首页 > 学术论文知识库 > 计算机视觉人脸识别毕业论文

计算机视觉人脸识别毕业论文

发布时间:

计算机视觉人脸识别毕业论文

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

基于yolo算法的口罩人脸识别研究的意义如下:口罩人脸识别是利用计算机视觉技术判断图像或者视频序列中的行人是否存在未带口罩的情况,在一些需要佩戴口罩的特定场合,比如食堂、饭店等员工需要佩戴口罩上岗,或由于特殊情况,需要行人佩戴口罩的场景,都可以适用。目前市面上的口罩人脸识别系统,常用的方式先对人脸进行检测,再对人脸进行区域划分,统计分析脸部下方区域的颜色信息,进而判断人脸是否佩戴口罩的方式。但在实际现场应用中,人脸的倾斜角度不同,不同光线的干扰也不同,导致传统方式的精度并不理想。因此,现有技术需要改进。

写设计系统方面的就可以了。之前也是苦于写不出,还是学姐给的文方网,写的《人脸识别系统的研究与实现——图像获取、定位、特征提取和特征识别》,很专业的说人寿保险老业务综合处理系统的设计与实现输油泵机组远程监测及诊断系统设计与实现FORTRAN语言题库管理系统的设计与实现大中型企业网络会计信息系统的设计与实现住房改革管理信息系统的设计与实现DMS-2002型轮机模拟器船舶电力系统故障模拟的研制与实现利用MATLAB基于频率法实现系统串联校正基于红外线检测的停车场智能引导系统研究与实现网络选课系统研究与实现基于人脸识别技术的身份认证系统实现简介基于三维技术的城市工程地质信息系统设计与实现大型烧结机整粒自动控制系统的实现基于B/S模式的药品信息咨询系统的设计与实现使用UML实现学生注册管理系统需求建模基于UML实现三层C/S结构系统的架构基于MuitiGen机载导弹地面训练虚拟现实系统的实现基于Web Service技术实现大型系统集成图书管理系统的设计与实现基于Lucene的电子文档管理系统的设计与实现编组钩计划演示系统设计与实现网络型监控系统的设计与实现热量计多路数据采集系统的设计与实现铁路计量管理信息系统的设计与实现基于ARM的嵌入式绣花机系统的软件实现机载SAR监控系统的设计与实现基于B/S模式的教师信息管理系统的设计与实现一种教学机器人控制系统的设计与实现基于智能Agent的用户个性化检索系统的实现矿井通风实验装置监测监控系统软件的设计与实现基于J2EE的网上考试系统设计与实现基于21554的无主多处理器系统实现列车接近防护系统的设计与实现研究生教育网络管理系统的设计与实现嵌入式电力监控系统的研究与实现博硕士论文远程提交及检索系统功能模块的组成和实现基于Extranet和构件的造纸企业产品数据管理系统设计与实现DVB-C系统中两种滤波器的FPGA实现VC++实现基于工控机与单片机串行通讯的监控系统ERP系统用户权限的全动态配置研究及实现政府宏观决策信息网络系统的设计与实现基于CC1020芯片无线传输系统的设计与实现具有主动功能的连锁经营企业配送中心管理信息系统的设计与实现DLP背投系统的研究及在高速公路监控系统的实现学生评教系统的设计与实现微小型电动无人机动力系统试验台的设计与实现全集成船舶主机遥控系统的研究及实现

摘 要 人体识别是计算机视觉领域的一大类热点问题,其研究内容涵盖了人体的监测与跟踪、手势识别、动作识别、人脸识别、性别识别和行为与事件识别等,有着非常广泛的应用价值。随机森林以它自身固有的特点和优良的分类效果在众多的机器学习算法中脱颖而出。随机森林算法的实质是一种树预测器的组合,其中每一棵树都依赖于一个随机向量,森林中的所有的向量都是独立同分布的。本文简单介绍了随机森林的原理,并对近几年来随机森林在姿势识别和人脸识别中的应用进行讨论。 1.人体识别概述 人体识别是计算机视觉领域的一大类热点问题,其研究内容涵盖了人体的监测与跟踪、手势识别、动作识别、人脸识别、性别识别和行为与事件识别等。其研究方法几乎囊括了所有的模式识别问题的理论与技术,例如统计理论,变换理论,上下文相关性,分类与聚类,机器学习,模板匹配,滤波等。人体识别有着非常广泛的应用价值。 绝大多数人脸识别算法和人脸表情分析算法在提取人脸特征之前,需要根据人脸关键点的位置(如眼角,嘴角)进行人脸的几何归一化处理。即使在已知人脸粗略位置的情况下,人脸关键点精确定位仍然是一个很困难的问题,这主要由外界干扰和人脸本身的形变造成。 当前比较流行的算法有:基于启发式规则的方法、主成分分析(PCA)、独立元分析(ICA)、基于K-L 变换、弹性图匹配等。 2.随机森林综述 随机森林顾名思义,使用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的死后,就让森林的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类能被选择最多,就预测这个样本为那一类。 随机森林是一种统计学习理论,其随机有两个方面:首先是在训练的每一轮中,都是对原始样本集有放回的抽取固定数目的样本点,形成k个互不相同的样本集。第二点是:对于每一个决策树的建立是从总的属性中随机抽取一定量的属性作分裂属性集,这样对于k个树分类器均是不相同的。由随机生成的k个决策树组成了随机森林。 对于每一个决策树来讲,其分裂属性是不断的选取具有最大信息增益的属性进行排列。整个随机森林建立后,最终的分类标准采用投票机制得到可能性最高的结果。 下图是随机森林构建的过程: 图1 随机森林构建过程 3.随机森林在人体识别中的应用 随机森林应用于姿势识别 以[1]一文来讨论,论文中所涉及到的人体识别过程主要分为两步,首先是,身体部位标记:对于从单张景深图像中对人体进行分段,并标记出关键节点。之后进行身体关节定位,将标记的各个人体部分重新映射到三维空间中,对关键节点形成高可靠的空间定位。 图2 深度图像-身体部位标记-关节投影 文的最主要贡献在于将姿势识别的问题转化成了物体识别的问题,通过对身体不同部位的空间位置的确定来实现,做到了低计算消耗和高精确度。在身体部位标记的过程中,将问题转化成了对每个像素的分类问题,对于每个像素点,从景深的角度来确定该点的局域梯度特征。该特征是点特征与梯度特征的良好结合。 举个例子,对于不同点的相同属性值的判别,如下图,图a中的两个测量点的像素偏移间均具有较大的景深差,而图b中的景深差则明显很小。由此看出,不同位置像素点的特征值是有明显差别的,这就是分类的基础。 图3 景深图像特质示例 文中对于决策树的分裂属性的选择来说。由于某两个像素点、某些图像特征选取的随意性,将形成大量的备选划分形式,选择对于所有抽样像素对于不同的分裂属性划分前后的信息熵增益进行比较,选取最大的一组ψ=(θ, τ)作为当前分裂节点。(信息增益与该图像块最终是否正确地分类相关,即图像块归属于正确的关键特征点区域的概率。) 图4 决策时分类说明 决策树的建立后,某个叶子节点归属于特定关键特征点区域的概率可以根据训练图像最终分类的情况统计得到,这就是随机森林在实际检测特征点时的最重要依据。 在人体关节分类中,我们由形成的决策森林,来对每一个像素点的具体关节属性进行判断,并进行颜色分类。随机森林这种基于大量样本统计的方法能够对由于光照、变性等造成的影响,实时地解决关键特征点定位的问题。 如图所示,是对于景深图像处理后的结果展示。 图5 姿势识别处理结果 应该这样说,这篇文章在算法的层面对随机森林没有太大的贡献。在划分函数的形式上很简单。这个团队值得称道的地方是通过计算机图形学造出了大量的不同体型不同姿势的各种人体图像,用作训练数据,这也是成为2011年CVPR Best Paper的重要原因。正是因为论文的成果运用于Kinect,在工业界有着巨大的作用,落实到了商用的硬件平台上,推动了随机森林在计算机视觉、多媒体处理上的热潮。 随机森林应用于人脸识别 基于回归森林的脸部特征检测通过分析脸部图像块来定位人脸的关键特征点,在此基础上条件回归森林方法考虑了全局的脸部性质。对于[2]进行分析,这篇论文是2012年CVPR上的论文,本文考虑的是脸部朝向作为全局性质。其主要描述的问题是如何利用条件随机森林,来确定面部10个关键特征点的位置。与之前不同的是,在随机森林的基础上,加入了面部朝向的条件约束。 图6 脸部10个特征点 对于面部特征标记的问题转化成了对大量图像块的分类问题。类似于人体识别中的局域梯度特征识别。本文中,对于每一个图像块来说,从灰度值、光照补偿、相位变换等图像特征,以及该图像块中心与各个特征点的距离来判断图像块的位置特征。在决策树的分裂属性确定过程,依然使用“最大信息熵增益”原则。 图7 条件随机森林算法说明 文中提出了更进一步基于条件随机森林的分类方法,即通过设定脸部朝向的约束对决策树分类,在特征检测阶段能够根据脸部朝向选择与之相关的决策树进行回归,提高准确率和降低消耗。此论文还对条件随机森林,即如何通过脸部朝向对决策进行分类进行了说明,但这与随机森林算法没有太大关系,这里就不再继续讨论了。随机森林这种基于大量样本统计的方法能够对由于光照、变性等造成的影响,实时地解决关键特征点定位的问题。 另一篇文章[3]对于脸部特征标记,提出了精确度更高、成本更低的方法。即,基于结构化输出的随机森林的特征标记方式。文中将面部划分为20个特征点,对于各个特征点来说,不仅有独立的图像块分类标记,还加入了例如,点4,对于其他嘴唇特征点3,18,19的依赖关系的判断。这样的方法使特征点标记准确率大大增加。 该方法依然是使用随机森林的方法,有所不同的是引入了如式中所示的与依赖节点之间的关系。对于决策树的建立依然是依赖信息熵增益原则来决定,叶子节点不仅能得到特征的独立划分还会得到该特征对依赖特征的贡献,最终特征节点的判断会综合原始投票及空间约束。 图8 脸部特征标记 图9 决策树依赖关系 例如当对下图中人脸特征点进行分类时,使用简单的随机森林方法,经过判断会将各个点进行标注,可以看到 红色的点,标注出的鼻子特征。如果利用依赖节点进行判断,鼻子的点会被局限在其他鼻子特征点的周围,进行叠加后,得到了这个结果。显然,对于此节点的判断,利用结构输出的方式,准确度更高了。 图10 结构化输出结果 4.随机森林总结 大量的理论和实证研究都证明了RF具有很高的预测准确率,对异常值和噪声具有很好的容忍度,且不容易出现过拟合。可以说,RF是一种自然的非线性建模工具,是目前数据挖掘算法最热门的前沿研究领域之一。具体来说,它有以下优点: 1.通过对许多分类器进行组合,它可以产生高准确度的分类器; 2.它可以处理大量的输入变量; 3.它可以在决定类别时,评估变量的重要性; 4.在建造森林时,它可以在内部对于一般化后的误差产生不偏差的估计; 5.它包含一个好方法可以估计遗失的资料,并且,如果有很大一部分的资料遗失,仍可以维持准确度。 6.它提供一个实验方法,可以去侦测变量之间的相互作用; 7.学习过程是很快速的; 8.对异常值和噪声具有很好的容忍度,且不容易出现过拟合; 随机森林的缺点: 1.对于有不同级别的属性的数据,级别划分较多的属性会对随机森林产生更大的影响,所以随机森林在这种数据上产出的属性权值是不可信的; 2.单棵决策树的预测效果很差:由于随机选择属性,使得单棵决策树的预测效果很差。 参考文献: [1] Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.; Moore, R.; Kipman, A.; Blake, A., “Real-time human pose recognition in parts from single depth images,”Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on , vol., no., , 20-25 June 2011 [2] Dantone M, Gall J, Fanelli G, et al. Real-time facial feature detection using conditional regression forests[C]//Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012: 2578-2585. [3] Heng Yang, Ioannis Patras, “Face Parts Localization Using Structured-output Regression Forests”, ACCV2012, Dajeon, Korea. 本文转自:,仅供学习交流

人脸识别机器人毕业论文

可以。 毕业论文是可以用别人训练出来的,但是自己也要有创新,不能全部使用,不然是不会过的。毕业论文(graduation study)是专科及以上学历教育为对本专业学生集中进行科学研究训练而要求学生在毕业前撰写的论文。毕业论文一般安排在修业的最后一学年(学期)进行,论文题目由教师指定或由学生提出,学生选定课题后进行研究,撰写并提交论文,目的在于培养学生的科学研究能力,加强综合运用所学知识、理论和技能解决实际问题的训练,从总体上考查学生大学阶段学习所达到的学业水平。

你哪一个熟悉就写哪方面的,如果都不熟悉,我建议写图像处理方面的。因为直观,可以写的也比较多,比如车牌识别、人脸识别、指纹识别、目标检测与跟踪。

个人感觉单片机方向的论文比较好写也比较简单,而且也比较容易做出实物答辩的时候拿高分,比如说做一个mp3什么的,只要熟悉下SPI协议,处理器用STM32F103x系列,然后再买一个VS1003b的mp3解码芯片,很容易就可以做一个mp3出来,不仅看起来高大上,做起来也很简单,晚上的教程一堆一堆的,拈来可得图形学方面的本人入坑五六年,说来说去除了数学还是数学,赶论文很多地方自己都不明白,拿脸部识别来说ANN,SVM,Adaboost,哪个不要花个把来月琢磨,而且还是建立在有一定底子的基础上,代码参考OpenCV,除非觉得自己有把握,不建议本科或者非图形学专业的论文搞,难度我就不说了,谁学谁知道

人脸识别是目前AI技术应用中比较常见的场景之一,在入口检查、在线支付、用户校验等方面都有人脸识别的影子!但目前人脸识别至少还有以下挑战;

1、隐私安全

既然是人脸,就一定涉及到个人隐私的问题。随着信息化越来越普及,个人大数据在不同的平台上都会有不同程度的留存,此时如何保证个人隐私在互联网上的安全,是需要人脸识别技术和相关法律法规去完善和管理的,但目前这部分尚处于初级阶段。还需要全社会从认知到技术都提高才能解决。

应用场景

在人脸识别精准度上,高度依赖应用场景,有人曾测试过一款平台型智能机器人,号称集成了最NB的人脸识别技术和摄像头,在昏暗的光线下也可以有很高的识别准确率,有一次当机器人移动到门口的时候,我从屋里向屋外走动,当我走到机器人面前,一半面部有太阳光照射,而另一半则处于黑暗状态。同时机器人的角度是激光拍摄,就这样它失败了!多次测试结果均如此。而当一个人从暗黑的环境向强光环境移动,而摄像角度在强光下时,识别效果很差,这说明人脸识别的适应性和准确度还可有很大提高空间。

用户体验

人脸识别的用户体验也是一个挑战。大家在过机场安检偶尔会有这样的尴尬,明明一切操作正常,但走到识别通道那儿就是过不去,这可能会有几种原因:1、因为网络传输问题,不能及时将最准确的照片上传导致检测结果显示较慢;2、当用户做过整容手术,面部轮廓和深度特征有较大变化时,就可能检测出错;3、检测设备识别范围有限(大了会存在多张人脸的情况,小了人脸取景不完整),此时就需要用户或弯腰,或垫脚,或移动来适应摄像头,这就像在爬坡时需要人扛自行车一样!由于人品识别的应用场景非常广泛,如何做到全场景提供最好的用户体验,仍然是目前人品识面临的挑战之一。

其他实现算法、效率、精准度等都可以随着大数据应用、计算力加强而逐步得到解决,但目前仍是部分挑战!

万维识别为您解答。

人脸识别别毕业论文

==你是本科还是硕士啊论文的话应该主要是算法的研究和改进吧……问题比如:你采用了哪种人脸识别算法你对这种算法的改进在哪里(你不只要说明改进在哪里可能还需要做一些实验收集下数据来对比说明算法在改进后对性能有了提升)新算法比其他算法好在哪里(还是通过实验收集数据对比一下)分析下算法的复杂度(时间复杂度和空间复杂度可能都会要求毕竟图像分析很占空间)然后是怎样进行优化的实验采用的样本是哪些(我们当时用的UCIrvineMachineLearningRepository下面会有CMUFaceImages大家一般都用这个库来作为样本)怎样对实验结果进行量化比较的(标准是什么)如果是模式识别的话还可能关心怎样选的特征值和特征空间(计算量大的话是怎样减少计算量的)训练样本采用的什么算法实验的识别率是多少算法的性能是不是稳定……==我想到的都是本科的问题如果是研究生的话可能还会问的更难

计算机软件毕业论文的题目都好写啊

学术堂整理了十五个好写的计算机软件毕业论文题目,供大家进行参考:1、基于西门子S7-1200电梯控制系统设计与实现2、基于ArcGIS Engine工程施工自动规划系统设计与实现3、基于云平台的光伏监控系统设计与实现4、基于移动终端的变电站导航系统设计与实现5、人造板在线同步图像采集系统设计与实现6、基于LoRa的园区能耗管理系统设计与实现7、电厂机组一次调频参数在线监测系统设计与实现8、基于组件技术的船舶导航系统设计与实现9、智能家居控制系统设计与实现10、大型地面光伏电站综合自动化系统设计与实现11、无人驾驶喷雾机电控系统设计与试验12、国产重力输液过程智能监控系统设计与临床转化应用研究13、大型医院医技检查自动预约系统的设计与应用14、高校计算机教学综合管理系统设计与实现15、基于移动物联网的智慧教室设计与实现

网络、网站,或管理系统都可以的

人脸识别算法研究论文

人脸识别的基本方法

人脸识别的方法很多,以下介绍一些主要的人脸识别方法。

(1)几何特征的人脸识别方法

几何特征可以是眼、鼻、嘴等的形状和它们之间的几何关系(如相互之间的距离)。这些算法识别速度快,需要的内存小,但识别率较低。

(2)基于特征脸(PCA)的人脸识别方法

特征脸方法是基于KL变换的人脸识别方法,KL变换是图像压缩的一种最优正交变换。高维的图像空间经过KL变换后得到一组新的正交基,保留其中重要的正交基,由这些基可以张成低维线性空间。如果假设人脸在这些低维线性空间的投影具有可分性,就可以将这些投影用作识别的特征矢量,这就是特征脸方法的基本思想。这些方法需要较多的训练样本,而且完全是基于图像灰度的统计特性的。目前有一些改进型的特征脸方法。

(3)神经网络的人脸识别方法

神经网络的输入可以是降低分辨率的人脸图像、局部区域的自相关函数、局部纹理的二阶矩等。这类方法同样需要较多的样本进行训练,而在许多应用中,样本数量是很有限的。

(4)弹性图匹配的人脸识别方法

弹性图匹配法在二维的空间中定义了一种对于通常的人脸变形具有一定的不变性的距离,并采用属性拓扑图来代表人脸,拓扑图的任一顶点均包含一特征向量,用来记录人脸在该顶点位置附近的信息。该方法结合了灰度特性和几何因素,在比对时可以允许图像存在弹性形变,在克服表情变化对识别的影响方面收到了较好的效果,同时对于单个人也不再需要多个样本进行训练。

(5)线段Hausdorff 距离(LHD) 的人脸识别方法

心理学的研究表明,人类在识别轮廓图(比如漫画)的速度和准确度上丝毫不比识别灰度图差。LHD是基于从人脸灰度图像中提取出来的线段图的,它定义的是两个线段集之间的距离,与众不同的是,LHD并不建立不同线段集之间线段的一一对应关系,因此它更能适应线段图之间的微小变化。实验结果表明,LHD在不同光照条件下和不同姿态情况下都有非常出色的表现,但是它在大表情的情况下识别效果不好。

(6)支持向量机(SVM) 的人脸识别方法

近年来,支持向量机是统计模式识别领域的一个新的热点,它试图使得学习机在经验风险和泛化能力上达到一种妥协,从而提高学习机的性能。支持向量机主要解决的是一个2分类问题,它的基本思想是试图把一个低维的线性不可分的问题转化成一个高维的线性可分的问题。通常的实验结果表明SVM有较好的识别率,但是它需要大量的训练样本(每类300个),这在实际应用中往往是不现实的。而且支持向量机训练时间长,方法实现复杂,该函数的取法没有统一的理论。

人脸识别的方法很多,当前的一个研究方向是多方法的融合,以提高识别率。

在人脸识别中,第一类的变化是应该放大而作为区分个体的标准的,而第二类的变化应该消除,因为它们可以代表同一个个体。通常称第一类变化为类间变化,而称第二类变化为类内变化。对于人脸,类内变化往往大于类间变化,从而使在受类内变化干扰的情况下利用类间变化区分个体变得异常困难。正是基于上述原因,一直到21 世纪初,国外才开始出现人脸识别的商用,但由于人脸识别算法非常复杂,只能采用庞大的服务器,基于强大的计算机平台。

如果可以的话,可以Te一下colorreco,更好的技术解答。

基于特征脸方法

人脸识别是一个高维的模式识别问题,1987年Sirovich 和 Kirby为减少人脸图像的表示采用了PCA方法(主分量分析方法),1991年Matthew Turk 和 Alex Pentland最早将PCA应用于人脸识别[3],将原始图像投影到特征空间中,得到一系列降维图像,取其主元表示人脸,由于主元具有脸的形状故称为“特征脸”。

特征脸方法是目前较为成功的正面人脸识别方法,但是只考虑了人脸的整体特征且对光照的变化敏感,所以有学者提出了FLD方法,即Fisher脸。通过在Harvard和Yale人脸库上做的测试表明Fisherfaces比Eigenfaces有更低的错误率且对于光照和表情变化有更好的鲁棒性。实验中部分特征脸见图1。

图1 部分特征脸

如前所述,特征脸方法忽略了人脸的局部特征(如:眉毛、眼睛、鼻子、口等)在识别中的作用,因此有学者在特征提取时采用基于多特征(eigenfaces,eigenUpper,eigenTzone,edge distribution)的方法,取得了较好的效果。另外,对人脸图像预处理后,进行特征脸分析也会明显降低错误率。

影响人脸识别技术的因素及解决方法

测量人脸识别的主要性能指标有:

1.误识率(False;Accept;Rate;FAR):这是将其他人误作指定人员的概率;

2.拒识率(False;RejectRate;FRR):这是将指定人员误作其它人员的概率。

计算机在判别时采用的阈值不同,这两个指标也不同。一般情况下,误识率FAR;随阈值的增大(放宽条件)而增大,拒识率FRR;随阈值的增大而减小。因此,可以采用错误率(Equal;Error;Rate;ERR)作为性能指标,这是调节阈值,使这FAR和FRR两个指标相等时的FAR;或FRR。

影响人脸识别性能的因素及解决方法

(1)背景和头发:消除背景和头发,只识别脸部图象部分。

(2)人脸在图象平面内的平移、缩放、旋转:采用几何规范化,人脸图象经过旋转、平移、缩放后,最后得到的脸部图象为指定大小,两眼水平,两眼距离一定。

(3)人脸在图象平面外的偏转和俯仰:可以建立人脸的三维模型,或进行三维融合(morphing),将人脸图象恢复为正面图象。

(4)光源位置和强度的变化:采用直方图规范化,可以消除部分光照的影响。采用对称的从阴影恢复形状(symmteric;shape;from;shading)技术,可以得到一个与光源位置无关的图象。

(5)年龄的变化:建立人脸图象的老化模型。

(6)表情的变化:提取对表情变化不敏感的特征,或者将人脸图象分割为各个器官的图象,分别识别后再综合判断。

(7)附着物(眼镜、胡须)的影响。

(8)照相机的变化:同一人使用不同的照相机拍摄的图象是不同的

如果您是开发者的话,可以Ph一下colorreco,提供更多的技术解答。

动态人脸识别在应用中遇到的挑战 1.光照问题 面临各种环境光源的考验,可能出现侧光、顶光、背光和高光等现象,而且有可能出现各个时段的光照不同,甚至在监控区域内各个位置的光照都不同。 2. 人脸姿态和饰物问题 因为监控是非配合型的,监控人员通过监控区域时以自然的姿态通过,因此可能出现侧脸、低头、抬头等的各种非正脸的姿态和佩戴帽子、黑框眼镜、口罩等饰物现象。 3. 摄像机的图像问题 摄像机很多技术参数影响视频图像的质量,这些因素有感光器(CCD、CMOS)、感光器的大小、DSP的处理速度、内置图像处理芯片和镜头等,同时摄像机内置的一些设置参数也将影响视频质量,如曝光时间、光圈、动态白平衡等参数。 4.丢帧和丢脸问题 需要的网络识别和系统的计算识别可能会造成视频的丢帧和丢脸现象,特别是监控人流量大的区域,由于网络传输的带宽问题和计算能力问题,常常引起丢帧和丢脸。 视频人脸识别监控的最优方案 1.使用更先进的高清摄像头(3-5百万)。 2.室内均匀光线,或室外白天,无侧光和直射光 3.人群面向同样的方向,朝向相机的方向。 4.恰当的监控点,如走廊、巷子或安检门/闸机口等(不要一群人同时出现)。 5.相机与人脸的角度小于20°。 决定监控系统性能的几个主要因素 1.模板库的人数:不宜大,包含关键人物即可。 2.经过摄像头的人数:同时出现在摄像头的人数决定了单位时间里的比对次数。 3.报警反馈时间:实时性越强,对系统性能要求越高。 4.摄像头采集帧数:帧数越高,人员经过摄像头前采集的次数越多,比对的次数也越多。可以的话百度一下colorreco,更多的信息。

人脸识别的毕业论文

可以。 毕业论文是可以用别人训练出来的,但是自己也要有创新,不能全部使用,不然是不会过的。毕业论文(graduation study)是专科及以上学历教育为对本专业学生集中进行科学研究训练而要求学生在毕业前撰写的论文。毕业论文一般安排在修业的最后一学年(学期)进行,论文题目由教师指定或由学生提出,学生选定课题后进行研究,撰写并提交论文,目的在于培养学生的科学研究能力,加强综合运用所学知识、理论和技能解决实际问题的训练,从总体上考查学生大学阶段学习所达到的学业水平。

计算机软件毕业论文的题目都好写啊

噶声音大嘎哈是按时打算打算的撒打算打算大飒飒

1 KM-1 键混器的设计 1 Sw3204V监控器的设计 1 基于射频遥控型(单片机)交通灯的设计1 Sw802V视频切换器的设计 1 无线数控多相位灯从机的设计1 基于RS232遥控型交通灯的设计1 Sw802A音频切换器的设计1 Sw6408V监控器的设计 1 KM-3键混器的设计1 无线数控多相位灯主机的设计1 SW162V数字视频切换器的设计1 基于RS232监控切换器1 SW401V 数字视频切换器的设计1 基于单片机的多路数据采集系统1 RS485转RS232的模块设计1 基于LCD显示的波形发生器的设计1 4-20mA转RS-485模块的设计 1 基于RS232流量计的设计 1 基于PTR2000的交通灯控制器主机的设计1 基于RS485量水仪的设计1 压力采集控制器的设计 1 数字量转4-20mA模拟量输出的模块设计1 正弦波形发生器的设计1 基于PTR2000的交通灯控制器从机的设计1 基于RS485视频切换器的设计1 LCD车速里程表电路设计1 LED车速里程表电路设计1 MSK通信系统的仿真设计1 员工信息管理系统 1 计算机文化基础考试系统的设计和开发1 人事工资管理系统1 员工信息管理系统设计1 超市进销存管理系统的VB实现1 基于单片机的多波形发生器的应用1 基于单片机电动自行车控制器设计1 个人理财管理系统1 基于CAN总线火灾监控系统的研究1 基于DSP平台的FIR滤波器设计1 于Matlab的FIR数字滤波器设计与仿真1 基于TMS320VC5402-DSP的最小系统硬件设计1 基于单片机的热水控制器 1 基于单片机的路灯控制系统的设计1 于单片机远程控制家用电器系统的设计1 基于液晶显示的乘法口诀测试仪的设计1 实验室设备管理系统毕业设计开题报告1 用AT89C51做 洗衣机全自动控制.doc1 数显频率计的设计.doc1 数控车间温度湿度控制系统设计.doc1 三角波斜率测试仪设计.doc1 人脸几何特征提取1 全自动洗衣机的控制程序设计.doc1 乞丐论文.doc1 教学楼毕业设计.doc1 建立海上风电场的技术要求分析与探讨.doc1 基于凌阳61A的数字式温湿度检测仪.doc1 基于几何匹配和分合算法的人脸识别.doc1 基于单片机数字钟的设计.doc1 基于单片机数据通用采集器的设计.doc1 基于单片机数据采集器.doc1 基于单片机的自动报警器的设计.doc1 基于单片机的终端设计.doc1 基于单片机的路灯控制系统控制系统的设计.doc1 基于单片机的交通灯的设计.doc1 基于单片机的简易计算器的设计.doc1 基于单片机的家用安保系统的设计.doc1 基于VHDL的数字频率计.doc1 基于SystemView的OFDM系统仿真设计.doc1 基于SystemView的OFDM系统仿真设计 基于PLC的烧结配料控制系统设计.doc1 基于MSP430的温度检测系统设计 基于MATLAB工具箱的数字滤波器设计.doc1 基于MATLAB的扩频通信系统仿真研究.doc1 基于GSM短信息通信方式的路灯无线监控系统.doc1 基于FPGA的信号源设计.doc1 基于EPP协议的AVR与PC并行通信系统的设计 单片机交通灯.doc1 单片机多点温度巡回检测系统的设计.doc1 单片机的温湿度检测系统 单路口交通信号PLC控制系统的设计.doc1 城市路口多相位自寻优交通信号控制设计.doc1 陈洁(螺旋瓶盖的设计).doc1 八路竞赛抢答器.doc1 matlab信号与系统.doc1 GSM系统的研究与SystemView仿真.doc1 蒯申红智能语音报站系统设计 MT8888在家庭安全电话报警系统中的应用设计1 基于FPGA的频率与功率因数在线测量1 基于FPGA的误码测试仪如果需要定做的话系 Q 273546756

  • 索引序列
  • 计算机视觉人脸识别毕业论文
  • 人脸识别机器人毕业论文
  • 人脸识别别毕业论文
  • 人脸识别算法研究论文
  • 人脸识别的毕业论文
  • 返回顶部