首页 > 学术论文知识库 > 做编解码器研究的论文

做编解码器研究的论文

发布时间:

做编解码器研究的论文

基于FPGA的HDB3码编译码器设计电子机械论文目 录摘 要 IAbstract II第1章 绪论 HDB3码简述 FPGA和其设计方法 FPGA/CPLD简介 FPGA设计方法 VHDL设计技术 VHDL简介 利用VHDL语言设计硬件电路的方法 本文所做的工作内容安排 6第2章 HDB3码编译原理 HDB3码的编码原理 HDB3码的译码原理 8第3章 HDB3数字信源 数字信源单元 HDB3编码单元 用CD22103A芯片实现 用VHDL建模实现 16第4章 HDB3译码器实现方法分析 25第5章 HDB3译码器的FPGA实现 HDB3译码器的FPGA设计流程 HDB3译码器设计的总体框图 双单极性变换模块 译码功能模块的设计 译码模块的VHDL设计 译码模块的原理图设计 误码检测模块设计 位同步提取模块设计 鉴相器模块的设计 滤波器的设计 数控振荡器的设计 简易显示模块 38第6章 Max-plusⅡ与HDB3译码器的仿真 MAX-PLUSⅡ简述 功能简介 设计流程 设计步骤 系统仿真与调试 编码部分仿真结果 译码模块仿真结果 误码检测模块仿真结果 位同步提取模块仿真结果 42结束语 44参考文献 45致 谢 46附录A 译码器总图 47附录B 锁相环总图 48附录C 滤波器电路图 49基于FPGA的HDB3码编译码器的设计摘 要:HDB3 码是基带传输系统中常用的码型。本设计是基于 EMP7128设计的一个完整的 HDB3 码的编译码器。给出了硬件设计电路图、软件设计流程和HDB3编译码器的仿真波形。本设计中编码器部分用了专用集成芯片CD22103和VHDL建模两种方法来实现。译码器中除了包含有译码的电路外,还包含有单双极性转换,误码检测和位同步提取等功能。双单极性变换的作用是使得双极性的 HDB3 码能够进入 CPLD,同时易于做数字逻辑分析。其中的位同步提取功能是利用超前滞后型数字锁相环从编码序列中提取出位同步信号,并把该信号作为译码部分的时钟。位同步模块中最为关键的一步是在 CPLD 实现若干个上升沿触发数字单稳。总体来说,该编译码器具有外围电路简单,工作稳定,抗干扰能力强等特点。此实现方法具有硬件设计简单、运行速度快、成本低等优点。同时由于CPLD可重复编程的特点,可以对它进行在线修改,便于设备的调试和运行。此编译码器已经过实际测试,运行稳定可靠,可用于实际电路中。关键词:HDB3码;FPGA;编译码器;位同步HDB3 Encoder Decoder Based on FPGAAbstract: HDB3 code is the commonly used code in the transmission system . It is an intact HDB3 encoder and decoder designed on the basis of EMP7128 to originally design. This paper presents the circuit diagram of hardware design, the flow of software design and the simulated waveform of HDB3 encoder and decoder. The encoder is designed on the basis CD22103A and VHDL language. Also include single polarity to bipolar conversion besides including the circuit of the decode in this design, code measured by mistake , and location synchronized signals picked out. The function that vary bipolar to one polarity makes ambipolar HDB3 code can introduce to CPLD and make digital logic analysis easy. Location among them draw function to utilize digital phase locking ring produce the synchronous signal in the location to draw from code array in step, and regard this signal as the clock of the part of the decoder. To location synchronous module the most crucial one is to realize several rise along touch off digital form steady in CPLD. On the whole, this encoder and decoder has simple outside circuit, works steadily and better anti-interference ability. The method has the advantages of simple hardware design, high speed and low cost. In addition, since CPLD can be reprogrammed, it can be repaired online, thus making it convenient to debug and run the equipment. Testing shows that this encoder and decoder has stable performance and therefore can be applied to : HDB3 code; FPGA; Encoder and Decoder; Location sychronized第1章 绪论 HDB3码简述现代通信借助于电和光来传输信息,数字终端产生的数字信息是以“1”和“0”两种代码(状态)位代表的随机序列,他可以用不同形式的电信号表示,从而构造不同形式的数字信号。在一般的数字通信系统中首先将消息变为数字基带信号,称为信源编码,经过调制后进行传输,在接收端先进行解调恢复为基带信号,再进行解码转换为消息。在实际的基带传输系统中,并不是所有电波均能在信道中传输,因此有基带信号的选择问题,因此对码型的设计和选择需要符合一定的原则。当数字信号进行长距离传输时,高频分量的衰减随距离的增大而增大,电缆中线对之间的电磁辐射也随着频率的增高而加剧,从而限制信号的传输距离和传输质量,同时信道中往往还存在隔直流电容和耦合变压器,他们不能传输直流分量及对低频分量有较大的衰减,因此对于一般信道高频和低频部分均是受限的。对于这样的信道,应使线路传输码型的频谱不含直流分量,并且只有很少的低频分量和高频分量。其次,传输码型中应含有定时时钟信息,以利于收端定时时钟的提取,在基带传输系统中,定时信息是在接收端再生原始信息所必需的。一般传输系统中,为了节省频带是不传输定时信息的,必须在接受端从相应的基带信号中加以提取。再次,实际传输系统常希望在不中断通信的前提下,能监视误码,如果传输码型有一定的规律性,那么就可以根据这一规律性来检测传输质量,以便做到自动监测,因此,传输码型应具有一定的误码检测能力。当然,对传输码型的选择还需要编码和解码设备尽量简单等要求,但以上的几点是最主要的考虑因素。HDB3码又叫三阶高密度双极性码,是基带电信设备之间进行基带传输的主要码型之一。该码具有以下特点:(1) 无直流分量,且低频分量也很少:其功率谱密度也与AMI码类似,其方波中丰富的高频分量同样被消除了。(2) 由于引入取代节,因而解决了AMI码在连‘0’过长时提取位定信号的困难。(3) 具有内在检错能力。由此可见,HDB3码是一种优良码,目前广泛应用于基带传输的接口码。

数字图像压缩技术的研究及进展摘要:数字图像压缩技术对于数字图像信息在网络上实现快速传输和实时处理具有重要的意义。本文介绍了当前几种最为重要的图像压缩算法:JPEG、JPEG2000、分形图像压缩和小波变换图像压缩,总结了它们的优缺点及发展前景。然后简介了任意形状可视对象编码算法的研究现状,并指出此算法是一种产生高压缩比的图像压缩算法。关键词:JPEG;JPEG2000;分形图像压缩;小波变换;任意形状可视对象编码一 引 言 随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,也给现有的有限带宽以严峻的考验,特别是具有庞大数据量的数字图像通信,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。 图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天已经有50多年的历史了[1]。在此期间出现了很多种图像压缩编码方法,特别是到了80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,图像压缩技术得到了前所未有的发展,其中分形图像压缩和小波图像压缩是当前研究的热点。本文对当前最为广泛使用的图像压缩算法进行综述,讨论了它们的优缺点以及发展前景。二 JPEG压缩 负责开发静止图像压缩标准的“联合图片专家组”(Joint Photographic Expert Group,简称JPEG),于1989年1月形成了基于自适应DCT的JPEG技术规范的第一个草案,其后多次修改,至1991年形成ISO10918国际标准草案,并在一年后成为国际标准,简称JPEG标准。1.JPEG压缩原理及特点 JPEG算法中首先对图像进行分块处理,一般分成互不重叠的 大小的块,再对每一块进行二维离散余弦变换(DCT)。变换后的系数基本不相关,且系数矩阵的能量集中在低频区,根据量化表进行量化,量化的结果保留了低频部分的系数,去掉了高频部分的系数。量化后的系数按zigzag扫描重新组织,然后进行哈夫曼编码。JPEG的特点优点:(1)形成了国际标准;(2)具有中端和高端比特率上的良好图像质量。缺点:(1)由于对图像进行分块,在高压缩比时产生严重的方块效应;(2)系数进行量化,是有损压缩;(3)压缩比不高,小于50。 JPEG压缩图像出现方块效应的原因是:一般情况下图像信号是高度非平稳的,很难用Gauss过程来刻画,并且图像中的一些突变结构例如边缘信息远比图像平稳性重要,用余弦基作图像信号的非线性逼近其结果不是最优的。2. JPEG压缩的研究状况及其前景 针对JPEG在高压缩比情况下,产生方块效应,解压图像较差,近年来提出了不少改进方法,最有效的是下面的两种方法:(1)DCT零树编码 DCT零树编码把 DCT块中的系数组成log2N个子带,然后用零树编码方案进行编码。在相同压缩比的情况下,其PSNR的值比 EZW高。但在高压缩比的情况下,方块效应仍是DCT零树编码的致命弱点。(2)层式DCT零树编码 此算法对图像作 的DCT变换,将低频 块集中起来,做 反DCT变换;对新得到的图像做相同变换,如此下去,直到满足要求为止。然后对层式DCT变换及零树排列过的系数进行零树编码。 JPEG压缩的一个最大问题就是在高压缩比时产生严重的方块效应,因此在今后的研究中,应重点解决 DCT变换产生的方块效应,同时考虑与人眼视觉特性相结合进行压缩。三 JEPG2000压缩 JPEG2000是由ISO/IEC JTCISC29标准化小组负责制定的全新静止图像压缩标准。一个最大改进是它采用小波变换代替了余弦变换。2000年3月的东京会议,确定了彩色静态图像的新一代编码方式—JPEG2000图像压缩标准的编码算法。1.JPEG2000压缩原理及特点 JPEG2000编解码系统的编码器和解码器的框图如图1所示。编码过程主要分为以下几个过程:预处理、核心处理和位流组织。预处理部分包括对图像分片、直流电平(DC)位移和分量变换。核心处理部分由离散小波变换、量化和熵编码组成。位流组织部分则包括区域划分、码块、层和包的组织。 JPEG2000格式的图像压缩比,可在现在的JPEG基础上再提高10%~30%,而且压缩后的图像显得更加细腻平滑。对于目前的JPEG标准,在同一个压缩码流中不能同时提供有损和无损压缩,而在JPEG2000系统中,通过选择参数,能够对图像进行有损和无损压缩。现在网络上的JPEG图像下载时是按“块”传输的,而JPEG2000格式的图像支持渐进传输,这使用户不必接收整个图像的压缩码流。由于JPEG2000采用小波技术,可随机获取某些感兴趣的图像区域(ROI)的压缩码流,对压缩的图像数据进行传输、滤波等操作。2.JPEG2000压缩的前景 JPEG2000标准适用于各种图像的压缩编码。其应用领域将包括Internet、传真、打印、遥感、移动通信、医疗、数字图书馆和电子商务等。JPEG2000图像压缩标准将成为21世纪的主流静态图像压缩标准。四 小波变换图像压缩1.小波变换图像压缩原理小波变换用于图像编码的基本思想就是把图像根据Mallat塔式快速小波变换算法进行多分辨率分解。其具体过程为:首先对图像进行多级小波分解,然后对每层的小波系数进行量化,再对量化后的系数进行编码。小波图像压缩是当前图像压缩的热点之一,已经形成了基于小波变换的国际压缩标准,如MPEG-4标准,及如上所述的JPEG2000标准 。2.小波变换图像压缩的发展现状及前景 目前3个最高等级的小波图像编码分别是嵌入式小波零树图像编码(EZW),分层树中分配样本图像编码(SPIHT)和可扩展图像压缩编码(EBCOT)。(1)EZW编码器 1993年,Shapiro引入了小波“零树”的概念,通过定义POS、NEG、IZ和ZTR四种符号进行空间小波树递归编码,有效地剔除了对高频系数的编码,极大地提高了小波系数的编码效率。此算法采用渐进式量化和嵌入式编码模式,算法复杂度低。EZW算法打破了信息处理领域长期笃信的准则:高效的压缩编码器必须通过高复杂度的算法才能获得,因此EZW编码器在数据压缩史上具有里程碑意义。(2)SPIHT编码器 由Said和Pearlman提出的分层小波树集合分割算法(SPIHT)则利用空间树分层分割方法,有效地减小了比特面上编码符号集的规模。同EZW相比,SPIHT算法构造了两种不同类型的空间零树,更好地利用了小波系数的幅值衰减规律。同EZW编码器一样,SPIHT编码器的算法复杂度低,产生的也是嵌入式比特流,但编码器的性能较EZW有很大的提高。(3)EBCOT编码器优化截断点的嵌入块编码方法(EBCOT)首先将小波分解的每个子带分成一个个相对独立的码块,然后使用优化的分层截断算法对这些码块进行编码,产生压缩码流,结果图像的压缩码流不仅具有SNR可扩展而且具有分辨率可扩展,还可以支持图像的随机存储。比较而言,EBCOT算法的复杂度较EZW和SPIHT有所提高,其压缩性能比SPIHT略有提高。小波图像压缩被认为是当前最有发展前途的图像压缩算法之一。小波图像压缩的研究集中在对小波系数的编码问题上。在以后的工作中,应充分考虑人眼视觉特性,进一步提高压缩比,改善图像质量。并且考虑将小波变换与其他压缩方法相结合。例如与分形图像压缩相结合是当前的一个研究热点。五 分形图像压缩 1988年,Barnsley通过实验证明分形图像压缩可以得到比经典图像编码技术高几个数量级的压缩比。1990年,Barnsley的学生提出局部迭代函数系统理论后,使分形用于图像压缩在计算机上自动实现成为可能。1. 分形图像压缩的原理 分形压缩主要利用自相似的特点,通过迭代函数系统(Iterated Function System, IFS)实现。其理论基础是迭代函数系统定理和拼贴定理。 分形图像压缩把原始图像分割成若干个子图像,然后每一个子图像对应一个迭代函数,子图像以迭代函数存储,迭代函数越简单,压缩比也就越大。同样解码时只要调出每一个子图像对应的迭代函数反复迭代,就可以恢复出原来的子图像,从而得到原始图像。2.几种主要分形图像编码技术 随着分形图像压缩技术的发展,越来越多的算法被提出,基于分形的不同特征,可以分成以下几种主要的分形图像编码方法。(1)尺码编码方法 尺码编码方法是基于分形几何中利用小尺度度量不规则曲线长度的方法,类似于传统的亚取样和内插方法,其主要不同之处在于尺度编码方法中引入了分形的思想,尺度 随着图像各个组成部分复杂性的不同而改变。(2)迭代函数系统方法 迭代函数系统方法是目前研究最多、应用最广泛的一种分形压缩技术,它是一种人机交互的拼贴技术,它基于自然界图像中普遍存在的整体和局部自相关的特点,寻找这种自相关映射关系的表达式,即仿射变换,并通过存储比原图像数据量小的仿射系数,来达到压缩的目的。如果寻得的仿射变换简单而有效,那么迭代函数系统就可以达到极高的压缩比。(3)A-E-Jacquin的分形方案 A-E-Jacquin的分形方案是一种全自动的基于块的分形图像压缩方案,它也是一个寻找映射关系的过程,但寻找的对象域是将图像分割成块之后的局部与局部的关系。在此方案中还有一部分冗余度可以去除,而且其解码图像中存在着明显的方块效应。3.分形图像压缩的前景 虽然分形图像压缩在图像压缩领域还不占主导地位,但是分形图像压缩既考虑局部与局部,又考虑局部与整体的相关性,适合于自相似或自仿射的图像压缩,而自然界中存在大量的自相似或自仿射的几何形状,因此它的适用范围很广。六 其它压缩算法 除了以上几种常用的图像压缩方法以外,还有:NNT(数论变换)压缩、基于神经网络的压缩方法、Hibert扫描图像压缩方法、自适应多相子带压缩方法等,在此不作赘述。下面简单介绍近年来任意形状纹理编码的几种算法[10]~ [13]。(1)形状自适应DCT(SA-DCT)算法 SA-DCT把一个任意形状可视对象分成 的图像块,对每块进行DCT变换,它实现了一个类似于形状自适应Gilge DCT[10][11]变换的有效变换,但它比Gilge DCT变换的复杂度要低。可是,SA-DCT也有缺点,它把像素推到与矩形边框的一个侧边相平齐,因此一些空域相关性可能丢失,这样再进行列DCT变换,就有较大的失真了[11][14][15]。(2)Egger方法 Egger等人[16][17]提出了一个应用于任意形状对象的小波变换方案。在此方案中,首先将可视对象的行像素推到与边界框的右边界相平齐的位置,然后对每行的有用像素进行小波变换,接下来再进行另一方向的小波变换。此方案,充分利用了小波变换的局域特性。然而这一方案也有它的问题,例如可能引起重要的高频部分同边界部分合并,不能保证分布系数彼此之间有正确的相同相位,以及可能引起第二个方向小波分解的不连续等。(3)形状自适应离散小波变换(SA-DWT) Li等人提出了一种新颖的任意形状对象编码,SA-DWT编码[18]~[22]。这项技术包括SA-DWT和零树熵编码的扩展(ZTE),以及嵌入式小波编码(EZW)。SA-DWT的特点是:经过SA-DWT之后的系数个数,同原任意形状可视对象的像素个数相同;小波变换的空域相关性、区域属性以及子带之间的自相似性,在SA-DWT中都能很好表现出来;对于矩形区域,SA-DWT与传统的小波变换一样。SA-DWT编码技术的实现已经被新的多媒体编码标准MPEG-4的对于任意形状静态纹理的编码所采用。 在今后的工作中,可以充分地利用人类视觉系统对图像边缘部分较敏感的特性,尝试将图像中感兴趣的对象分割出来,对其边缘部分、内部纹理部分和对象之外的背景部分按不同的压缩比进行压缩,这样可以使压缩图像达到更大的压缩比,更加便于传输。七 总结 图像压缩技术研究了几十年,取得了很大的成绩,但还有许多不足,值得我们进一步研究。小波图像压缩和分形图像压缩是当前研究的热点,但二者也有各自的缺点,在今后工作中,应与人眼视觉特性相结合。总之,图像压缩是一个非常有发展前途的研究领域,这一领域的突破对于我们的信息生活和通信事业的发展具有深远的影响。参考文献:[1] 田青. 图像压缩技术[J]. 警察技术, 2002, (1):30-31.[2] 张海燕, 王东木等. 图像压缩技术[J]. 系统仿真学报, 2002, 14(7):831-835.[3] 张宗平, 刘贵忠. 基于小波的视频图像压缩研究进展[J]. 电子学报, 2002, 30(6):883-889.[4] 周宁, 汤晓军, 徐维朴. JPEG2000图像压缩标准及其关键算法[J]. 现代电子技术, 2002, (12):1-5.[5] 吴永辉, 俞建新. JPEG2000图像压缩算法概述及网络应用前景[J]. 计算机工程, 2003, 29(3):7-10.[6] J M Shaprio. Embedded image coding using zerotree of wavelet coefficients[J]. IEEE Trans. on Signal Processing, 1993, 41(12): 3445-3462.[7] A Said, W A Pearlman. A new fast and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Trans. on Circuits and Systems for Video Tech. 1996, 6(3): 243-250.[8] D Taubman. High performance scalable image compression with EBCOT[J]. IEEE Transactions on Image Processing, 2000, 9(7): 1158–1170.[9] 徐林静, 孟利民, 朱建军. 小波与分行在图像压缩中的比较及应用. 中国有线电视, 2003, 03/04:26-29.[10] M Gilge, T Engelhardt, R Mehlan. Coding of arbitrarily shaped image segments based on a generalized orthogonal transform[J]. Signal Processing: Image Commun., 1989, 1(10): 153–180.[11] T Sikora, B Makai. Shape-adaptive DCT for generic coding of video[J]. IEEE Trans. Circuits Syst. Video Technol., 1995, 5(1): 59–62.[12] T Sikora, S Bauer, B Makai. Efficiency of shape-adaptive 2-D transforms for coding of arbitrarily shaped image segments[J]. IEEE Trans. Circuits Syst. Video Technol., 1995, 5(3): 254–258.[13]邓家先 康耀红 编著 《信息论与编码》

兄弟你这个论文有点难度了。不是随便拉拉就行了。得找专业书籍慢慢找和高人指导了。我查到点不指导有没有用。Turbo卷积码(TCC)是3G无线系统中所采用的前向错误校正(FEC)机制的整体部分。然而,Turbo译码器所带来的计算负担非常重,并不太适合采用传统DSP或RISC处理器实现。由于现场可编程逻辑阵列(FPGA)内在的并行结构,FPGA为解决3G基站收发器中所需要的符号速率FEC和其它计算密集的任务提供了一个高性能信号处理平台基础。Turbo 编码级联码方案(Concatenated coding schemes)是为了通过结合两个或更多相对简单的分量或构造模块码来获得较高的编码增益。Turbo码认为是对级联码结构的一种改进,其中采用迭代算法对相关的码序列进行译码。Turbo码是通过将两个或更多分量码应用到同一数据序列的不同交织版本上构成的。对于任何传统单分量编码,译码器的最后一级生成的都是硬判决译码数据位。为了使象Turbo码这样的级联码方案工作得更好,译码算法不应被限制为只能在译码器间传递硬判决。为最好地利用每个译码器获得的信息,译码算法必须可以实现软判决交换,而不是采用硬判决。对于采用两个分量码的系统,译码的概念是指将来自一个译码器的软判决输入到另一个译码器的输入,并将此过程重复几次以获得更好的判决,如图1所示 。3GPP Turbo 编码器图2为3GPP编码器。输入数据流输入到RSC1,它为每个输入比特生成一个对等比特(Parity Bit)。输入数据还经过交织后由RSC2处理生成第二个对等比特流。3GPP标准定义,输入块的长度在40至5114 位之间。编码器生成一个速率为1/3的包括原始输入位和两个对等位的系统码。通过打孔方法可以获得1/2编码速度的编码。递归系统编码器的实现比较直接,然而交织器则不那么简单,要比标准的卷积或块交织器复杂。一旦将输入数据块长度K 提供给编码器以后,编码器将计算交织矩阵行数R和列数 C,并创建相应的交织数据结构。R 和 C 是数据块长度K的函数。在输入符号被加载到交织矩阵以后,那么将根据一定的顺序进行行间交换和列间交换。交换模式是根据块长度K选择的(即依赖于K)。行和列交换完成后,通过逐列读出交织矩阵数据就可以得到最终的交织序列。在数据读出时需要进行删减操作,以保证在输出中只有正确的输入符号,请注意,交织阵列包含的数据位通常比K个原始输入符号要多 ,因为R C>K。然后,新的序列经过RSC2编码生成第二个对等位流。实现交织器的一种方法是在存储器中存储完整的交换序列。即,一旦K 给定,即调用一个初始化例程(运行在处理器上的软件例程或利用FPGA中的功能单元)生成相应的交换序列,然后将这一信息存储在存储器中。然而,这一方法需要大量的存储器。利用Virtex -E FPGA 技术提供的 4096位每块的片上存储器,将需要[5114 13/4096]=17个存储器块。在我们的方法中,采用一个预处理引擎生成一个序列值(存储),这一序列值被存储起来,交织器地址发生器将使用这些序列值。这一硬件单元采用几个小型数据结构(素数表)来计算所需要的序列。这一准备过程需要的时钟周期数与信息块的长度成比例。例如,对于K=40的块需要280时钟周期,而对于最大块长度K=5114,则需要 5290个时钟周期。该过程只需要在块长度变化时进行。地址发生器利用这些更为紧凑的数据结构来实时生成交织地址。 3GPP Turbo 译码器译码器包括两个MAP(最大后验概率)译码器和几个交织器。Turbo算法的优良的性能源于可以在两个MAP译码器间共享可靠性信息(extrinsic data,外数据,或称先验数据)。在我们的设计中,MAP译码器采用的是Bahl, Cocke, Jelinek 和 Rajiv (BCJR) 算法。BCJR算法计算每个符号的最大后验对数似然率,并且是一种真正的软判决算法。考虑到数据是以块的形式传输的,因此可以在时间维中前向或反向搜索一个符号序列。对于任一序列,其出现概率都是单独符号出现概率的乘积。由于问题是线性的,因此序列概述可以利用概率的对数和来代替。为了与一般文献中的习惯一致,我们将译码迭代的前向和反向状态概率分别利用 和 来表示。通常,BCJR算法要求在接收到整个信息后才开始解码。对于实时应用,这一限制可能太严格了。例如,3GPP Turbo译码器将需要大量存储器存储一个5114符号信息块的完全状态结构(state trellis)。对于单片FPGA设计来说,这需要的存储资源太多了。与维特比(Vitebi)算法类似,我们可以先从全零向量 O和数据{yk}(k 从 n 到 n-L) 开始反向迭代。L次反向迭代可获得非常好的 n-L近似值。只要L选择合适,最终的状态标志(state metric)就是正确的。可以利用这一性质在信息结束前就开始进行有效的位译码。L 被称为收敛长度。其典型值大约是译码器约束长度的数倍(通常为5至10倍),并随着信噪比的降低而增加。通常,Turbo译码算法将计算所有的 (对整块信息),将这些数值存储起来,然后在反向迭代中与反向状态概率一起用来计算新的外信息(extrinsic information,或称先验信息)。我们的设计中采用了窗口化方法。译码过程以一个前向迭代开始,计算包含L 个接收符号的块i的 值。同时,对未来(i+1)块进行一个反向迭代(标号 )。对块i+1的反向迭代结束时,就获得了开始对块i 进行反向迭代所需要的正确的 初始向量。 与此同时对数似然函数(Lall)也在进行。 每一 和 处理过程都需要8个max* 操作 - 每个针对状态结构(tellis)中的8个结点之一。最终的对数似然计算需要14个并行max* 运算符。为了提供可接受的译码速率,在设计中采用了38个max* 功能单元。从 C描述到FPGA设计FPGA Turbo 编码译码器设计是利用基于C的设计和验证方法进行的,如图3所示。 算法开发阶段采用具有定点C类型的Art Library 来对定点计算的位真(bit-true)效应进行准确建模。在这一阶段考察了几种可能算法的定点性能。一旦选定正确的量化算法,就可利用A|rtDesignerPro创建一个专用DSP架构。A|rtDesignerPro的一个最强大的功能之一是可以插入和利用专用的数据通道核心(称为专用单元,ASU)。利用这些ASU加速器核心可以使我们处理Turbo译码器算法内在的计算复杂性。A|rtDesignerPro可自动完成寄存器分配、调度和控制器生成。在Turbo编码译码器设计中, A|rtDesignerr的自动循环合并可获得最佳的;任务调度,MAP译码步骤的内部循环都只有一个周期长。A|rtDesignerPro生成的最终结果是可综合的寄存器级(RT-level) VHDL或Verilog 描述。基于C的工具流支持FPGA专用功能。例如,可利用BlockRAM自动构造RAM,而寄存器文件也可利用分布式存储器而不是触发器来实现 。 最后,逻辑综合和Xilinx实施工具套件将RTL HDL 转换为 FPGA 配置位流。FPGA Turbo 编码译码器实现A|rtDesigner创建的Turbo编码器和译码器核心硬件结构包含许多专用ASU加速器。其中最重要的一个加速器完成max* 操作。max* 运算符根据下式计算两个幂值a 和 b:max* (a,b)=ln(expc(a)+expc(b))。如 图4所示, max* 运算是通过选择(a,b)最大值,并应用一个存储在查找表(LUT)中的校正因子近似进行的。这一近似算法非常适合利用Xilinx FPGA 实现,其中LUT是其最终基本构造单元。结果Turbo译码算法硬件字长的选择极大地影响总体性能。利用C-to-FPGA设计流程,这一定点分析是完全在C环境中完成的。结果示于图 5。上图显示出了我们的浮点Turbo译码器算法和对应的定点算法之间的性能差别。仿真是在5114块长度、5次译码迭代和AWGN信道模型情况下进行的。结果清晰明显出性能的损失是非常小的。我们的Turbo译码器的定点性能做为译码器迭代次数的函数 ,对于 dB SNR,位错率为10-6。译码器功能的实现非常具有挑战性,我们同时针对Virtex-E和 Virtex-II 器件进行了适配。Virtex-II 器件实施是采用运行在 speedfile数据库上的Xilinx 实施工具集完成的。利用XC2V1000BG575-5 FPGA实现的最终设计,达到了66 MHz 的时钟性能,消耗了3,060个逻辑片 和 16个块RAM。对于从40至 5114符号长度的块,采用5次译码迭代循环的情况下,译码器达到了2 至 百万符号每秒(Msym/s)的吞吐量。编码器占用了903个逻辑片、3个块RAM并支持83 MHz时钟频率。对于从40至5114位的块长度,速率可达到9 至20 Msym/s。能用上就好了,用不上别怪我。对不起哈~祝福你~

破解版pdf编辑器

好用吗,我很需要

Adobe Acrobat XI Pro DC破解版

下载链接:

关键词:Adobe Acrobat DC、破解版、PDF编辑、PDF浏览

这个软件是我用过的最好的PDF查看、编辑软件,可以实现对PDF文件的拆分,合并,调整页面顺序,删除、插入、提取旋转指定页面,直接编辑和复制文字(如果是文档转换成的PDF),转换成word格式等功能。

常用功能介绍:

1、组织页面:删除、插入、提取、旋转页面,也可以对PDF文件进行拆分,合并,调整页面顺序;

2、创建PDF:从任意格式创建PDF;

3、编辑PDF:对PDF的文字、图片进行编辑;

4、导出PDF:将PDF文件导出为Word、Excel、PPT等格式;

5、优化PDF:缩小PDF的大小,对PDF进行优化;

6、更多功能等待你的探索。

下载链接:网页链接

本资源下载收集于网络,只做学习和交流使用,版权归原作者所有,若为付费资源,请在下载后24小时之内自觉删除,若作商业用途,请到原网站购买,由于未及时购买和付费发生的侵权行为,与本人无关。博客发布的内容若侵犯到您的权益,请联系本人删除!

福昕高级PDF编辑器10破解版百度网盘资源下载:

链接:

福昕高级PDF编辑器又名Foxit PhantomPDF,是一款功能丰富的PDF文件编辑软件。它集多种PDF功能于一体,包括PDF阅读、编辑、注释、转换等,其主要的功能就是通过内置的小工具修改PDF的内容,还可以将整篇文档拆分为多个独立的界面查看,也可以对页面的查看方式进行简单调整,从而将PDF文本按照自己喜欢的样式查看。

福昕高级PDF编辑器10破解版 百度网盘免费下载:

链接:

福昕高级PDF编辑器又名Foxit PhantomPDF,是一款功能丰富的PDF文件编辑软件。它集多种PDF功能于一体,包括PDF阅读、编辑、注释、转换等,其主要的功能就是通过内置的小工具修改PDF的内容,还可以将整篇文档拆分为多个独立的界面查看,也可以对页面的查看方式进行简单调整,从而将PDF文本按照自己喜欢的样式查

turbo码编解码分析毕业论文

Turbo卷积码(TCC)是3G无线系统中所采用的前向错误校正(FEC)机制的整体部分。然而,Turbo译码器所带来的计算负担非常重,并不太适合采用传统DSP或RISC处理器实现。由于现场可编程逻辑阵列(FPGA)内在的并行结构,FPGA为解决3G基站收发器中所需要的符号速率FEC和其它计算密集的任务提供了一个高性能信号处理平台基础。 Turbo 编码 级联码方案(Concatenated coding schemes)是为了通过结合两个或更多相对简单的分量或构造模块码来获得较高的编码增益。Turbo码认为是对级联码结构的一种改进,其中采用迭代算法对相关的码序列进行译码。Turbo码是通过将两个或更多分量码应用到同一数据序列的不同交织版本上构成的。对于任何传统单分量编码,译码器的最后一级生成的都是硬判决译码数据位。为了使象Turbo码这样的级联码方案工作得更好,译码算法不应被限制为只能在译码器间传递硬判决。为最好地利用每个译码器获得的信息,译码算法必须可以实现软判决交换,而不是采用硬判决。对于采用两个分量码的系统,译码的概念是指将来自一个译码器的软判决输入到另一个译码器的输入,并将此过程重复几次以获得更好的判决,如图1所示 。 3GPP Turbo 编码器 图2为3GPP编码器。 输入数据流输入到RSC1,它为每个输入比特生成一个对等比特(Parity Bit)。输入数据还经过交织后由RSC2处理生成第二个对等比特流。 3GPP标准定义,输入块的长度在40至5114 位之间。编码器生成一个速率为1/3的包括原始输入位和两个对等位的系统码。通过打孔方法可以获得1/2编码速度的编码。递归系统编码器的实现比较直接,然而交织器则不那么简单,要比标准的卷积或块交织器复杂。 一旦将输入数据块长度K 提供给编码器以后,编码器将计算交织矩阵行数R和列数 C,并创建相应的交织数据结构。R 和 C 是数据块长度K的函数。在输入符号被加载到交织矩阵以后,那么将根据一定的顺序进行行间交换和列间交换。交换模式是根据块长度K选择的(即依赖于K)。行和列交换完成后,通过逐列读出交织矩阵数据就可以得到最终的交织序列。在数据读出时需要进行删减操作,以保证在输出中只有正确的输入符号,请注意,交织阵列包含的数据位通常比K个原始输入符号要多 ,因为R C>K。然后,新的序列经过RSC2编码生成第二个对等位流。 实现交织器的一种方法是在存储器中存储完整的交换序列。即,一旦K 给定,即调用一个初始化例程(运行在处理器上的软件例程或利用FPGA中的功能单元)生成相应的交换序列,然后将这一信息存储在存储器中。然而,这一方法需要大量的存储器。利用Virtex -E FPGA 技术提供的 4096位每块的片上存储器,将需要[5114 13/4096]=17个存储器块。 在我们的方法中,采用一个预处理引擎生成一个序列值(存储),这一序列值被存储起来,交织器地址发生器将使用这些序列值。这一硬件单元采用几个小型数据结构(素数表)来计算所需要的序列。这一准备过程需要的时钟周期数与信息块的长度成比例。例如,对于K=40的块需要280时钟周期,而对于最大块长度K=5114,则需要 5290个时钟周期。该过程只需要在块长度变化时进行。地址发生器利用这些更为紧凑的数据结构来实时生成交织地址。 3GPP Turbo 译码器 译码器包括两个MAP(最大后验概率)译码器和几个交织器。Turbo算法的优良的性能源于可以在两个MAP译码器间共享可靠性信息(extrinsic data,外数据,或称先验数据)。 在我们的设计中,MAP译码器采用的是Bahl, Cocke, Jelinek 和 Rajiv (BCJR) 算法。BCJR算法计算每个符号的最大后验对数似然率,并且是一种真正的软判决算法。考虑到数据是以块的形式传输的,因此可以在时间维中前向或反向搜索一个符号序列。对于任一序列,其出现概率都是单独符号出现概率的乘积。由于问题是线性的,因此序列概述可以利用概率的对数和来代替。 为了与一般文献中的习惯一致,我们将译码迭代的前向和反向状态概率分别利用 和 来表示。通常,BCJR算法要求在接收到整个信息后才开始解码。对于实时应用,这一限制可能太严格了。例如,3GPP Turbo译码器将需要大量存储器存储一个5114符号信息块的完全状态结构(state trellis)。对于单片FPGA设计来说,这需要的存储资源太多了。与维特比(Vitebi)算法类似,我们可以先从全零向量 O和数据{yk}(k 从 n 到 n-L) 开始反向迭代。L次反向迭代可获得非常好的 n-L近似值。只要L选择合适,最终的状态标志(state metric)就是正确的。可以利用这一性质在信息结束前就开始进行有效的位译码。 L 被称为收敛长度。其典型值大约是译码器约束长度的数倍(通常为5至10倍),并随着信噪比的降低而增加。 通常,Turbo译码算法将计算所有的 (对整块信息),将这些数值存储起来,然后在反向迭代中与反向状态概率一起用来计算新的外信息(extrinsic information,或称先验信息)。我们的设计中采用了窗口化方法。 译码过程以一个前向迭代开始,计算包含L 个接收符号的块i的 值。同时,对未来(i+1)块进行一个反向迭代(标号 )。对块i+1的反向迭代结束时,就获得了开始对块i 进行反向迭代所需要的正确的 初始向量。 与此同时对数似然函数(Lall)也在进行。 每一 和 处理过程都需要8个max* 操作 - 每个针对状态结构(tellis)中的8个结点之一。最终的对数似然计算需要14个并行max* 运算符。为了提供可接受的译码速率,在设计中采用了38个max* 功能单元。 从 C描述到FPGA设计 FPGA Turbo 编码译码器设计是利用基于C的设计和验证方法进行的,如图3所示。 算法开发阶段采用具有定点C类型的Art Library 来对定点计算的位真(bit-true)效应进行准确建模。在这一阶段考察了几种可能算法的定点性能。一旦选定正确的量化算法,就可利用A|rtDesignerPro创建一个专用DSP架构。A|rtDesignerPro的一个最强大的功能之一是可以插入和利用专用的数据通道核心(称为专用单元,ASU)。利用这些ASU加速器核心可以使我们处理Turbo译码器算法内在的计算复杂性。 A|rtDesignerPro可自动完成寄存器分配、调度和控制器生成。在Turbo编码译码器设计中, A|rtDesignerr的自动循环合并可获得最佳的;任务调度,MAP译码步骤的内部循环都只有一个周期长。 A|rtDesignerPro生成的最终结果是可综合的寄存器级(RT-level) VHDL或Verilog 描述。基于C的工具流支持FPGA专用功能。例如,可利用BlockRAM自动构造RAM,而寄存器文件也可利用分布式存储器而不是触发器来实现 。 最后,逻辑综合和Xilinx实施工具套件将RTL HDL 转换为 FPGA 配置位流。 FPGA Turbo 编码译码器实现 A|rtDesigner创建的Turbo编码器和译码器核心硬件结构包含许多专用ASU加速器。其中最重要的一个加速器完成max* 操作。max* 运算符根据下式计算两个幂值a 和 b: max* (a,b)=ln(expc(a)+expc(b))。 如 图4所示, max* 运算是通过选择(a,b)最大值,并应用一个存储在查找表(LUT)中的校正因子近似进行的。这一近似算法非常适合利用Xilinx FPGA 实现,其中LUT是其最终基本构造单元。 结果 Turbo译码算法硬件字长的选择极大地影响总体性能。利用C-to-FPGA设计流程,这一定点分析是完全在C环境中完成的。结果示于图 5。 上图显示出了我们的浮点Turbo译码器算法和对应的定点算法之间的性能差别。仿真是在5114块长度、5次译码迭代和AWGN信道模型情况下进行的。结果清晰明显出性能的损失是非常小的。 我们的Turbo译码器的定点性能做为译码器迭代次数的函数 ,对于 dB SNR,位错率为10-6。 译码器功能的实现非常具有挑战性,我们同时针对Virtex-E和 Virtex-II 器件进行了适配。Virtex-II 器件实施是采用运行在 speedfile数据库上的Xilinx 实施工具集完成的。利用XC2V1000BG575-5 FPGA实现的最终设计,达到了66 MHz 的时钟性能,消耗了3,060个逻辑片 和 16个块RAM。对于从40至 5114符号长度的块,采用5次译码迭代循环的情况下,译码器达到了2 至 百万符号每秒(Msym/s)的吞吐量。编码器占用了903个逻辑片、3个块RAM并支持83 MHz时钟频率。对于从40至5114位的块长度,速率可达到9 至20 Msym/s。

信道编码技术及电子系统工程应用的探讨论文

根据信道编码理论及编码、译码方法和技术的发展,结合工程实际从理论到实践进行了简要的阐述。

随着信息及信号传输技术的发展,应用电子领域也随之扩大并得到发展。通过对信源编码、信道编码、编码的方法,以及对压缩后的信息进行纠错编码,以抗击信道、网络及传输过程的误码或数据丢失,即信道编码问题的系统认识与理解对实际工程应用具有重要的意义。从电子系统工程的应用角度,对相关知识的理解与应用体会更为深刻。在此,就实际应用中贯穿其中的相关知识及带来的思考与启发扼要介绍。

一、信道编码理论及编、译码问题

衡量任何一个信号通信系统性能优劣的基本因素是有效性和可靠性,有效性是信道传输信息的速度快慢,可靠性是信道传输信息的准确程度。在数字通信系统中,信源编码是为了提高有效性,信道编码是为了提高可靠性,而在一个通信系统中,有效性和可靠性是互相矛盾的,也是可以互换的。我们可以用降低有效性的办法提高可靠性,也可以用用降低可靠性的办法提高有效性。而纠错编码,即信道编码问题是重点。

(一)编、译码问题

信道编码是以香农第二定理和香农第三定理为理论支持。在错误控制编码方面,主要是纠错线性分组码与非分组的卷积码。对于线性分组码,采用增加冗余码作为监督码,这样编出的码具有一定的检错和纠错能力。在译码方面,根据最大似然法译码,判断码的汉明距离,找到汉明距离最小的码,那就是在发送端传输过来的码。编码是一个比较抽象的概念,采用矩阵的描述方式表示编码,将输入的信息序列与生成矩阵相乘,那么就可以得到编码后的符号。在译码方面,通过奇偶校验矩阵就可以检测译码是否正确。

(二)关于卷积码

卷积码是编码不一样的领域,因为这种码在判决时用到过去的信息,也就是说,它是需要记忆的。这也就是卷积码得名的由来。卷积码的编码器由一个移位寄存器和相关逻辑电路组成,对每一个进入的信息帧,编码器都产生一个码字帧。当然,还可以画编码器的状态图,比较直观表示编码器根据输入情况而变化。根据状态图可画出网格图;由网格图很容易地知道卷积码的距离,这是卷积码译码的一个依据。卷积码用一个生成多项式矩阵表示,在编码方面极为方便,编码操作可以简单地描述为信息量矩阵与生成矩阵的乘积。而更加严谨、方便地表达,则需要生成函数。通过修改状态图,很容易得到生成函数。对生成函数的级数展开,可以很直观地得到汉明距离和输入路径的信息,最后还可以知道给定汉明距离全零路径的数量。

(三)Turbo码和LDPC码

Turbo码与LDPC码是两种性能接近香农极限的信道编码。Turbo码在低信噪比的情况下,性能比其他编码要好。Turbo码的优良性能在非实时数据通信方面被广泛采用。Turbo码是分组码和卷积码的“准”混合物。Turbo码有并行级联卷积码、串行级联卷积码和混杂级联卷积码三种不同的排列。因为有交织器的存在,所以编码器的纠错能力很好。LDPC码是一类可以用非常稀疏的校验矩阵或二分图定义的线性分组码,其特点是:译码算法具有线性复杂度可采用并行迭代方式,具有译码自校验特性,在高信噪比条件下能有效降低译码复杂度,提高误比特率性能;可以满足高性能信号通信要求。LDPC码以最低的复杂度提供了最好的性能。这意味着在同等性能情况下, LDPC码的复杂度只有Turbo码的1/4。与Turbo码相比,LDPC码尤其是非规则LDPC码具有非常出色的性能,优于迄今为止已知的其它编码方式。LDPC码与其它编码相比还有一些独特的优点:译码可以完全并行,因此可以获得更高的译码速度;译码器的复杂度大幅降低;译码是可验证的;非规则LDPC码具有天然的不等错误保护能力。

二、从信道编码定理看编、译码方法的发展

(一)信道编、译码方法的多样性

信道编码的'核心是“纠错”;信道编、译码的最终目的是实现信道与信号通信系统在可靠性指标下的优化。其方法是纠错编码,即抗干扰编码。奇偶校验码是一种检错分组码;由此原理派生出改进的:水平奇偶校验码、垂直奇偶校验码、群计数码等。定比码是一种只能发现错误的简单检错码,且需通过反向信道系统方能实现抗干扰。而重复码是前向纠错码,也是一种最简单的纠错码,实际应用较广泛。而由汉明码引出的线性分组码是一种具有线性代数关系的编码。在实际应用中,为得到希望的码长和信息位长度,将信息位缩减而得到原码的缩短码。在汉明码的基础上增加一位监督元,则产生增余汉明码或扩展汉明码,使纠错能力得到提高。而由完备码产生的完备译码、非完备译码,则反映了分组码的纠错能力是全部用于纠错,还是部分纠错检错。循环码是线性分组码中重要的一类码,从应用角度其编码与译码电路较为简单,易于实现;且编、译码方法方便、成熟。

(二)信道编、译码方法的发展过程与启示

不难看出,信道编码的方法是丰富多彩的。也是渐进发展,逐步完善的过程。由此可见,理论指导是发展的方向。对信道编码的理论支撑及方向的指引,使得信道编码方法沿着丰富而日臻完善、接近而趋于极限的方向发展。从这一发展过程可以看出,任何一种新的或衍生的方法,都是有局限性的。但这种局限和不完善性,并不会阻碍新的方法的产生和发展。旧的矛盾解决的同时,新的矛盾又会出现。正如,纠错检错能力的提高,对信息进行错误保护,以抵御信道或网络等信息传输过程的干扰所产生的误码或数据丢失的同时,也将使编码及信息传输效率降低。由于信道编码增加了数据量,其结果只能是以降低传送有用信息码率为代价。因此,不同的编码方式,其纠、检错的能力不同,编码效率(信息传输效率)也有所不同。

三、从工程应用实例看理论支撑点

(一)智能住宅小区建设中信道编码技术的应用

在工程中首次接触的,应用于数字电视地面广播(DTTB)的编码调制方案中,涉及到:以多级分组乘积码代替传统的串行级联编码结构,提高了频谱效率;同时采用一种多分辨率星座图,可在一个DTTB信道中提供3种级别的服务.在接收端采用基于MAX—LOG—MAP准则的迭代Turbo译码算法以获得可靠接收。仿真结果表明,在视觉门限BER=3×10-6处,高优先级码流的比特信噪比约为7dB,适用于高可靠性的服务.中优先级和低优先级码流可支持室外固定接收。由此,也加深了对并行级联卷积码的反馈迭代结构的理解。

(二)网络编码与网络安全

在网络工程中,接触到多址信道中联合网络编码和信道编码的设计方案。该方案利用LDPC码和网络编码的线性特性以及软输入软输出模块设计,不仅减少了编译码的复杂度,而且提高了编译码效率。同时,了解了网络——信道编码分离定理,以及该定理成立的条件,即当网络中的信道是确定型广播信道时,分离定理不成立。而信道安全编码与网络安全编码同样重要,又有所区别。信道编码问题,其核心是对传送的信息进行错误保护,以抗击信道或网络等信息传输媒介所带来的误码或数据丢失。而网络中的通信安全是网络编码研究的重要课题之一,网络安全编码更侧重于网络使用者信息及使用的安全层面。网络编码技术的发展可以大幅度提高网络的吞吐量。

四、结束语

专业技术的专长与拓展并存,这是专业技术发展的必然趋势。身处信息时代,信息科学是研究信息的获取、传输以及应用的科学,是信息资源与技术开发及其推广应用的理论基础,是信息技术及信息产业的核心。通信工程、电子信息工程、计算机科学、计算机应用等众多应用技术与信息科学、信息技术及信息产业息息相关。信道编码从理论上要解决理想编码器、译码器的存在性问题,即解决信道能传送的最大信息率的可能性和超过这个最大值时的传输问题;同时构造性的编码方法以及这些方法能达到的性能界限。筒言之,通过信道编码器和译码器来实现的用于提高信道可靠性的理论和方法。

密码学的理解和研究论文

密码学论文写作范例论文

随着网络空间竞争与对抗的日益尖锐复杂,安全问题以前所未有的深度与广度向传统领域延伸。随着移动互联网、下一代互联网、物联网、云计算、命名数据网、大数据等为代表的新型网络形态及网络服务的兴起,安全需求方式已经由通信双方都是单用户向至少有一方是多用户的方式转变。如果你想深入了解这方面的知识,可以看看以下密码学论文。

题目:数学在密码学中的应用浅析

摘要:密码学作为一门交叉学科,涉及学科广泛,其中应用数学占很大比例,其地位在密码学中也越来越重要,本文简单介绍密码学中涉及数学理论和方法计算的各种算法基本理论及应用,并将密码学的发展史分为现代密码学和传统密码学,列举二者具有代表性的明文加密方法,并分别对其中一种方法进行加密思想的概括和阐述。

关键词:密码学 应用数学 应用

随着信息时代的高速发展,信息的安全越来越重要,小到个人信息,大到国家安全。信息安全主要是将计算机系统和信息交流网络中的各种信息进行数学化的计算和处理,保护信息安全,而密码学在其中正是处于完成这些功能的技术核心。在初期的学习当中,高等数学、线性代数、概率论等都是必须要学习的基础学科,但是涉及密码学的实际操作,数论和近世代数的'数学知识仍然会有不同程度的涉及和应用,本文在这一基础上,讨论密码学中一些基本理论的应用。

一、密码学的含义及特点

密码学是由于保密通信所需从而发展起来的一门科学,其保密通讯的接受过程如下: 初始发送者将原始信息 ( 明文) 进行一定方式转换 ( 加密) 然后发送,接受者收到加密信息,进行还原解读 ( 脱密) ,完成保密传输信息的所有过程,但是由于传输过程是经由有线电或无线电进行信息传输,易被窃取者在信息传输过程中窃取加密信息,在算法未知的情况下恢复信息原文,称为破译。

保密信息破译的好坏程度取决于破译者的技术及经验和加密算法的好坏。实际运用的保密通信由两个重要方面构成: 第一是已知明文,对原始信息进行加密处理,达到安全传输性的效果; 第二是对截获的加密信息进行信息破译,获取有用信息。二者分别称为密码编码学和密码分析学,二者互逆,互相反映,特性又有所差别。

密码体制在密码发展史上是指加密算法和实现传输的设备,主要有五种典型密码体制,分别为: 文学替换密码体制、机械密码体制、序列密码体制、分组密码体制、公开密钥密码体制,其中密码学研究目前较为活跃的是上世纪70年代中期出现的公开密钥密码体制。

二、传统密码应用密码体制

在1949年香农的《保密系统的通信理论》发表之前,密码传输主要通过简单置换和代换字符实现,这样简单的加密形式一般属于传统密码的范畴。

置换密码通过改变明文排列顺序达到加密效果,而代换密码则涉及模运算、模逆元、欧拉函数在仿射密码当中的基本理论运用。

传统密码应用以仿射密码和Hill密码为代表,本文由于篇幅所限,就以运用线性代数思想对明文进行加密处理的Hill密码为例,简述其加密思想。

Hill密码,即希尔密码,在1929年由数学家Lester Hill在杂志《American Mathematical Monthly》

上发表文章首次提出,其基本的应用思想是运用线性代换将连续出现的n个明文字母替换为同等数目的密文字母,替换密钥是变换矩阵,只需要对加密信息做一次同样的逆变换即可。

三、现代密码应用

香农在1949年发表的《保密系统的通信理论》上将密码学的发展分为传统密码学与现代密码学,这篇论文也标志着现代密码学的兴起。

香农在这篇论文中首次将信息论引入密码学的研究当中,其中,概率统计和熵的概念对于信息源、密钥源、传输的密文和密码系统的安全性作出数学描述和定量分析,进而提出相关的密码体制的应用模型。

他的论述成果为现代密码学的发展及进行信息破译的密码分析学奠定理论基础,现代的对称密码学以及公钥密码体制思想对于香农的这一理论和数论均有不同程度的涉及。

现代密码应用的代表是以字节处理为主的AES算法、以欧拉函数为应用基础的RSA公钥算法以及运用非确定性方案选择随机数进行数字签名并验证其有效性的El Gamal签名体制,本文以AES算法为例,简述现代密码应用的基本思想。

AES算法的处理单位是计算机单位字节,用128位输入明文,然后输入密钥K将明文分为16字节,整体操作进行十轮之后,第一轮到第九轮的轮函数一样,包括字节代换、行位移、列混合和轮密钥加四个操作,最后一轮迭代不执行列混合。

而且值得一提的是在字节代换中所运用到的S盒置换是运用近世代数的相关知识完成加密计算的。

四、结语

本文通过明确密码学在不同发展阶段的加密及运作情况,然后主要介绍密码学中数学方法及理论,包括数论、概率论的应用理论。

随着现代密码学的活跃发展,数学基础作为信息加密工具与密码学联系越来越密切,密码学实际操作的各个步骤都与数学理论联系甚密,数学密码已经成为现代密码学的主流学科。

当然,本文论述的数学理论与密码学的应用还只是二者关系皮毛,也希望看到有关专家对这一问题作出更深层次的论述,以促进应用数学理论与密码学发展之间更深层次的沟通与发展。

毕业论文总结 2007年3月,我开始了我的毕业论文工作,时至今日,论文基本完成。从最初的茫然,到慢慢的进入状态,再到对思路逐渐的清晰,整个写作过程难以用语言来表达。历经了几个月的奋战,紧张而又充实的毕业设计终于落下了帷幕。回想这段日子的经历和感受,我感慨万千,在这次毕业设计的过程中,我拥有了无数难忘的回忆和收获。3月初,在与导师的交流讨论中我的题目定了下来,是:8031单片机控制LED显示屏设计。当选题报告,开题报告定下来的时候,我当时便立刻着手资料的收集工作中,当时面对浩瀚的书海真是有些茫然,不知如何下手。我将这一困难告诉了导师,在导师细心的指导下,终于使我对自己现在的工作方向和方法有了掌握。在搜集资料的过程中,我认真准备了一个笔记本。我在学校图书馆,大工图书馆搜集资料,还在网上查找各类相关资料,将这些宝贵的资料全部记在笔记本上,尽量使我的资料完整、精确、数量多,这有利于论文的撰写。然后我将收集到的资料仔细整理分类,及时拿给导师进行沟通。4月初,资料已经查找完毕了,我开始着手论文的写作。在写作过程中遇到困难我就及时和导师联系,并和同学互相交流,请教专业课老师。在大家的帮助下,困难一个一个解决掉,论文也慢慢成型。4月底,论文的文字叙述已经完成。5月开始进行相关图形的绘制工作和电路的设计工作。为了画出自己满意的电路图,图表等,我仔细学习了Excel的绘图技术。在设计电路初期,由于没有设计经验,觉得无从下手,空有很多设计思想,却不知道应该选哪个,经过导师的指导,我的设计渐渐有了头绪,通过查阅资料,逐渐确立系统方案。方案中LED显示屏行、列驱动电路的设计是个比较头疼的问题,在反复推敲,对比的过程中,最终定下了行驱动电路采用74LS154译码器,列驱动电路采用74HC595集成电路。当我终于完成了所有打字、绘图、排版、校对的任务后整个人都很累,但同时看着电脑荧屏上的毕业设计稿件我的心里是甜的,我觉得这一切都值了。这次毕业论文的制作过程是我的一次再学习,再提高的过程。在论文中我充分地运用了大学期间所学到的知识。我不会忘记这难忘的3个多月的时间。毕业论文的制作给了我难忘的回忆。在我徜徉书海查找资料的日子里,面对无数书本的罗列,最难忘的是每次找到资料时的激动和兴奋;亲手设计电路图的时间里,记忆最深的是每一步小小思路实现时那幸福的心情;为了论文我曾赶稿到深夜,但看着亲手打出的一字一句,心里满满的只有喜悦毫无疲惫。这段旅程看似荆棘密布,实则蕴藏着无尽的宝藏。我从资料的收集中,掌握了很多单片机、LED显示屏的知识,让我对我所学过的知识有所巩固和提高,并且让我对当今单片机、LED显示屏的最新发展技术有所了解。在整个过程中,我学到了新知识,增长了见识。在今后的日子里,我仍然要不断地充实自己,争取在所学领域有所作为。脚踏实地,认真严谨,实事求是的学习态度,不怕困难、坚持不懈、吃苦耐劳的精神是我在这次设计中最大的收益。我想这是一次意志的磨练,是对我实际能力的一次提升,也会对我未来的学习和工作有很大的帮助。在这次毕业设计中也使我们的同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解知识,所以在这里非常感谢帮助我的同学。在此更要感谢我的导师和专业老师,是你们的细心指导和关怀,使我能够顺利的完成毕业论文。在我的学业和论文的研究工作中无不倾注着老师们辛勤的汗水和心血。老师的严谨治学态度、渊博的知识、无私的奉献精神使我深受启迪。从尊敬的导师身上,我不仅学到了扎实、宽广的专业知识,也学到了做人的道理。在此我要向我的导师致以最衷心的感谢和深深的敬意。 文秘杂烩网

信息安全的密码学与密匙管理一 摘要:密码系统的两个基本要素是加密算法和密钥管理。加密算法是一些公式和法则,它规定了明文和密文之间的变换方法。由于密码系统的反复使用,仅靠加密算法已难以保证信息的安全了。事实上,加密信息的安全可靠依赖于密钥系统,密钥是控制加密算法和解密算法的关键信息,它的产生、传输、存储等工作是十分重要的。二 关键词:密码学 安全 网络 密匙 管理三 正文:密码学是研究编制密码和破译密码的技术科学。研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。密码学包括密码编码学和密码分析学。密码体制设计是密码编码学的主要内容,密码体制的破译是密码分析学的主要内容,密码编码技术和密码分析技术是相互依相互支持、密不可分的两个方面。密码体制有对称密钥密码体制和非对称密钥密码体制。对称密钥密码体制要求加密解密双方拥有相同的密钥。而非对称密钥密码体制是加密解密双方拥有不相同的密钥,在不知道陷门信息的情况下,加密密钥和解密密钥是不能相互算出的。对称密钥密码体制中,加密运算与解密运算使用同样的密钥。这种体制所使用的加密算法比较简单,而且高效快速、密钥简短、破译困难,但是存在着密钥传送和保管的问题。例如:甲方与乙方通讯,用同一个密钥加密与解密。首先,将密钥分发出去是一个难题,在不安全的网络上分发密钥显然是不合适的;另外,如果甲方和乙方之间任何一人将密钥泄露,那么大家都要重新启用新的密钥。通常,使用的加密算法 比较简便高效,密钥简短,破译极其困难。但是,在公开的计算机网络上安全地传送和保管密钥是一个严峻的问题。1976年,Diffie和Hellman为解决密钥管理问题,在他们的奠基性的工作"密码学的新方向"一文中,提出一种密钥交换协议,允许在不安全的媒体上通讯双方 交换信息,安全地达成一致的密钥,它是基于离散指数加密算法的新方案:交易双方仍然需要协商密钥,但离散指数算法的妙处在于:双方可以公开提交某些用于运算的数据,而密钥却在各自计算机上产生,并不在网上传递。在此新思想的基础上,很快出现了"不对称密钥密码体 制",即"公开密钥密码体制",其中加密密钥不同于解密密钥,加密密钥公之于众,谁都可以用,解密密钥只有解密人自己知道,分别称为"公开密钥"和"秘密密钥", 由于公开密钥算法不需要联机密钥服务器,密钥分配协议简单,所以极大地简化了密钥管理。除加密功能外,公钥系统还可以提供数字签名。目前,公开密钥加密算法主要有RSA、Fertezza、EIGama等。我们说区分古典密码和现代密码的标志,也就是从76年开始,迪非,赫尔曼发表了一篇叫做《密码学的新方向》的文章,这篇文章是划时代的;同时1977年美国的数据加密标准(DES)公布,这两件事情导致密码学空前研究。以前都认为密码是政府、军事、外交、安全等部门专用,从这时候起,人们看到密码已由公用到民用研究,这种转变也导致了密码学的空前发展。迄今为止的所有公钥密码体系中,RSA系统是最著名、使用最广泛的一种。RSA公开密钥密码系统是由、和三位教授于1977年提出的,RSA的取名就是来自于这三位发明者姓氏的第一个字母。RSA算法研制的最初目标是解决利用公开信道传输分发 DES 算法的秘密密钥的难题。而实际结果不但很好地解决了这个难题,还可利用 RSA 来完成对电文的数字签名,以防止对电文的否认与抵赖,同时还可以利用数字签名较容易地发现攻击者对电文的非法篡改,从而保护数据信息的完整性。在网上看到这样一个例子,有一个人从E-mail信箱到用户Administrator,统一都使用了一个8位密码。他想:8位密码,怎么可能说破就破,固若金汤。所以从来不改。用了几年,没有任何问题,洋洋自得,自以为安全性一流。恰恰在他最得意的时候,该抽他嘴巴的人就出现了。他的一个同事竟然用最低级也是最有效的穷举法吧他的8位密码给破了。还好都比较熟,否则公司数据丢失,他就要卷着被子回家了。事后他问同事,怎么破解的他的密码,答曰:只因为每次看他敲密码时手的动作完全相同,于是便知道他的密码都是一样的,而且从不改变。这件事情被他引以为戒,以后密码分开设置,采用10位密码,并且半年一更换。我从中得出的教训是,密码安全要放在网络安全的第一位。因为密码就是钥匙,如果别人有了你家的钥匙,就可以堂而皇之的进你家偷东西,并且左邻右舍不会怀疑什么。我的建议,对于重要用户,密码要求最少要8位,并且应该有英文字母大小写以及数字和其他符号。千万不要嫌麻烦,密码被破后更麻烦。密码设的越难以穷举,并不是带来更加良好的安全性。相反带来的是更加难以记忆,甚至在最初更改的几天因为输人缓慢而被别人记住,或者自己忘记。这都是非常糟糕的,但是密码难于穷举是保证安全性的前提。矛盾着的双方时可以互相转化的,所以如何使系统密码既难以穷举又容易记忆呢,这就是门科学了。当然,如果能做到以下几点,密码的安全还是有保障的。1、采用10位以上密码。对于一般情况下,8位密码是足够了,如一般的网络社区的密码、E-mail的密码。但是对于系统管理的密码,尤其是超级用户的密码最好要在10位以上,12位最佳。首先,8位密码居多,一般穷举工作的起始字典都使用6位字典或8位字典,10位或12位的字典不予考虑。其次,一个全码8位字典需要占去4G左右空间,10位或12位的全码字典更是天文数字,要是用一般台式机破解可能要到下个千年了,运用中型机破解还有有点希望的。再次,哪怕是一个12个字母的英文单词,也足以让黑客望而却步。2、使用不规则密码。对于有规律的密码,如:alb2c3d4e5f6,尽管是12位的,但是也是非常好破解的。因为现在这种密码很流行,字典更是多的满天飞,使用这种密码等于自杀。3、不要选取显而易见的信息作为口令。单词、生日、纪念日、名字都不要作为密码的内容。以上就是密码设置的基本注意事项。密码设置好了,并不代表万事大吉,密码的正确使用和保存才是关键。要熟练输入密码,保证密码输人的速度要快。输人的很慢等于给别人看,还是熟练点好。不要将密码写下来。密码应当记在脑子里,千万别写出来。不要将密码存人计算机的文件中。不要让别人知道。不要在不同系统上使用同一密码。在输人密码时最好保证没有任何人和监视系统的窥视。定期改变密码,最少半年一次。这点尤为重要,是密码安全问题的关键。永远不要对自己的密码过于自信,也许无意中就泄漏了密码。定期改变密码,会使密码被破解的可能性降到很低的程度。4、多方密钥协商问题当前已有的密钥协商协议包括双方密钥协商协议、双方非交互式的静态密钥协商协议、双方一轮密钥协商协议、双方可验证身份的密钥协商协议以及三方相对应类型的协议。如何设计多方密钥协商协议?存在多元线性函数(双线性对的推广)吗?如果存在,我们能够构造基于多元线性函数的一轮多方密钥协商协议。而且,这种函数如果存在的话,一定会有更多的密码学应用。然而,直到现在,在密码学中,这个问题还远远没有得到解决。参考文献:[1]信息技术研究中心.网络信息安全新技术与标准规范实用手册[M].第1版.北京:电子信息出版社.2004[2]周学广、刘艺.信息安全学[M].第1版.北京:机械工业出版社.2003[3]陈月波.网络信息安全[M].第1版.武汉:武汉工业大学出版社.2005[4]宁蒙.网络信息安全与防范技术[M].第1版.南京:东南大学出版社.2005

135编辑器投票怎么做

微信公众平台投票,我给你推荐一个我经常使用的,叫【投一票】,是微信上的小程序,打开微信直接搜索投一票三个字就行,主要是这个小程序功能很全面,对报名的选手数量和流量都没有限制,还有防刷票的机制,还不用注册,1分钟就可以创建完投票活动。最重要的一点是它是完全免费的。下面重点说一下操作方法:第一步,打开微信搜索【投一票】点击小程序进入;第二步,点击下面的“发起投票”,无需注册,1分钟即可创建投票活动;第三步,按照步骤,一步步创建活动即可。

微信投票怎么做?想投票在微信里头设置,里头进入我的进入设置,在那里头就能射出投影

公众号投票制作步骤如下:

工具:华为p40、、微信。

1、登录公众号平台,点击图文信息,进入编辑器界面。

2、点击编辑器菜单栏的投票按钮。

3、在投票列表界面,点击发起投票。

4、在新建投票界面,输入标题、问题和选项,点击保存发布。

微信公众平台发起微信投票活动

微信公众号有后台自带的投票功能。只有企业认证的服务号才能使用这个服务,这个服务比较简单只能发起图片还有个数的限制,有投票的单选及多选设定但不能设定多选的范围。目前公众号一篇文章只能设置一个投票,一个投票最多只能添加10个问题。

一个问题最多能添加30个选项,投票的截止时间可以更改。微信公众号投票活动的记录查看。商家只需要点投票记录,里边就会有详细的粉丝的投票记录,还有每个选手得票的记录,可以说记录里边是非常详细的,商家可以导出数据,进行利用和保存分析。

或第三方微信小程序投票平台(如:投票咖、票评助手、来票评等)。这种形式,所有公众号都可以使用不分服务号与订阅号。功能免费且比较丰富,可以图文、视频投票,分组投票,作品审核等,同样有单选多选,多选还可以设定特定的个数范围。

公众平台发起微信投票有两种方法!

第一:通过公众平台后台自带的投票功能

a) 点击公众平台右侧功能栏的投票按钮,然后点击创建投票;

b)填写投票信息、添加投票选项内容,最后点击保存发布;

c)发布投票后,在编辑公众号文章时,点击功能栏里面的投票按钮,帮刚创建的投票添加到文章里即可;

第二:通过小程序创建投票活动,然后把小程序嵌入到公众平台底部菜单或文章里面

a)打开投票帮平台,根据需求创建简易投票、活动评选或者视频投票

b)填写投票活动信息:包括基本信息设置、报名时间和投票开始时间、高级设置等;

c)发布成功后,进入公众平台,把投票嵌入到公众平台底部菜单或文章里面即可

关联步骤可参考:

投票关联公众号操作说明

  • 索引序列
  • 做编解码器研究的论文
  • 破解版pdf编辑器
  • turbo码编解码分析毕业论文
  • 密码学的理解和研究论文
  • 135编辑器投票怎么做
  • 返回顶部