首页 > 学术论文知识库 > 原子能论文

原子能论文

发布时间:

原子能论文

物理学作为研究其他自然科学不可缺少的基础,其长期发展形成的科学研究 方法 已广泛应用到各学科当中。下面是我为大家整理的物理学博士论文,供大家参考。

《 物理学在科技创新中的效用 》

摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.

关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理

1引言

物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照 教育 部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程 报告 论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.

2物理学是科技创新的源泉

且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=×10-31kg,电子荷电e=×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.

1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现 笔记本 电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.

20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.

1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.

2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].

2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.

3结语

论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.

参考文献:

〔1〕祝之光.物理学[M].北京:高等教育出版社,.

〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,.

〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.

〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)

〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.

〔6〕姚启钧,光学教程[M].北京;高等教育出版社,.

〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,.

〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,.

《 应用物理学专业光伏技术培养方案研究 》

一、开设半导体材料及光伏技术方向的必要性

由于我校已经有材料与化学工程学院,开设了高分子、化工类材料、金属材料等专业,应用物理、物理学专业的方向就只有往半导体材料及光伏技术方向靠,而半导体材料及光伏技术与物理联系十分紧密。因此,我们物理系开设半导体材料及光伏技术有得天独厚的优势。首先,半导体材料的形成原理、制备、检测手段都与物理有关;其次,光伏技术中的光伏现象本身就是一种物理现象,所以只有懂物理的人,才能将物理知识与这些材料的产生、运行机制完美地联系起来,进而有利于新材料以及新的太阳能电池的研发。从半导体材料与光伏产业的产业链条来看,硅原料的生产、硅棒和硅片生产、太阳能电池制造、组件封装、光伏发电系统的运行等,这些过程都包含物理现象和知识。如果从事这个职业的人懂得这些现象,就能够清晰地把握这些知识,将对行业的发展起到很大的推动作用。综上所述,不仅可以在我校的应用物理学专业开设半导体材料及光伏技术方向,而且应该把它发展为我校应用物理专业的特色方向。

二、专业培养方案的改革与实施

(一)应用物理学专业培养方案改革过程

我校从2004年开始招收应用物理学专业学生,当时只是粗略地分为光电子方向和传感器方向,而课程的设置大都和一般高校应用物理学专业的设置一样,只是增设了一些光电子、传感器以及控制方面的课程,完全没有自己的特色。随着对学科的深入研究,周边高校的互访调研以及自贡和乐山相继成为国家级新材料基地,我们逐步意识到半导体材料及光伏技术应该是一个应用物理学专业的可持续发展的方向。结合我校的实际情况,我们从2008年开始修订专业培养方案,用半导体材料及光伏技术方向取代传感器方向,成为应用物理学专业方向之一。在此基础上不断修改,逐步形成了我校现有的应用物理专业的培养方案。我们的培养目标:学生具有较扎实的物理学基础和相关应用领域的专业知识;并得到相关领域应用研究和技术开发的初步训练;具备较强的知识更新能力和较广泛的科学技术适应能力,使其成为具有能在应用物理学科、交叉学科以及相关科学技术领域从事应用研究、教学、新技术开发及管理工作的能力,具有时代精神及实践能力、创新意识和适应能力的高素质复合型应用人才。为了实现这一培养目标,我们在通识教育平台、学科基础教育平台、专业教育平台都分别设有这方面的课程,另外还在实践教育平台也逐步安排这方面的课程。

(二)专业培养方案的实施

为了实施新的培养方案,我们从几个方面来入手。首先,在师资队伍建设上。一方面,我们引入学过材料或凝聚态物理的博士,他们在半导体材料及光伏技术方面都有自己独到的见解;另一方面,从已有的教师队伍中选出部分教师去高校或相关的工厂、公司进行短期的进修培训,使大家对半导体材料及光伏技术有较深的认识,为这方面的教学打下基础。其次,在教学改革方面。一方面,在课程设置上,我们准备把物理类的课程进行重新整合,将关系紧密的课程合成一门。另一方面,我们将应用物理学专业的两个方向有机地结合起来,在光电子技术方向的专业课程设置中,我们有意识地开设了一些课程,让半导体材料及光伏技术方向的学生能够去选修这些课程,让他们能够对光伏产业的生产、检测、装备有更全面的认识。最后,在实践方面。依据学校资源共享的原则,在材料与化学工程学院开设材料科学实验和材料专业实验课程,使学生对材料的生产、检测手段有比较全面的认识,并开设材料科学课程设计,让学生能够把理论知识与实践联系起来,为以后在工作岗位上更好地工作打下坚实的基础。

三、 总结

半导体材料及光伏行业是我国大力发展的新兴行业,受到国家和各省市的大力扶持,符合国家节能环保的主旋律,发展前景十分看好。由于我们国家缺乏这方面的高端人才和行业指挥人,在这个行业还没有话语权。我们的产品大都是初级产品或者是行业的上游产品,没有进行深加工。目前行业正处在发展的困难时期,但也正好为行业的后续发展提供调整。只要我们能够提高技术水平和产品质量,并积极拓展国内市场,这个行业一定会有美好的前景。要提高技术水平和产品质量,就需要有这方面的技术人才,而高校作为人才培养的主要基地,有责任肩负起这个重任。由于相关人才培养还没有形成系统模式,这就更需要高校和企业紧密联系,共同努力,为半导体材料及光伏产业的人才培养探索出一条可持续发展的光明大道,也为我国的新能源产业发展做出自己的贡献。

有关物理学博士论文推荐:

1. 有关物理学论文

2. 物理学论文范文

3. 物理学论文

4. 物理学教学专业毕业论文

5. 物理学实验本科毕业论文

6. 物理学本科毕业论文

核物理是研究射线束的产生、探测和分析技术;以及同核能、核技术应用有关的物理问题。下面我给大家分享一些核物理学术论文,大家快来跟我一起欣赏吧。

激光核物理

摘 要 在最近十年,激光技术有了长足的进展,激光的强度超过了1022W/cm2, 激光的电场达到~4×1012V/cm.当这种高强度的激光照射在靶上时,可以产生许多由激光产生的核反应现象.在这篇 文章 中,作者回顾了这一领域的 研究 进展,并对在不远的未来激光产生 电子 ?质子?中子?X射线和正电子 发展 的潜力进行了一些讨论.

关键词 啁啾脉冲放大,粒子云,正电子发射层析术,库仑爆炸

1 什么是

最近十年中,激光技术有了显著的进展,激光强度已超过1022W/cm2,激光的电场强度达到;1012V/cm,比氢原子中电子玻尔轨道上的库仑场大759倍,相当于在原子大小上相应加上约40kV的电压,在原子核大小上相应加上约的电压,在这种很强的电场作用下,所有的原子都会在极短的时间内被电离,产生从几个MeV到几百MeV的质子,几十MeV到GeV的电子和其他粒子,以及韧致辐射和中子,这些粒子可以产生核反应,打开了核物理以及非线性相对论光学研究的新领域[1—3].

在今后的十年中,激光强度可能会提高到1026—1028W/cm2,这样高强度的激光可以将粒子加速到1012—1015eV,并将成为研究粒子物理?引力物理?非线性场论?超高压物理?天体物理和宇宙线研究中的一个有力工具[1].

超高功率超短脉冲激光技术的发展,在实验室中创造了前所未有的极端物态条件,如高电场?强磁场?高能量密度?高光压和高的电子抖动能量?高的电子加速度,这种极端的物理条件, 目前 只有在核爆中心?恒星内部?星洞边缘才能存在,在它和物质的相互作用中,产生了高度的非线性和相对论效应,产生了崭新的物 理学 领域,也为多个交叉学科前沿研究领域带来了 历史 性的机遇和拓展的空间.

2 国内外研究现状

当前国际上已经在一些实验室中建立了几十TW到几个PW的激光系统,在上世纪80年代中期,以前激光的强度长期停留在1014W/cm2左右,这是由于非线性吸收效应随着激光强度的增加而迅速增强,在80年代中期之后,由于采用了啁啾脉冲放大技术(chirped pulse amplification, CPA),激光强度提高了6—7个数量级,在CPA技术中,一个飞秒或皮秒的脉冲通过色散的光栅对在时间尺度将它展宽了3—4个数量级,这样就避免了放大器的饱和以及在很高强度时由于非线性效应产生的光学放大器件的损伤,在经过放大以后,再由另一光栅对将脉冲宽度压缩回到飞秒或皮秒宽度,以获得1019W/cm2到1022W/cm2的靶上功率密度.CPA超短脉冲TW的激光装置在法国光学 应用 研究所?瑞典Lund大学?德国Mark-Plank研究所?德国Jena大学?日本JAERI和 中国 工程物理研究院?中科院上海光学精密机械研究所?中科院物理研究所?中国原子能 科学 研究院等都建有.日本原子能研究所采用变形镜和CPA相结合的技术,运用低f值的抛物面镜,将激光聚焦于1μm的斑点,可以进一步提高焦斑上的功率密度,但是由于放大介质的单位面积上的饱和能量通量和光学元件的损伤阈值的限制,单位面积上最大的光强度?I??th?=hν3σΔν?ac2?,这个数值约为10?23?W/cm2.美国LLNL正在计划建造10?18?W(exawatt)和10?21?W(zettawatt)的激光装置,以期获得1026W/cm2 —1028W/cm2的靶上功率密度.

高强度的激光可以引起许多核反应,当激光强度I>10?18?W/cm2时,在激光电场做抖动的电子能量达到,产生了相对论等离子体.运用强激光在等离子体中产生的尾场去加速电子,如用一台紧凑型的重复频率的激光器可以产生200MeV的电子.这种激光等离子体型的加速器具有比通常电子加速器高出1000倍的加速梯度,即达到GV/m.运用高强度?单次脉冲的激光也获得了100MeV的电子,并测量到它的韧致辐射.超短超强激光还可以产生质子束,并开始运用这些质子束产生正电子发射层析术(positron emission tomography,PET)所需要的短寿命的正电子放射源,一种用激光来产生的小型化的和 经济 的质子产生器有望在未来用于质子治癌.运用超短超强激光直接产生正电子已在英国卢瑟福实验室开展,他们用重复频率的TW级的激光,打在高Z元素的靶上得到每脉冲2×107个正电子,它对于基础研究和材料科学很有用途.通过超短超强激光和氘团簇的相互作用,产生聚变反应的中子,其中子产额可以达到105中子/焦耳,激光产生中子的能量效率已达到世界上大型的激光装置的水平,它可以成为台面的中子源,由于其中子脉冲通量高,但总的中子剂量很小,适合于生物活体的中子照相和材料科学的研究.运用超短超强激光和氘化聚乙烯作用产生中子,Hilsher等人用钛宝石激光(300mJ, 50fs, 10Hz, 10?18?W/cm2) 轰击氘化聚乙烯靶,产生104中子/脉冲.运用超短超强的激光在相对论性的电子上的散射,产生几百飞秒?几十埃的硬X射线,可以用来研究材料和生命科学的一些 问题 ,这种超快的硬X射线源对于研究一些高Z物质和时间分辨的超快现象具有重要的意义.超短超强激光所产生的高能电子,在物质中产生高能X射线,可以在裂变物质铀中引起裂变,并在裂变靶中探测到许多裂变产物.在激光的强度达到1028W/cm2时,电场强度只比Schwinger场(真空击穿场强)低一个数量级,在这样的场中,由于真空的涨落被激发,激光就有可能从真空中产生正负电子对,美国Lawrence Berkerly实验室在SLAC高能加速器上,用10?18?W/cm2的激光束和聚焦性能很好的的电子束相碰撞,产生了200多个正负电子对,这是由于在反向相碰的电子和激光中,从电子的坐标系来看,激光的场强增强了Lorentz因子倍,以至于可以远远地超过Schwinger场值,直接从真空中产生一些电子对.

3 新的科学研究的 内容 ,新的交叉点

激光产生高能电子[4—7]

产生高能电子的机制有两种:第一种是在激光场作用下,电子做抖动运动,在激光强度I=10?20?W/cm2时,电子抖动运动能量能达到10MeV;第二种是由非线性效应所产生的能量比较高的部分.用300J,的激光照射在厚的金靶上,测量到的电子能谱分布基本上由两个部分组成:一部分是由有质动力产生的,它的能量在20—30MeV以下,还有一部分就是由非线性效应产生的几十MeV以至100MeV以上的高能量的电子,并和粒子云(particle in cell,PIC) 的 计算 结果符合,目前加速电子最高能量已达1GeV.能散度可达3% .

当激光的强度增加时,光波的压力变得很大,光压推着电子往前走,光波就像一个光子耙将等离子体中的电子推到脉冲的前面积累,形成电子的“雪耙”(snow plow) ,在这种“雪耙”加速中,电子的动能得到增益.在综合了光压作用和激光场的作用后,计算得到在激光强度为I=1026W/cm2时,加速梯度可达200TeV/cm,如果加速长度达到1m,电子能量为2×10?16?eV,在I=1028W/cm2时,加速梯度可达2peV/cm,加速长度为1m时,电子能量为2×10?17?eV,可以用来研究高能物理中的许多问题.

激光产生质子束[8,9]

在激光等离子体中,在I=10?20?W/cm2的情况下,加速质子的能量可以高达58MeV.加速梯度约为1MV/μm.质子被加速的距离只有60μm左右,如何增长加速距离成为非常重要的研究内容,加速质子的机制是相当复杂的,也提出了一些加速模型的设想.实验上的研究结果已显示它存在很好的应用前景.这表现在:

(1) 激光能量转换成质子束能量的效率是高的,而且和激光的能量有关,在激光脉冲能量为10J?宽度为100fs时,转换效率为1%,当500J?500fs时,转换效率为10%,人们已经获得了10?13?质子/脉冲,质子脉冲宽度约1ps,相当于10?25?质子/秒,即?;?106A的脉冲质子流.

从 理论 到实验应该研究如何进一步提高能量转换效率的问题,尤其是当激光能量进一步提高时,转换效率是否还继续上升.

(2) 质子束的发散角比较小,观察到的横向发散角为;mrad,比通常加速器上加速的质子束的发散角小.

(3) 高能质子束的获得可能会在今后的十年中实现,按照Bulanov等人的计算结果,在I=10?23?W/cm2时,质子可以被加速到1GeV以上,在I=1026W/cm2和1028W/cm2时,质子能量可以达到100GeV和 10TeV.

(4) 目前已获得几十MeV的质子束,并已用于为PET产生?18?F等短寿命的正电子源,在英国Rutherford实验室的Vulcan装置上,在20分钟内制备了109Bq的?18?F源,已经可以用在PET上.

(5) 产生200MeV的质子,并用于质子治癌,由于它在能量沉积上的优越性能,以及整个装置可以做得小,成本低,所以在治癌应用上很有发展前景,并可应用于中子照相.目前由激光加速产生的质子的能量分散度为17%.治癌应用要求能散度≤3%左右,因此减少能散度的工作在一些实验室正在进行中.

激光产生中子[10,11]

超短超强激光加热氘团簇产生核聚变,已经产生了104中子/脉冲或105中子/焦耳,从激光的能量转换成中子的效率看,和美国LLNL上的大型激光器NOVA上的每焦耳激光的中子产额相当,比日本大阪大学的大型激光装置Gekko 12上的数值大一个数量级,因此是一种很有 发展 前景的桌面台式的中子发生器,因为这种中子源的时间宽度只有1ps,是一个高中子通量的中子源,可用于材料 科学 和中子照相.

氘的团簇在吸收激光能量后要发生库仑爆炸,应该说到现在为止对于库仑爆炸的机理理解尚不非常清楚,尤其是团簇爆炸后产生的氘分子和氘的小团簇如何产生氘-氘的聚变反应也缺乏细致的了解,在进一步的改进方面,还有发展的余地,例如,如何采用多束的超短超强激光同时照射团簇,或用大于50T的脉冲磁场去推迟热等离子体的解体时间,以增加中子产额.

利用超短超强激光和氘化聚乙烯作用来产生中子,Hilsher等人用钛宝石激光(300mJ,50fs,10Hz,10?18?W/cm2)轰击氘化聚乙烯靶也产生了104中子/脉冲,大约每焦耳的激光产生;104中子.Disdier等人用20J,400fs,5×1014W的激光辐照CD?2靶,获得107中子,每焦耳激光产生了;105中子,这是很高的中子产额,他们还要用500J,500fs,1pW的激光照射CD?2,以获得更多的中子.

在激光辐照CD?2平面靶时,除了要 研究 激光能量在CD?2靶上的能量沉积的分布外,如何充分地利用沉积的能量是一个很重要的 问题 .沉积的能量有很大一部分要转变成等离子体的动能,在平面靶的情况下,如何设计靶面形状,以最大限度地使等离子体的动能对D-D反应做贡献.

激光产生硬的超短(~100fs)X射线[12]

用超短超强激光(50mJ,)和50MeV的 电子 束散射可以产生4nm,300fs的硬X射线,虽然转换效率不高,但产生的X射线强度可以在Si表面产生衍射峰,可以用来研究Si表 面相 变过程(从固相→熔化过程)的时间分辨的研究,也可以研究蛋白质折叠动力学,蛋白质的折叠时间为1ns,用300fs的硬X射线可用来了解它的折叠过程中的状态.

激光产生正电子[13,14]

将具有几个MeV的电子,经过很好地准直后,射到一个高Z的靶上,通过Trident过程(Z+e-→Z′+2e-+e+)和Bethe-HEitler过程(Z+r→Z′+e-+e++r′)产生正电子,采用重复频率的超短超强激光和高Z靶的相互作用,每脉冲可以产生2×107个正电子,经过慢化后,储存在磁场中,它对于基础科学和材料科学的研究是很有用的.

4 主要存在的问题和 分析

这门新兴的交叉学科在国际上也只有十多年的 历史 ,但发展十分迅速,搞激光技术和原子核物理的科学家们已经开始在一起召开学术研讨会,共同参加一些实验,由于它是一个新的生长点,发展比较快,也比较容易发现一些新现象,所以合作的积极性也在日益增长.随着超短超强激光技术的发展,在粒子加速?核物理?甚至粒子物理方面可以做出一些很好的工作来.我国发展的情况有些滞后,学科之间的交叉和合作还没有真正形成,学科之间的了解和交流还不够,因此只在交叉学科的边缘上做了一些工作,按照我国在激光技术和核物理方面的力量来说,都应该有可能做出更多更好的工作. 目前 具有超短超强激光装置的研究单位并不少,但将它们运行好,做出好的物理工作的成果并不多.

国内的情况也和国际上相似存在着一个问题,即搞强激光技术的专家和搞核物理和粒子物理专家之间的交流?讨论不够,这就会 影响 这一交叉学科的发展.

从强场物理到超短超强激光技术,到 应用 于各个领域,在世界上是基础科学和技术进步相互推动,相互作用的一个范例,基础研究的需求,以及光学科学的基础,非线性科学的基础,促进了超短超强激光技术的发展,而高强度激光的发展又为物 理学 的发展提供一个崭新的世界.

参考 文献

[1] Tajima T, Mourou G. Physical Review Special Topics\|Accelerators and Beams, 2002, 5:037301

[2] Mourou G, Tajima T, Bulanov S V. Reviews of Modern Physics, 2006, 78: 309

[3] Lee mans W P et al. Nature Physics, 2006, 2: 696

[4] Thomas Katsouleas. Nature, 2004, 431: 515

[5] Mangles S P D et al. Nature, 2004, 431 :535

[6] Geddes C G R et al. Nature, 2004, 431: 538

[7] Farue J et al. Nature, 2004, 431:541

[8] Wilks S C et al. Physics of Plasma, 2001, 8:542

[9] Schwoerer H et al. Nature , 2006, 439: 445

[10] Perkins L J et al. Nuclear Fusion,2000, 40:1

[11] Zweiback J et al. Phys. Rev. Lett.,2000, 85:3640

[12] Kmetec J D et al. Phys. Rev. Lett.,1992, 68: 1527

[13] Gahn C et al. Appl. Phys. Lett., 2000,77 : 2662

[14] Gahn C et al. Phys. Rev. Lett., 1999, 83 :4772

点击下页还有更多>>>核物理学术论文

看了自己想启示!但愿对你有帮助

一百年以前,爱因斯坦写下了五篇科学史上著名的论文,他们是关于光的产生和转化的一个启发性观点。这篇论文讨论了光量子及光电效应。第二篇是分子大小的新测定,推导出分子计算速度的计算公式。第三篇是热的分子运动论,所要求静止一体中圆副小分子的运动,提出了原子确实存在的证明。第四篇是论动体的变动力学,提出了时空关系的新理论,正是因为这篇论文,拉开了近代物理学的序幕。第五篇是物体的惯性是否决定其内能,根据狭义相对论提出了质量与能量可互换的思想,这应该是原子能释放的理论基础。 以量子论和相对论为基础的近代物理学革命,将科学引入到了一个新的时代,人类认知的初期伸向了广袤的宇宙,伸向了遥远的宇宙起源之初,伸向人类未曾了解过的微观物质层面,伸向了生命领域跟神经、脑等认知器官的领域。近代物理学革命,在以后的岁月里,还引发了生命科学的革命,这一切都改变了人类的物质观、时空观、生命观和宇宙观。近代物理学革命,它催生出了核能、半导体、激光、新材料和超导技术等,促进了一批新技术的飞速发展,并且籍此而改变了人类现代的生产与生活方式,将人类推进到了一个知识经济的新时代。 现在来看看他们的成就究竟给我们带来一些什么启示呢? 第一、是实验和理论之间的矛盾,催生了新的科学概念。当时一些物理现象的发现,新物理现象的发现,以及预示了经典物理学解释的局限性。比如热辐射现象的新的实验观测对当时的经典物理学理论提出了置疑,麦克斯伟电磁场理论虽然能够比较好的解释电磁波以及光的传播,但是对于热辐射它的辐射跟吸收无能为力。而热辐射研究又引发了一系列物理学新的发现,成为了量子论诞生的逻辑起点,作为能量的量子概念诞生它是在1900年,普郎克最早提出的,他的推广导致描述微观粒子运动的量子力学在1920年以后逐步完善,大概25、26年左右,并且进而与狭义相对论结合,发展出描述微观粒子产生跟奥秘的量子场论。量子场论的发展,也经历了经典量子场论,规范量子场论,分别是对称的跟不对称的,和超对称量子场论这三个发展阶段,量子场论不仅揭开了人们肉眼看不见的微观物质世界的规律,也加深了人类对宇宙演化的理解,更新了人们认识客观世界的方式,并且也带来了一系列重大的技术方面的突破。所以从这点可以看到,科学归根到底是证实知识体系,一旦理论与严密的实验结果出现了不一致,无论这种理论权威性如何,无论这种理论曾经得到多少人,多少年的信奉,作为一名科学家,都有理由去质疑这个理论本身,并且努力去完善它,或者创造新的理论去替代它。科学探索的最终结果是对发现的自然现象做出精确的理论解释,而做出理论解释,不仅需要有严谨的科学态度,理性的质疑精神,更需要深邃的思考能力和缜密的分析能力,以及理论思维的能力。我们前面看到的这些科学家,他们不光注重实验,而且注重理性的思维,而且注重运用数学的工具来进行科学的概括。这是第一点。 第二、重大的科学突破往往始于凝练出重要的科学问题。提出问题,可能比解决问题来的更重要。问题提出了,即便你提出问题的人在有生之年没有能解决,其他的科学家或者我们的子孙后代,总有一天会解决这个问题。所以凝练科学目标,凝练科学问题,在当代现代更加的重要。如果你提不出科学问题,你就没有明确的工作目标。爱因斯坦提出的相对论,就是一种崭新的时空观。相对论的关键科学问题,是在于同时的相对性。相对论合理地解释了时空相互之间的联系,时空空间与物质分布相联系,物质和能量相联系,根本改造了牛顿以来经典的物理学知识体系,不仅与量子力学一起构成了20世纪物理学发展的基础,而且把人类对于自然的认识提升到了一个全新的水平,深刻的影响了人们以后的思维方式以及世界观。 第三、给我们的启示,我认为是科学的想象力需要严谨的实验证据支持。前面讲到了提出科学问题很重要,要勇于挑战已有的科学理论,勇敢的提出质疑,但是这种质疑绝不是胡思乱想,绝不是毫无根据的,狂妄的去挑战已有的真理,而是需要严谨的实验作为依据。1917年荷兰著名的天文学家德西特,1922年俄国数学家副里德曼以及1927年比利时的物理学家勒每特先后提出了膨胀宇宙论,美国的天文学家哈玻,所观测到的红移定律等,红移现象等有力地支持了宇宙膨胀理论。俄国出身的美国物理学家加莫夫 1946年基于膨胀理论的基础上,根据引入合物理的知识,提出了宇宙大爆炸理论,认为宇宙的起源是温度和密度接近无穷大的原始火球爆炸而产生的。1964年,美国两位电讯工程师彭齐亚跟威尔逊在研究卫星的电波通信的时候,他们制作了一个非常灵敏的接收机,接收到了来自宇宙各方向强度都不变的背景微波辐射,这种微波辐射恰好相当于左右的遥远宇宙的黑体辐射,跟前面的预言是非常之接近的。这一表现被认为是证实了宇宙大爆炸学说的背景辐射的预言,随后大爆炸学说被广泛的接受,并且发展成为当代宇宙学的一个标准模型。 第四、从物理学启示当中,一条重要的启示是物理学包括其他的自然科学,都需要数学语言。因为数学是对数与形的简捷的概括和优美的表达方式,所以物理的规律,往往用数学语言来表达。近代物理学的书写语言几乎都是数学,革命导师马克思曾经认为,只有当一门科学成功地运用数学才可以认为是成熟了的学科。但是现在马克思的这一结论,还需要在生命科学领域里边得到证实,因为生命科学尤其到了分子生物学这个阶段,目前还没有一个统一的、成熟的数学方程可以概括它的规律,也许人们还没有走到这一步。在20世纪,物理学与数学的紧密关系,远非其前三个世纪所能比,并且越来越显示出数学与物理的内在的一致性。可以认为,物理学不仅是数学家面临大量新的数学问题,而且某种意义上也能够引领着数学家朝着起先还梦想不到的地方前进。 第五、新仪器的发明为当代科学打开了新的途径跟窗口在科学已经越来越依赖于研究手段的今天,实验手段的进步不仅可以有助于理论突破,甚至可以打开新的窗口,改变科学家的思路,开辟新的研究领域,任何轻视实验手段和方法的思想,都可能使科学处于停滞和陷于困境。这也是为什么在理论物理取得巨大成就的今天,人们还要耗费须资,去制造对撞机,去制造天文望远镜,去制造聚变实验装置,去制造一个又一个有巨大分辨率的电子计算机,核磁共振设备等等。 第六个启示是物理学与生命科学之间相互作用。生命是物质的,所以物理学的发展也必定要涉及涵盖生命物质的规律的研究。物理学与其他自然科学交叉与相互作用,曾经产生并形成了科学物理学,生物物理学和心理物理学,天体物理学、地球物理学,大气物理学海洋物理学和空间物理学等诸多的交叉学科,这种交叉和相互作用最突出的表现还在于,20世纪的生命科学在物理学的基础上发生了革命性的变化,也就是DNA双螺旋结构的发现以及分子生物学的信息。 1970年基因重组开辟了基因技术工程应用的可能性,从而使人类看到了运用生物技术造福人类的广阔的前景。生命科学的这种革命性的变革正是物理学、化学和生物学等相互交叉的结果,在这个过程当中,物理学的概念与方法以及物理学家深入到生命科学领域进行探索,为此做出了重要的贡献。所以现在看来,学生命科学跟学物理之间,包括跟数学之间,没有不可跨越的鸿沟,许多有成就的生命科学家,有些就是来自于物理学、化学等其他领域。有许多原本学物理的科学家,他成名以后,兴趣转移到去参与生命科学的研究,量子力学的创立者薛定蛾,1944年写过《生命是什么》,这一书曾深刻影响了一批物理学家和生物学家的思想,促成了分子生物学诞生出了三个基本的学派,这就是比德尔代表的化学学派,德尔布吕克代表的信息学派,以及肯德鲁代表的结构学派。 第七、社会需求的拉动以及科学与技术之间的相互作用是推动物理学近百年进步的根本原因。以纳米技术为基础新的工具将导致小于100纳米超微分子器件的诞生,这些分子器件可能具有更为主动和复杂的性能,能够帮助人类完成更为复杂的操作,或者精确的操作,基于分子装配的纳米技术,将能够对物质结构进行完全的事先的设计跟控制,使人类能够按照自然规律制备出超微的智能器件,半导体集成电路和纳米科技的发展表明,导致科技进步的动力不仅来源于科学家工程师的创造欲,而且来源于社会需求的拉动。 物理学在为我们解释周边物质世界的同时,也为我们营造出了内容丰富、思维缜密,不断创新,妙趣无穷的理论方法和实验体系。20世纪的近代物理学革命与19到20世纪之交的物理学形势相关,那时物理学上空有两朵所谓乌云,竟使得一些物理学家惊呼出现了物理学危机。近代物理学革命不仅解决了两朵乌云导致的这场危机,而且把整个物理学自然科学都置于以量子论和相对论两大理论为支柱的现代物理学的基础之上。19世纪的最后一天,欧洲著名的科学家曾经欢聚一堂,会上,有一位英国著名的物理学家汤姆生,回顾物理学所取得的伟大成就时说,物理大厦已经落成,所剩的只是一些修饰工作,同时他在展望20世纪物理学前景时,却若有所思的讲,动力理论肯定了热和光是运动的两种方式,现在它的美丽而晴朗的天空却被两朵乌云笼罩了,第一朵乌云出现在光的波动理论上,第二朵乌云出现在关于能量均分的麦克斯韦波兹曼理论上。这两朵乌云,现在被量子论跟相对论所驱散,虽然目前今天的物理学,诚然面临着一些重要的理论与实验问题亟待解决,比如类星体的能源问题,暗物质,暗能量和反物质的问题,爱因斯坦场方城的宇宙项问题等,中微子振荡问题,质子衰变问题等,但是到现在为止,物理学家还没有人像19世纪20世纪惊呼物理学的危机。相对论和量子论在科学各个领域的扩展与应用,虽然已经取得了很大成功,但科学永无止境,没有到非常完善的成动,看来一直作为精密科学典范的物理学还是魅力未减,作为其他经验科学基础的地位短时期还不会改变。现在我们的科学技术发展的重心开始向生命科学,向信息科学等倾斜,但是物理学依然是基础,数学依然是基础,是重要的工具,这一点并没有改变。物理学的巨大魅力还在于他从理论认识中,延伸出众多的技术原理,20世纪物理学为我们这个社会提供了四个主要的新技术的原理,这就是核能技术,半导体技术,包括大规模集成电路的技术,激光技术和超导技术。半导体技术,激光技术还衍生出网络技术,虽然在20世纪近代物理学革命以后,在约为3/4世纪的时间内,物理学并没有发生新的基础性的革命性的重大变革,物理学的进展主要还表现为对于相对论量子论的完善及推广应用上,但这并不意味着物理学的发展已经走到了尽头。 当代科学发展的态势和社会对科学的迫切需要,将在很大程度上影响科学未来发展的方向及特征。一些传统科学将继续保持相当的独特性,物理科学作为整个自然科学发展的基础地位一时还不会动摇,但是科学的学科结构重心无疑将转移到生命领域。 数学科学作为数与形的科学,其简洁精确优美的表述方式继续在子自然科学,应用技术与社会人文科学中得到更为广泛的利用。信息技术作为研究与知识信息交流,传播的技术手段,会随着自身发展及其与其他领域的结合不断进步,并通过广泛渗透促进社会各个领域的发展。各自然系统的研究以及自然科学人文社会科学之间的结合将成为跨学科研究的新的生长点,他们的发展和广泛运用,都将有力地推动学科间整合和交叉学科的诞生与繁荣。

原子能学报

登陆EI,侧面有分类情况,罗列所有不同级别的期刊名录。

在中国有些比较好的杂志是直接EI或者SCI送检的,只要是被此杂志录用的文章,最终会被EI、SCI数据库收录。这只个数据库不是发表文章的地,发表的就去* 品 优 刊。

什么是权威期刊? 权威期刊没有固定的标准,不同的、不同的行业有不同的要求,但制定标准都有一个大致的原则,如国家权威学术期刊的原则是:

可以登录ei 中国网站查询最新的收录名录,2013年删除了好多期刊,包括大连理工大学学报等好几个大学学报都给取消收录了,同时也新增了一些收录,比如长安大学学报(自然科学版)

原子能类期刊

国外的有 Nature 和 Science

核电论坛中国核电网 核电之窗 中国核电协会杂志 《核电子学与探测技术》《中国核电》核化学与放射化学核技术核科学与工程同位素原子能科学技术辐射防护通讯国外核动力国外核新闻核工程研究与设计核技术:英文版世界核地质科学核安全中国原子能科学研究院年报中国原子能科学研究院年报:英文核工业自动化中国核科技报告

物理学报、物理学进展、高压物理学报、工程热物理学报、计算物理、原子核物理评论、原子能科学技术、中国科学(物理学, 力学, 天文学)、 光学学报。中国激光,发光学报,光子学报。声学学报,原子与分子物理学报,光谱学与光谱分析,量子电子学报,量子光学学报,物理,低温物理学报,计算物理,核聚变与等离子体物理,大学物理,波谱学杂志,光散射学报。

物理学是研究物质运动最一般规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。它的理论结构充分地运用数学作为自己的工作语言,以实验作为检验理论正确性的唯一标准,它是当今最精密的一门自然科学学科。

原子能科学技术期刊难发,原子能科学技术发表周期非常长,以前都要一年以上核技术要快得多,毕竟是的期刊

岩石原子能科学技术杂志

原子能科学技术与原子核物理评论哪个好?原子能科学技术与原子核物理评论,这两者都是核心期刊。不能说哪个好,哪个不好。它们只是侧重点有所不同。原子能科学技术,原子能的理论研究兼技术应用。重在推动相关技术的应用。原子核物理评论,也是理论研究兼技术应用。重在反映最新研究成果和发展趋势, 促进本学科及相关交叉学科的发展。你可视自己的特长来选择。

在中国有些比较好的杂志是直接EI或者SCI送检的,只要是被此杂志录用的文章,最终会被EI、SCI数据库收录。这只个数据库不是发表文章的地,发表的就去* 品 优 刊。

1.期刊名称:CHINESE JOURNAL OF CANCER2.期刊名称:CHINESE MEDICAL JOURNAL3.期刊名称:中国组织工程研究英文刊名:Journal of Clinical Rehabilitative Tissue Engineering ResearchISSN:2094-4344 CN: 21-1581/R主办单位:中国康复医学会主编:王岩 并列主编:王满宜、曾炳芳、唐佩福 4.期刊名称:RESEARCH IN ASTRONOMY AND ASTROPHYSICS5.期刊名称:WORLD JOURNAL OF GASTROENTEROLOGY6.期刊名称:北京大学学报自然科学版英文刊名:ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS7.期刊名称:兵工学报英文刊名:ACTA ANMAMENTARII8.期刊名称:材料导报英文刊名:MATERIALS REVIEW9.期刊名称:草业学报英文刊名:ACTA AGRESTIA SINICA10.期刊名称:成都理工大学学报自然科学版英文刊名:JOURNAL OF CHENGDU UNIVERSITY OF TECHNOLOGY11.期刊名称:大气科学英文刊名:CHINESE JOURNAL OF ATMOSPHERIC12.期刊名称:地理学报英文刊名:ACTA GEOGRAPHICA SINICA13.期刊名称:地球物理学报英文刊名:ACTA GEOPHYSICA SINICA14.期刊名称:地质学报英文刊名:ACTA GEOLOGICA SINICA15.期刊名称:第三军医大学学报英文刊名:Act a Academia Medicine Militaries Tertian16.期刊名称:电力系统自动化.英文刊名:Automation of Electric Power Systems17.期刊名称:电子测量与仪器学报英文刊名:Journal of Electronic Measurement and Instrument18.期刊名称:电子学报英文刊名:ACTA ELECTRONICA SINICA19.期刊名称:分析化学英文刊名:CHINESE JOURNAL OF ANALYTICAL CHEMISTRY20.期刊名称:管理科学学报英文刊名:JOURNAL OF MANAGEMENT SCIENCES IN CHINA21期刊名称:光学学报英文刊名:ACTA OPTICA SINICA22期刊名称:硅酸盐学报英文刊名:JOURNAL OF THE CHINESE CERAMIC SOCIETY23期刊名称:航空学报英文刊名:ACTA AERONAUTICA ET ASTRONAUTICA SINICA24期刊名称:湖泊科学英文刊名:JOURNAL OF LAKE SCIENCES25期刊名称:化工进展英文刊名:Chemical Industry and Engineering Progress26期刊名称:化工学报英文刊名:CHEMICAL INDUSTRY AND ENGINEERING SOCIETY OF CHINA27期刊名称:环境科学英文刊名:ENVIRONMENTAL SCIENCE28期刊名称:机械工程学报英文刊名:JOURNAL OF MECHANICAL ENGINEERING29期刊名称:交通运输工程学报英文刊名:JOURNAL OF TRAFFIC AND TRANSPORTATION ENGINEERING30期刊名称:科学通报英文刊名:CHINESE SCIENCE BULLETIN31期刊名称:口腔颌面外科杂志英文刊名:JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY32期刊名称:林业科学英文刊名:SCIENTIA SILVAE SINICAE33期刊名称:煤炭学报英文刊名:JOURNAL OF CHINA COAL SOCIETY34期刊名称:摩擦学学报英文刊名:Teratology35期刊名称:南京农业大学学报英文刊名:JOURNAL OF NANJING AGRICULTURAL UNIVERSITY36期刊名称:农药学学报英文刊名:CHINESE JOURNAL OF PESTICIDE SCIENCE37期刊名称:农业工程学报英文刊名:TRANSACTIONS OF THE CHINESE SOCIETY OF AGRICULTURAL ENGINEERING38期刊名称:清华大学学报自然科学版英文刊名:JOURNAL OF TSINGHUA UNIVERSITY SCIENCE AND TECHNOLOGY39期刊名称:软件学报英文刊名:Journal of Software40期刊名称:色谱英文刊名:CHINESE JOURNAL OF CHROMATOGRAPHY41期刊名称:生理学报英文刊名:ACTA PHYSIOLOGICA SINICA42期刊名称:生态学报英文刊名:ACTA ECOLOGICA SINICA43期刊名称:生物多样性英文刊名:Chinese Biodiversity44期刊名称:石油勘探与开发英文刊名:Petroleum Exploration and Development45期刊名称:石油学报英文刊名:Act a Petrolia Sonica46期刊名称:食品科学英文刊名:FOOD SCIENCE47期刊名称:数学学报英文刊名:ACTA MATHEMATICA SINICA CHINESE SERIES48期刊名称:水利学报英文刊名:JOURNAL OF HYDRAULIC ENGINEERING49期刊名称:同济大学学报自然科学版英文刊名:JOURNAL OF TONGJI UNIVERSITY NATURAL SCIENCE50期刊名称:土壤学报英文刊名:ACTA PEDOLOGICA SINICA51期刊名称:外科理论与实践英文刊名:Journal of Surgery Concepts & Practice52期刊名称:无机材料学报英文刊名:Journal of Inorganic Materials53期刊名称:物理学报英文刊名:ACTA PHYSICS SINICA54期刊名称:西安交通大学学报英文刊名:JOURNAL OF XI'AN JIAOTONG UNIVERSITY55期刊名称:西南大学学报自然科学版英文刊名:JOURNAL OF SOUTHWEST AGRICULTURAL UNIVERSITY56期刊名称:西南师范大学学报自然科学版英文刊名:JOURNAL OF SOUTHWEST NORMAL UNIVERSITY57期刊名称:系统工程理论与实践英文刊名:SYSTEMS ENGINEERNG--THEORY & PRACTICE58期刊名称:岩石力学与工程学报英文刊名:CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING59期刊名称:岩土工程学报英文刊名:CHINESE JOURNAL OF GEOGECHNICAL ENGINEERING60期刊名称:岩土力学英文刊名:Rock and Soil Mechanics61期刊名称:遥感学报英文刊名:JOURNAL OF REMOTE SENSING62期刊名称:药学学报英文刊名:ACTA PHARMACEUTICA SINICA63期刊名称:仪器仪表学报英文刊名:Chinese Journal of Scientific Instrument64期刊名称:宇航学报英文刊名:Journal of Astronautics65期刊名称:原子能科学技术英文刊名:Atomic Energy Science and Technology66期刊名称:植物学报英文刊名:CHINESE BULLETIN OF BOTANY67期刊名称:中草药68期刊名称:中国电机工程学报英文刊名:Proceedings of the Chinese Society for ElectricalEngineering69期刊名称:中国感染与化疗杂志 英文刊名:Chinese Journal of Infection and Chemotherapy70期刊名称:中国公共卫生英文刊名:CHINESE JOURNAL OF PUBLIC HEALTH71期刊名称:中国公路学报英文刊名:CHINA JOURNAL OF HIGHWAY AND TRANSPORT72期刊名称:中国环境科学英文刊名:CHINA ENVIRONMENTAL SCIENCE73期刊名称:中国机械工程英文刊名:China Mechanical Engineering74期刊名称:中国激光英文刊名:Chinese Journal of Lasers75期刊名称:中国康复医学杂志英文刊名:CHINESE JOURNAL OF REHABILITATION MEDICINE76期刊名称:中国科学技术科学英文刊名:SCIENTIA SINICA ECHNOLOGICA)77期刊名称:中国农业科学英文刊名:Sciatica agriculture silica78期刊名称:中国沙漠英文刊名:JOURNAL OF DESERT RESEARCH79期刊名称:中国实用外科杂志英文刊名:CHINESE JOURNAL OF PRACTICAL SURGERY80期刊名称:中国水产科学英文刊名:Journal of Fishery Sciences of China81期刊名称:中国危重病急救医学英文刊名:CHINESE CRITICAL CARE MEDICINE82期刊名称:中国心理卫生杂志英文刊名:CHINESE MENTAL HEALTH JOURNAL83期刊名称:中国烟草科学英文刊名:CHINESE TOBACCO SCIENCE84期刊名称:中国药理学通报英文刊名:CHINESE PHARMACOLOGICAL BULLETIN85期刊名称:中国医学影像技术英文刊名:CHINESE JOURNAL OF MEDICAL IMAGING TECHNOLOGY86期刊名称:中国有色金属学报英文刊名:The Chinese Journal of Nonferrous Metals87期刊名称:中国中西医结合杂志英文刊名:CHINESE JOURNAL OF INTERGRATED TRADITIONAL AND WESTERN MEDICINE88期刊名称:中国中药杂志英文刊名:CHINA JOURNAL OF CHINESE MATERIA MEDICA89期刊名称:中华儿科杂志英文刊名:CHINESE JOURNAL OF PEDIATRICS90期刊名称:中华耳鼻咽喉头颈外科杂志英文刊名:Chinese Journal of Otorhinolaryngology Head and Neck Surgery91期刊名称:中华骨科杂志英文刊名:CHINESE JOURNAL OF ORTHOPAEDICS92期刊名称:中华护理杂志英文刊名:CHINESE JOURNAL OF NURSING93期刊名称:中华检验医学杂志英文刊名:CHINESE JOURNAL OF LABORATORY MEDICINE TECHMOLOGY94期刊名称:中华结核和呼吸杂志英文刊名:CHINESE JOURNAL OF TUBERCULSIS AND RESPIRATORY DISEASES95期刊名称:中华流行病学杂志英文刊名:CHINESE JOURNAL OF EPIDEMIOLOGY96期刊名称:中华神经科杂志英文刊名:CHINES JOURNAL OF NEUROMEDICINE97期刊名称:中华医学杂志英文刊名:NATIONAL MEDICAL JOURNAL OF CHINA98期刊名称:中华预防医学杂志英文刊名:CHINESE JOURNAL OF PREVENTIVE MEDICINE99期刊名称:中山大学学报医学科学版英文刊名:JOURNAL OF SUN YAT-SEN UNIVERSITY EDICAL SCIENCES)100期刊名称:作物学报英文刊名:ACTA AGRONOMICA SINICA

原子能科学技术期刊难发,原子能科学技术发表周期非常长,以前都要一年以上核技术要快得多,毕竟是的期刊

原子能科学技术编辑加工

核能是一种储量充足并被广泛应用的能量来源,而且如果用它取代化石燃料来发电的话,温室效应也会减轻。国际间正在进行对于改善核能安全性的研究,科学家们同时还在研究可控核聚变和核能的更多用途,比如说制氢(氢能也是一种被广泛提倡的清洁能源),海水淡化和大面积供热。

1979年的三哩岛核泄漏事故和1986年的切尔诺贝利核事故使美国放缓了建造核能发电厂的步伐。后来,核能在经济与环境两方面的益处使联邦政府又开始重新考虑它。

公众也对核能很感兴趣,不断飙升的油价,核能发电厂安全性的提高和符合京都议定书规定的低温室气体排放量使一些有影响的环境保护论者开始注意核能。有一些核反应堆已处于建造当中,几种新型核反应堆也在计划之中。

关于核能的利用一直存在着争议,因为那些放射性核废料会被无限期保存起来,这就有可能造成泄漏或爆炸,有些国家可能借应用核能的名义来大量制造核武器。核能的拥护者说这些风险都是很小的,并且应用了更先进的科技的新型核反应堆会将风险进一步降低。

他们还指出,与其它化石燃料发电厂相比,核能发电厂的安全记录反而更好,核能产生的放射性废料比燃烧煤产生的还少,并且核能可以持续获得。

根据国际能源署的资料,2007年全球电力有由核能提供。截至2020年8月21日:全球可运行的核电反应堆441座,总装机容量为 GWe。

全球在建核电反应堆54座,总装机容量为 GWe。超过150艘使用核动力推进的舰船已被建造,由超过180个核反应堆提供动力。

扩展资料:

原理

核能发电的能量来自核反应堆中可裂变材料(核燃料)进行裂变反应所释放的裂变能。裂变反应指铀-235、钚-239、铀-233等重元素在中子作用下分裂为两个碎片,同时放出中子和大量能量的过程。反应中,可裂变物的原子核吸收一个中子后发生裂变并放出两三个中子。

若这些中子除去消耗,至少有一个中子能引起另一个原子核裂变,使裂变自持地进行,则这种反应称为链式裂变反应。实现链式反应是核能发电的前提。

参考资料:百度百科-核能

原子能技术是利用粒子冲击原子,原子的聚变与裂变。简而言之就是核能,。至于第三次工业革命的主要是电子计算机

原子能科学技术与原子核物理评论哪个好?原子能科学技术与原子核物理评论,这两者都是核心期刊。不能说哪个好,哪个不好。它们只是侧重点有所不同。原子能科学技术,原子能的理论研究兼技术应用。重在推动相关技术的应用。原子核物理评论,也是理论研究兼技术应用。重在反映最新研究成果和发展趋势, 促进本学科及相关交叉学科的发展。你可视自己的特长来选择。

  • 索引序列
  • 原子能论文
  • 原子能学报
  • 原子能类期刊
  • 岩石原子能科学技术杂志
  • 原子能科学技术编辑加工
  • 返回顶部