市的大规模建设,人脸识别技术的应用将是未来新趋势。

人脸识别技术在中国的发展起步于上世纪九十年代末,经历了技术引进-专业市场导入-技术完善-技术应用-各行业领域使用等五个阶段。目前,国内的人脸识别技术已经相对发展成熟,该技术越来越多的被推广到安防领域,延伸出考勤机、门禁机等多种产品,可以全面覆盖煤矿、楼宇、银行、军队、社会福利保障、电子商务及安全防务等领域,人脸识别的全面应用时代已经到来。

人脸识别技术介绍

(1)人脸识别技术流程

人脸识别的技术原理主要包括三大步骤:首先是建立人脸图像数据库,其次是通过各种方式来获得当前要进行识别的目标人脸图像,最后是将目标人脸图像与数据库中既有的人脸图像进行比对和筛选,其技术流程如下:

(2)人脸识别的主要方法

人脸识别技术是一个跨越多个学科领域知识的高端技术研究工作,涉及图像处理、生理学、心理学、模式识别等知识,目前比较常见的人脸识别方法包括基于特征脸的方法、基于几何特征的方法、基于深度学习的方法、基于支持向量机的方法以及其他综合方法。

(3)常用人脸数据库介绍

目前世界较为常用的人脸数据库包括:ERET人脸数据库、CMU Multi-PIE人脸数据库、YALE人脸数据库、YALE人脸数据库B、MIT人脸数据库、ORL人脸数据库、BioID人脸数据库、年龄识别数据集IMDB-WIKI等。

人脸识别技术具有非侵犯性

人脸识别是生物特征识别技术的一个重要方向,不同的生物识别技术在细分技术上各具优势,人脸识别技术是非接触和不需要主动接受的,具有非侵犯性。此外,人们对这种技术的排斥心理最小,因此人脸识别技术是一种最友好的生物特征识别技术,并且图像采集可以由安防中的摄像头完成,不需要重新再布置新的采集设备。

行业技术环境十分活跃

截至2019年底,在soopat专利搜索引擎上以“人脸识别”为关键词检索得到20208项专利申请记录,行业技术环境十分活跃。

从申请年来看,2010-2018年,我国专利申请数逐年增长,2018年增加至5618项,为近年来最高,2019年我国人脸识别相关专利申请数达3024项。

从公开年来看,我国最早于2002年有人脸识别相关专利公开,当年公开数量为1项,随后专利公开量保持快速增长态势,2019年我国人脸识别相关专利公开数量为6700项。

中国人脸识别技术发明专利申请量超六成

在超2万项的人脸识别技术专利中,发明专利的申请量最多,达12407项,占比为;其次为实用新型专利,占比为。

G06K专利申请量过万

从我国人脸识别相关热门专利技术申请分布领域来看,G06K(数据识别、数据表示、记录载体、记录载体的处理)申请量最多,达10134项;其次为G07C(时间登记器或出勤登记器、登记或指示机器的运行、产生随机数、投票或彩票设备、未列入其他类目的核算装置),申请数量为1302项。

人脸识别错误率逐年降低

经过了40多年的发展,人脸识别技术取得了长足进步,根据LFW测试成绩显示,目前最优的系统在千万分之一的误报下达到识别准确率准确率已经超过,甚至超过了人类的识别程度,错误验证率也控制在以下。

即使是采用评测标准最严格的FRVT测试,根据2019年7月3日NIST公布的FRVT最新报告显示了全球人脸识别算法的最高水平可以做到在千万分之一误报率下,漏报率降低于,这意味着千万分位误报下的识别准确率已经超过99%,人脸识别技术的不断进步无疑会促进其在更广泛范围内的应用。

应用场景广泛,安防和考勤门禁占比较高

目前,人脸识别在考勤/门禁领域的应用最为成熟,约占行业市场的40%左右;安防作为人脸识别最早应用的领域之一,其市场份额占比在30%左右;金融作为人脸识别未来重要的应用领域之一,其市场规模在逐步扩大,目前约占行业的20%。

三维人脸识别技术是发展主流

从人脸识别技术发展过程来看,未来三维人脸识别是人脸识别主要技术手段,二维人脸识别只是人脸识别发展的过度阶段。实验结果显示,二维人脸识别系统在人脸左右偏转达到40度识别率迅速下降到50%以下;而采用三维人脸识别后,识别率可以提高至少10-20个百分点。

以上数据来源于前瞻产业研究院《中国人脸识别行业市场前瞻与投资战略规划分析报告》。

人脸识别别毕业论文

==你是本科还是硕士啊论文的话应该主要是算法的研究和改进吧……问题比如:你采用了哪种人脸识别算法你对这种算法的改进在哪里(你不只要说明改进在哪里可能还需要做一些实验收集下数据来对比说明算法在改进后对性能有了提升)新算法比其他算法好在哪里(还是通过实验收集数据对比一下)分析下算法的复杂度(时间复杂度和空间复杂度可能都会要求毕竟图像分析很占空间)然后是怎样进行优化的实验采用的样本是哪些(我们当时用的UCIrvineMachineLearningRepository下面会有CMUFaceImages大家一般都用这个库来作为样本)怎样对实验结果进行量化比较的(标准是什么)如果是模式识别的话还可能关心怎样选的特征值和特征空间(计算量大的话是怎样减少计算量的)训练样本采用的什么算法实验的识别率是多少算法的性能是不是稳定……==我想到的都是本科的问题如果是研究生的话可能还会问的更难

计算机软件毕业论文的题目都好写啊

学术堂整理了十五个好写的计算机软件毕业论文题目,供大家进行参考:1、基于西门子S7-1200电梯控制系统设计与实现2、基于ArcGIS Engine工程施工自动规划系统设计与实现3、基于云平台的光伏监控系统设计与实现4、基于移动终端的变电站导航系统设计与实现5、人造板在线同步图像采集系统设计与实现6、基于LoRa的园区能耗管理系统设计与实现7、电厂机组一次调频参数在线监测系统设计与实现8、基于组件技术的船舶导航系统设计与实现9、智能家居控制系统设计与实现10、大型地面光伏电站综合自动化系统设计与实现11、无人驾驶喷雾机电控系统设计与试验12、国产重力输液过程智能监控系统设计与临床转化应用研究13、大型医院医技检查自动预约系统的设计与应用14、高校计算机教学综合管理系统设计与实现15、基于移动物联网的智慧教室设计与实现

网络、网站,或管理系统都可以的

人脸识别论文答辩

兼容问题。解决方法:把属性里的兼容性打开,把Dpi设置更改一下,里面有个修复程序缩放问题,在把高级缩放设置关掉就可以了。云考AI是为政府教育机构、全国各级学校、社会培训机构、各大企业等提供完整的线上考试解决方案。云考AI的特色功能有人脸识别认证、双机位监考、候考模式、人脸识别、云端录制、屏幕共享、异常行为监测、面试打分、监考等功能,能够满足艺考面试、研究生复试、招聘面试、公务员面试、论文答辩等多种场景。

自考报名流程 自考分为社会自考、全日制自考助学,还有就是个别地区的专本套读以及自考专接本。 全日制自考助学,还有就是个别地区的专本套读以及自考专接本的报名、报考、考试都由负责自考招生的学校负责,所有工作都由学校组织。 下面是社会自考,即最普遍的自己报考、自己考试的自考形式。一、报名时间每年1月,4月,7月,10月考试时间,报名时间理论上1月考试报名时间是11月10—20号;4月考试报名时间是12月10—25号;7月考试报名时间是5月10—20号;10月考试报名时间6月10—25号;每年的考试时间会有变动。 自考时间13年1月1开始,只有3次机会。湖北取消了1月的考试。其他省份很多有取消1月份的,部分的有取消4月份的。二、报名地点自考办或助学班直接报名点三、报名:按照省教育考试院的报名流程报名。四、报考专业按学员报考的专业,可以在自考网上查找相关专业的主考院校及课程设置。学员没专业要求的尽量建议报读文科专业。五、考试阶段社会考生报考自考需要自行查阅报考简章安排报考,打印考试条(时间为考前一周)、熟悉考点,考试难度较大,通过率不高。我公司报考的学员考试报考有我方来完成,学员考试前来公司领取准考证、考试条即可,我公司工作人员会带队去考点处理考试期间相关事宜,考场环境宽松,考试通过率高。待考试课程合格后办理免考,免考的课程有课程代码相同的课程,相关证书可免考的课程,比如计算机一级免考计算机应用基础等实践课程环节要等到其它课程合格后方可报考实践课六、申请毕业准备好专科毕业证、身份证、自考准考证,各科成绩合格单到主考院校申请毕业,会有论文答辩这个重要环节,一般论文答辩从资格审定到答辩完成要5个月的时间申请毕业时间是每年的6月和12月七、申请学位达到学位条件是:所有课程合格,学位课平均分70分以上单科65分以上,学位英语合格。学位申请,还要求论文良好。

2022年下半年我省高等教育自学考试毕业证书网上申办12月10日开始。符合申办条件的考生,请在规定的时间按照相应流程和有关要求完成申办手续。一、申办时限序号日期事项12022年12月10日至26日考生网上申报。22023年2月1日之前(1)考生向本人考籍所在市(区)考办报送有关证明材料;具体时间由(2)市(区)考办现场进行人脸识别,采集考生照片。各市(区)确定二、申办条件我省高等教育自学考试考生,符合下列条件可以申请毕业:1.考完专业考试计划规定的全部课程,并取得合格成绩;2.完成规定的毕业论文(设计)答辩或者其他实践性环节的学习任务,并取得合格成绩;3.所取得的学分达到专业考试计划规定的要求;4.课程免考(替代)符合《陕西省高等教育自学考试免考课程实施细则》的规定和有关要求;5.申请自学考试专升本(独立本科段)专业毕业的考生,须持具有学历教育资格的高等学校、高等教育自学考试机构颁发的专科(或以上)学历证书;6.符合相关法律、法规的其他要求。三、申办流程符合申办条件的考生按以下步骤完成申报。第一步:登陆陕西省教育考试院门户网站()或陕西招生考试信息网(),进入“高等教育自学考试服务平台”,按流程提示办理本人毕业网上申请;第二步:打印《陕西省高等教育自学考试毕业申请表》;第三步:按市(区)考办规定时间,持本人有效居民身份证、准考证、课程合格证(2012年4月以后考试无需课程合格证)及其他相关证明材料的原件及复印件到市(区)考办进行毕业审核。申办本科毕业证书者,须持国家承认学历的专科以上(含专科)毕业证书原件及复印件、《教育部学历证书电子注册备案表》或《中国高等教育学历认证报告》等,到市(区)考办进行审核;第四步:按市(区)考办要求,在规定的日期内,通过考籍管理系统,现场进行人证识别,采集考生照片。四、注意事项1.核对本人基本信息。若需对姓名、性别和身份证号码等信息进行修改时,须持户籍证明或相关身份证明材料的原件及复印件,到市(区)考办进行信息变更,同时将身份证明材料递交市(区)考办审核备存,以便省考办在毕业审定时进行复核。2.持有多个准考证且需要合并的考生,在申请毕业前须先在网上进行合并准考证,合并后方可申请毕业。若发现要合并的准考证号码和姓名与考籍管理系统准考证不一致的,须到其考籍所在市(区)考办进行变更手续,变更后再合并。3.有课程免考(替代)的考生,须在网上申请课程免考(替代),方可提交毕业申请。提交毕业申请后,考生须打印《陕西省高等教育自学考试课程免考申请表》,连同相关的证明材料(证书、成绩证明等)的原件及复印件,一并递交市(区)考办进行审核备存。4.考籍由省外转入本省的考生,应当在本省取得专科不少于5门、本科不少于4门的合格成绩,方可申办毕业手续。5.考生需在规定时间内到市区考办现场进行人证识别比对,采集考生照片。6.照片背景可选用均匀淡蓝色(参考值RGB<100,197,255>),数字化图像规格为480×640ppi,分辨率300dpi,24位真彩色,数字化图像文件应符合JPEG2000压缩标准,压缩品质系数不低于60,照片文件大小在20KB-40KB之间,不得超过40KB。7.省自考办对考生资料进行最终审核,符合毕业条件的予以办理毕业证书,2023年4月份发放。五、有下列情况之一者,不予办理毕业证书(1)考籍档案中笔迹明显不一致或成绩有误者;(2)提供虚假证件或证明材料者;(3)姓名或身份证号在考试期间不一致,不能提供户籍所在地公安部门证明材料者;(4)未到现场进行人证识别比对采集照片者;(5)省外转入的考籍档案,未在其考籍所在市(区)办理转入确认手续者;(6)未完成专业考试计划规定的全部课程考试(包括课程笔试、实践环节考核、毕业综合考核或毕业论文答辩),成绩不合格者;(7)申请本科毕业,未通过前置学历审核者;(8)相关毕业材料及考籍档案不全、信息有错误者。自考/成考有疑问、不知道自考/成考考点内容、不清楚当地自考/成考政策,点击底部咨询官网老师,免费获取个人学历提升方案:

报考费 准考证费 电子照相费 资料费 服务费 手续费等,在一般的自考里是没有这些费用的;只有每科报名费和教材费,不过如果全部委托给他们,什么都不用管的话,总体来说2600也不算多。如果你能确定这个机构够正规就可以报名试试。

人脸识别主题论文

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

人脸识别法学论文题目书写:人脸识别就是通过观察比较人脸来区分和确定人的身份的.不被察觉的特点会使识别方法不令人反感,而且不容易引起人注意

==你是本科还是硕士啊论文的话应该主要是算法的研究和改进吧……问题比如:你采用了哪种人脸识别算法你对这种算法的改进在哪里(你不只要说明改进在哪里可能还需要做一些实验收集下数据来对比说明算法在改进后对性能有了提升)新算法比其他算法好在哪里(还是通过实验收集数据对比一下)分析下算法的复杂度(时间复杂度和空间复杂度可能都会要求毕竟图像分析很占空间)然后是怎样进行优化的实验采用的样本是哪些(我们当时用的UCIrvineMachineLearningRepository下面会有CMUFaceImages大家一般都用这个库来作为样本)怎样对实验结果进行量化比较的(标准是什么)如果是模式识别的话还可能关心怎样选的特征值和特征空间(计算量大的话是怎样减少计算量的)训练样本采用的什么算法实验的识别率是多少算法的性能是不是稳定……==我想到的都是本科的问题如果是研究生的话可能还会问的更难

人脸识别技术研究毕业论文

计算机软件毕业论文的题目都好写啊

好的。。。。。给你。。。代劳

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

写设计系统方面的就可以了。之前也是苦于写不出,还是学姐给的文方网,写的《人脸识别系统的研究与实现——图像获取、定位、特征提取和特征识别》,很专业的说人寿保险老业务综合处理系统的设计与实现输油泵机组远程监测及诊断系统设计与实现FORTRAN语言题库管理系统的设计与实现大中型企业网络会计信息系统的设计与实现住房改革管理信息系统的设计与实现DMS-2002型轮机模拟器船舶电力系统故障模拟的研制与实现利用MATLAB基于频率法实现系统串联校正基于红外线检测的停车场智能引导系统研究与实现网络选课系统研究与实现基于人脸识别技术的身份认证系统实现简介基于三维技术的城市工程地质信息系统设计与实现大型烧结机整粒自动控制系统的实现基于B/S模式的药品信息咨询系统的设计与实现使用UML实现学生注册管理系统需求建模基于UML实现三层C/S结构系统的架构基于MuitiGen机载导弹地面训练虚拟现实系统的实现基于Web Service技术实现大型系统集成图书管理系统的设计与实现基于Lucene的电子文档管理系统的设计与实现编组钩计划演示系统设计与实现网络型监控系统的设计与实现热量计多路数据采集系统的设计与实现铁路计量管理信息系统的设计与实现基于ARM的嵌入式绣花机系统的软件实现机载SAR监控系统的设计与实现基于B/S模式的教师信息管理系统的设计与实现一种教学机器人控制系统的设计与实现基于智能Agent的用户个性化检索系统的实现矿井通风实验装置监测监控系统软件的设计与实现基于J2EE的网上考试系统设计与实现基于21554的无主多处理器系统实现列车接近防护系统的设计与实现研究生教育网络管理系统的设计与实现嵌入式电力监控系统的研究与实现博硕士论文远程提交及检索系统功能模块的组成和实现基于Extranet和构件的造纸企业产品数据管理系统设计与实现DVB-C系统中两种滤波器的FPGA实现VC++实现基于工控机与单片机串行通讯的监控系统ERP系统用户权限的全动态配置研究及实现政府宏观决策信息网络系统的设计与实现基于CC1020芯片无线传输系统的设计与实现具有主动功能的连锁经营企业配送中心管理信息系统的设计与实现DLP背投系统的研究及在高速公路监控系统的实现学生评教系统的设计与实现微小型电动无人机动力系统试验台的设计与实现全集成船舶主机遥控系统的研究及实现

  • 索引序列
  • 人脸识别怎么发学术论文
  • 人脸识别别毕业论文
  • 人脸识别论文答辩
  • 人脸识别主题论文
  • 人脸识别技术研究毕业论文
  • 返回顶部