模糊数学又称Fuzzy 数学,是研究和处理模糊性现象的一种数学理论和方法。模糊性数学发展的主流是在它的应用方面。
由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。
扩展资料
模糊数学为现代数学的基础,集合可以表现概念,把具有某种属性的东西的全体称为集合。现实生活中许多事物(或现象)的变化是过渡性的,没有明确的界限,如人长得高、矮、胖瘦等,都是模糊性的语言。
正思通感围像具有模物性的特征,为了提高分类精度,在通感图像识别中,引人模糊数学方法是很有前景的。应当指出,在目前的技术条件下,并算机自动识别方法还无法代特目视解译方法。
定义在1965 年美国控制论学者.扎德发表论文《模糊集合》,标志着这门新学科的诞生。现代数学建立在集合论的基础上。一组对象确定一组属性,人们可以通过指明属性来说明概念,也可以通过指明对象来说明。符合概念的那些对象的全体叫做这个概念的外延,外延实际上就是集合。一切现实的理论系统都有可能纳入集合描述的数学框架。经典的集合论只把自己的表现力限制在那些有明确外延的概念和事物上,它明确地规定:每一个集合都必须由确定的元素所构成,元素对集合的隶属关系必须是明确的。对模糊性的数学处理是以将经典的集合论扩展为模糊集合论为基础的,乘积空间中的模糊子集就给出了一对元素间的模糊关系。对模糊现象的数学处理就是在这个基础上展开的。从纯数学角度看,集合概念的扩充使许多数学分支都增添了新的内容。例如模糊拓扑学、不分明线性空间、模糊代数学、模糊分析学、模糊测度与积分、模糊群、模糊范畴、模糊图论、模糊概率统计、模糊逻辑学等。其中有些领域已有比较深入的研究。模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、经济管理、石油、地质、环境、生物、农业、林业、化工、语言、控制、遥感、教育、体育等方面取得具体的研究成果。模糊性数学最重要的应用领域应是计算机智能。它已经被用于专家系统和知识工程等方面,在各个领域中发挥看非常重要的作用,并已获得巨大的经济效益。编辑本段产生现代数学是建立在集合论的基础上。集合论的重要意义就一个侧面看,在于它把数学的抽象能力延伸到人类认识过程的深处。一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它。符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合。从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都一可能纳入集合描述的数学框架。但是,数学的发展也是阶段性的。经典集合论只能把自己的表现力限制在那些有明确外延的概念和事物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可。对于那些外延不分明的概念和事物,经典集合论是暂时不去反映的,属 控制论模型于待发展的范畴。在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。但是,在客观世界中还普遍存在着大量的模糊现象。以前人们回避它,但是,由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出现。各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题推向中心地位。更重要的是,随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理模糊性。我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。从认识方面说,模糊性是指概念外延的不确定性,从而造成判断的不确定性。在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。这些概念是不可以简单地用是、非或数字来表示的。在人们的工作经验中,往往也有许多模糊的东西。例如,要确定一炉钢水是否已经炼好,除了要知道钢水的温度、成分比例和冶炼时间等精确信息外,还需要参考钢水颜色、沸腾情况等模糊信息。因此,除了很早就有涉及误差的计算数学之外,还需要模糊数学。人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然性。编辑本段研究内容现代计算机的计算速度及贮存能力几乎达到了无与伦比的程度,它不仅可以解决复杂的数学问题,还可以参与控制航天飞机等。既然计算机有如此威力,那么为什么在判断和推理方面有时不如人脑呢? 美国加利福尼亚大学Zadeh(扎德)教授仔细的研究了这个问题,以至于她在科研工作中 经常回旋与“人脑思维”、“大系统”与“计算机”的矛盾之中。1965年,他发表了论文《模糊集合论》“隶属函数”这个概念来描述现象差异中的中间过渡,从而突破了古典集合论中属于或不属于的绝对关系。Zadeh教授这一开创性的工作,标志着模糊数学这门学科的诞生。模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为,即“半老”,60岁属于“老”的程度。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立合适的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他近义的,以及能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。目前,模糊语言还很不成熟,语言学家正在深入研究。人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,即:非真即假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。目前,模糊逻辑还很不成熟,尚需继续研究。第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。编辑本段应用模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊 智能化聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机智能,不少人认为它与新一代计算机的研制有密切的联系。目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。模糊数学还远没有成熟,对它也还存在着不同的意见和看法,有待实践去检验。编辑本段产生历史模糊数学是运用数学方法研究和处理模糊性现象的一门数学新分支。它以“模糊集合”论为基础。模糊数学提供了一种处理不肯定性和不精确性问题的新方法,是描述人脑思维处理模糊信息的有力工具。它既可用于“硬”科学方面,又可用于“软”科学方面。 模糊数学由美国控制论专家.扎德()教授所创立。他于1965年发表了题为《模糊集合论》(《FuzzySets》)的论文,从而宣告模糊数学的诞生。.扎德教授多年来致力于“计算机”与“大系统”的矛盾研究,集中思考了计算机为什么不能象人脑那样进行灵活的思维与判断问题。尽管计算机记忆超人,计算神速,然而当其面对外延不分明的模糊状态时,却“一筹莫展”。可是,人脑的思维,在其感知、辨识、推理、决策以及抽象的过程中,对于接受、贮存、处理模糊信息却完全可能。计算机为什么不能象人脑思维那样处理模糊信息呢?其原因在于传统的数学,例如康托尔集合论(Cantor′sSet),不能描述“亦此亦彼”现象。集合是描述人脑思维对整体性客观事物的识别和分类的数学方法。康托尔集合论要求其分类必须遵从形式逻辑的排中律,论域(即所考虑的对象的全体)中的任一元素要么属于集合A,要么不属于集合A,两者必居其一,且仅居其一。这样,康托尔集合就只能描述外延分明的“分明概念”,只能表现“非此即彼”,而对于外延不分明的“模糊概念”则不能反映。这就是目前计算机不能象人脑思维那样灵活、敏捷地处理模糊信息的重要原因。为克服这一障碍,.扎德教授提出了“模糊集合论”。在此基础上,现在已形成一个模糊数学体系。模糊数学产生的直接动力,与系统科学的发展有着密切的关系。在多变量、非线性、时变的大系统中,复杂性与精确性形成了尖锐的矛盾。.扎德教授从实践中总结出这样一条互克性原理:“当系统的复杂性日趋增长时,我们作出系统特性的精确然而有意义的描述的能力将相应降低,直至达到这样一个阈值,一旦超过它,精确性和有意义性将变成两个几乎互相排斥的特性。”这就是说,复杂程度越高,有意义的精确化能力便越低。复杂性意味着因素众多,时变性大,其中某些因素及其变化是人们难以精确掌握的,而且人们又常常不可能对全部因素和过程都进行精确的考察,而只能抓住其中主要部分,忽略掉所谓的次要部分。这样,在事实上就给对系统的描述带来了模糊性。“常规数学方法的应用对于本质上是模糊系统的分析来说是不协调的,它将引起理论和实际之间的很大差距。”因此,必须寻找到一套研究和处理模糊性的数学方法。这就是模糊数学产生的历史必然性。模糊数学用精确的数学语言去描述模糊性现象,“它代表了一种与基于概率论方法处理不确定性和不精确性的传统不同的思想,……,不同于传统的新的方法论”。它能够更好地反映客观存在的模糊性现象。因此,它给描述模糊系统提供了有力的工具。.扎德教授于1975年所发表的长篇连载论著《语言变量的概念及其在近似推理中的应用》(《TheConceptofaLinguisticVariable&ItsApplicationtoApproximateReasoning》),提出了语言变量的概念并探索了它的含义。模糊语言的概念是模糊集合理论中最重要的发展之一,语言变量的概念是模糊语言理论的重要方面。语言概率及其计算、模糊逻辑及近似推理则可以当作语言变量的应用来处理。人类语言表达主客观模糊性的能力特别引人注目,或许从研究模糊语言入手就能把握住主客观的模糊性、找出处理这些模糊性的方法。有人预言,这一理论和方法将对控制理论、人工智能等作出重要贡献。模糊数学诞生至今仅有22年历史,然而它发展迅速、应用广泛。它涉及纯粹数学、应用数学、自然科学、人文科学和管理科学等方面。在图象识别、人工智能、自动控制、信息处理、经济学、心理学、社会学、生态学、语言学、管理科学、医疗诊断、哲学研究等领域中,都得到广泛应用。把模糊数学理论应用于决策研究,形成了模糊决策技术。只要经过仔细深入研究就会发现,在多数情况下,决策目标与约束条件均带有一定的模糊性,对复杂大系统的决策过程尤其是如此。在这种情况下,运用模糊决策技术,会显得更加自然,也将会获得更加良好的效果。编辑本段应用前景模糊数学是研究现实中许多界限不分明问题的一种数学工具,其基本概念之一是模糊集合。利用模糊数学和模糊逻辑,能很好地处理各种模糊问题。模式识别是计算机应用的重要领域之一。人脑能在很低的准确性下有效地处理复杂问题。如计算机使用模糊数学,便能大大提高模式识别能力,可模拟人类神经系统的活动。在工业控制领域中,应用模糊数学,可使空调器的温度控制更为合理,洗衣机可节电、节水、提高效率。在现代社会的大系统管理中,运用模糊数学的方法,有可能形成更加有效的决策。模糊数学这种相当新的数学方法和思想方法,虽有待于不断完善,但其应用前景却非常广阔。编辑本段模糊数学研究[1]模糊数学研究 是一本关注运筹学与模糊学领域最新进展的国际中文期刊,由汉斯出版社发行,主要刊登数学规划、数学统筹、模糊信息与工程、模糊管理学相关内容的学术论文和成果评述。本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在为了给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论运筹与模糊学领域内不同方向问题与发展的交流平台。运筹学研究研究领域: · 数学规划· 图论组合优化· 随机模型· 决策与对策(博弈)· 金融数学· 统筹论· 军事运筹· 计算机仿真· 数据挖掘· 统计与预测学· 模糊数学与系统· 启发式演算法· 模糊控制· 智能、软计算· 可靠性· 管理与模糊管理学· 模糊信息与工程编辑本段模糊数学在中国在美国,日本,法国等世界数学强国相继研究模糊数学,并取得一些阶段性的进展的同时,1976年中国开始注意模糊数学的研究,世界著名模糊学家考夫曼(,法国)、山泽(.法国)、营野(日本)和美籍华人等先后来华讲学,推动了我国模糊数学的高速发展,很快就拥有一支较强的研究队伍。1980年成立了中国模糊集与系统协会。1981年,创办《模糊数学》杂志,1987年,创办了《模糊系统与数学》杂志。还出版过大量的颇有价值的论著。例如:汪培庄教授所著《模糊集与随机集落影》,《模糊集合论及其应用》,张文修教授编著的《模糊数学基础》等。1988年我国汪培庄教授指导几位博士生研制成功了一台模糊推理机-----分立元件样机。它的推理速度为1500万次/秒,这表明中国在突破模糊信息处理难关方面迈出重要一步。中国科研人员在Fuzzy领域中取得了卓越成就。何新贵院士将Fuzzy方面的论文在国内外权威杂志上发表。这标志着中国研究已经达到国内外先进水平。至此,中国已成为全球四大模糊数学研究中心之一。(美国,西欧,中国,日本)2005年,是一个值得中国所有模糊研究人员和学者庆祝的一个丰收年,在这个丰收年里有两件值得庆祝的大事。一,经国际模糊系统协会(IFSA)专家评审,最终确定授予中国四川大学副校长刘应明院士“FuzzyFellow奖”。“FuzzyFellow奖”是模糊数学领域的最高奖项,专门授予得到国际公认的,在模糊数学领域做出杰出贡献的科学家。二,2005年8月20日,中国运筹会Fuzzy信息与工程分会正式成立。Fuzzy信息与工程分会成立,是隶属于全国两大数学方向的一级学会之一------中国运筹会,表明Fuzzy数学在中国已取得了应有的地位,尤其是Fuzzy数学的创始人扎德教授的出席会议,中国运筹学会理事长,中国科学院数学与系统科学研究院副院长袁亚湘教授和广州大学校长廖建设教授为学会揭牌,这给成立大会增添的极大的光彩。也极大的鼓舞了全国Fuzzy研究工作者。Fuzzy信息与工程分会的宗旨:在完善和加强Fuzzy集理论研究的同时,更侧重于Fuzzy技术的应用和Fuzzy产品的开发研究。注:1、广州大学校长为庾建设。2、中国运筹会Fuzzy信息与工程分会首任理事长为广州大学曹炳元教授。
只要能应用到计算机领域就可以,比如该算法可否在计算机领域内解决某一个问题或者技术方案
人工智能是计算机科学中的一个分支,用模糊数学的命题逻辑和谓词逻辑,使计算机能构造出语句来表达知识和意思。人工智能的发展,使人们认识到人类的活动,无非是进行能量变换和信息交换,大大地推动了社会的前进,深化了人们对认识论问题的研究。 在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。在人们的工作经验中,往往也有许多模糊的东西。例如,现在的掌门识别,要确认某个人的身份,要基于此人的手掌识别,然他的手掌的形状以及各种情况的考虑除了很早就有涉及误差的计算数学之外,还需要模糊数学。 人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然性。 1965年,美国控制论专家、数学家查德发表了论文《模糊集合》,标志着模糊数学这门学科的诞生。 模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。 模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。 目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。 三、模糊数学的主要应用 1.模糊数学自身的理论研究进展迅速。我国模糊数学自身的理论研究仍占模糊数学及其应用学科的主导地位,所取得的研究成果在《模糊数学》、《模糊系统与数学》等数十种学术期刊和全国高校学报中经常可见,模糊聚类分析理论、模糊神经网络理论和各种新的模糊定理及算法不断取得进展。 2.模糊数学目前在自动控制技术领域仍然得到最广泛的应用,所涉及的技术复杂繁多,从微观到宏观、从地下到太空无所不有,在机器人实时控制、电磁元件自适应控制、各种物理及力学参数反馈控制、逻辑控制等高新技术中均成功地应用了模糊数学理论和方法。 3.模糊数学在计算机仿真技术、多媒体辨识等领域的应用取得突破性进展,如图像和文字的自动辨识、自动学习机、人工智能、音频信号辨识与处理等领域均借助了模糊数学的基本原理和方法。 4.模糊聚类分析理论和模糊综合评判原理等更多地被应用于经济管理、环境科学、安全与劳动保护等领域,如房地价格、期货交易、股市情报、资产评估、工程质量分析、产品质量管理、可行性研究、人机工程设计、环境质量评价、资源综合评价、各种危险性预测与评价、灾害探测等均成功地应用了模糊数学的原理和方法。 5.地矿、冶金、建筑等传统行业在处理复杂不确定性问题中也成功地应用了模糊数学的原理和方法,从而使过去凭经验和类比法等处理工程问题的传统做法转向数学化、科学化,如矿床预测、矿体边界确定、油水气层的识别、采矿方法设计参数选择、冶炼工艺自动控制与优化、建筑物结构设计等都有应用模糊数学的成功实践。 6.我国医药、生物、农业、文化教育、体育等过去看似与数学无缘的学科也开始应用模糊数学的原理和方法,如计算机模糊综合诊断、传染病控制与评估、人体心理及生理特点分析、家禽孵养、农作物品种选择与种植、教学质量评估、语言词义查找、翻译辨识等均有一些应用模糊数学的实践,并取得很好效果。李洪兴教授,他领导的科研团队采用“变论域自适应模糊控制理论”成功地实现了全球首例“四级倒立摆实物系统控制”。据介绍,倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。目前,实现三级倒立摆控制的实物系统仍然是世界公认的难题,而要实现四级倒立摆控制实物系统,在世界范围内更是一项空白。北师大模糊系统与模糊信息研究中心暨复杂系统智能控制实验室采用李洪兴教授提出的“变论域自适应模糊控制”理论,先后成功地实现了四级倒立摆控制仿真实验、三级倒立摆实物系统控制,并于今年8月11日实现了全球首例四级倒立摆实物系统控制。而由此项理论产生的方法和技术将在半导体及精密仪器加工、机器人技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。
利用除法来比较分数的大小 今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小。顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法。那就是把这两个假分数化成带分数,然后利用分数的规律,同分子 分数,分母越小,这个分数就越大。解出1111/111<11111/1111。解完之后,我高兴极了,自夸道:“看来,什么难题都难不倒我了。”正在织毛衣的妈妈听了我的话,看了看题目,大声笑道:“哟,我还以为有多难题来,不就是简单的比较分数大小吗?”听了妈妈的话,我立刻生气起来,说:“什么呀 ,这题就是难。”说完我又讽刺起妈妈来:“你多高啊,就这题对你来说还不是小菜啊!”妈妈笑了:“好了,好了,不跟你闹了,不过你要能用两种方法解这题,那就算高水平了。”我听了妈妈的话又看了看这道题,还不禁愣了一下“还有一种解法。”我惊讶地说道。“当然了”妈妈说道,“怎么样,不会做了吧,看来你还是低水平。”我扣了妈妈的话生气极了,为了证明我是高水平的人我又做了起来。终于经过我的一番努力,第二种方法出来了,那就是用除法来比较它们之间的大小。你看,一个数如果小于另一个数,那么这个数除以另一个数商一定是真分数,同理,一个数如果大于另一个数,那么这个数除以另一个数,商一定大于1。利用这个规律,我用1111/111÷11111/1111,由于这些数太大,所以不能直接相乘,于是我又把这个除法算式改了一下,假设有8个1,让你组成两个数,两个数乘积最大的是多少。不用说,一定是两个最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那么也就是1111/111>11111/1111。 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
人工智能是计算机科学中的一个分支,用模糊数学的命题逻辑和谓词逻辑,使计算机能构造出语句来表达知识和意思。人工智能的发展,使人们认识到人类的活动,无非是进行能量变换和信息交换,大大地推动了社会的前进,深化了人们对认识论问题的研究。 在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。在人们的工作经验中,往往也有许多模糊的东西。例如,现在的掌门识别,要确认某个人的身份,要基于此人的手掌识别,然他的手掌的形状以及各种情况的考虑除了很早就有涉及误差的计算数学之外,还需要模糊数学。 人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然性。 1965年,美国控制论专家、数学家查德发表了论文《模糊集合》,标志着模糊数学这门学科的诞生。 模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。 模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。 目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。 三、模糊数学的主要应用 1.模糊数学自身的理论研究进展迅速。我国模糊数学自身的理论研究仍占模糊数学及其应用学科的主导地位,所取得的研究成果在《模糊数学》、《模糊系统与数学》等数十种学术期刊和全国高校学报中经常可见,模糊聚类分析理论、模糊神经网络理论和各种新的模糊定理及算法不断取得进展。 2.模糊数学目前在自动控制技术领域仍然得到最广泛的应用,所涉及的技术复杂繁多,从微观到宏观、从地下到太空无所不有,在机器人实时控制、电磁元件自适应控制、各种物理及力学参数反馈控制、逻辑控制等高新技术中均成功地应用了模糊数学理论和方法。 3.模糊数学在计算机仿真技术、多媒体辨识等领域的应用取得突破性进展,如图像和文字的自动辨识、自动学习机、人工智能、音频信号辨识与处理等领域均借助了模糊数学的基本原理和方法。 4.模糊聚类分析理论和模糊综合评判原理等更多地被应用于经济管理、环境科学、安全与劳动保护等领域,如房地价格、期货交易、股市情报、资产评估、工程质量分析、产品质量管理、可行性研究、人机工程设计、环境质量评价、资源综合评价、各种危险性预测与评价、灾害探测等均成功地应用了模糊数学的原理和方法。 5.地矿、冶金、建筑等传统行业在处理复杂不确定性问题中也成功地应用了模糊数学的原理和方法,从而使过去凭经验和类比法等处理工程问题的传统做法转向数学化、科学化,如矿床预测、矿体边界确定、油水气层的识别、采矿方法设计参数选择、冶炼工艺自动控制与优化、建筑物结构设计等都有应用模糊数学的成功实践。 6.我国医药、生物、农业、文化教育、体育等过去看似与数学无缘的学科也开始应用模糊数学的原理和方法,如计算机模糊综合诊断、传染病控制与评估、人体心理及生理特点分析、家禽孵养、农作物品种选择与种植、教学质量评估、语言词义查找、翻译辨识等均有一些应用模糊数学的实践,并取得很好效果。李洪兴教授,他领导的科研团队采用“变论域自适应模糊控制理论”成功地实现了全球首例“四级倒立摆实物系统控制”。据介绍,倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。目前,实现三级倒立摆控制的实物系统仍然是世界公认的难题,而要实现四级倒立摆控制实物系统,在世界范围内更是一项空白。北师大模糊系统与模糊信息研究中心暨复杂系统智能控制实验室采用李洪兴教授提出的“变论域自适应模糊控制”理论,先后成功地实现了四级倒立摆控制仿真实验、三级倒立摆实物系统控制,并于今年8月11日实现了全球首例四级倒立摆实物系统控制。而由此项理论产生的方法和技术将在半导体及精密仪器加工、机器人技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。
模糊聚类是采用模糊数学方法,依据客观事物间的特征、亲疏程度和相似性,通过建立模糊相似关系对客观事物进行分类的一门多元技术。其算法主要有传递闭包法、动态直接聚类法和最大树法等,其中动态直接聚类法计算量最少。在实际应用中必须经过数据预处理、特别是归一化等处理步骤,选取合适的模糊关系建立模糊相似矩阵,然后进行聚类和模式识别。糊聚类分析在学生素质评定中的应用学生素质的评定工作,对学校的发展具有重要的作用。本文就学生素质从德、智、体、能、劳5个方面作出评价。首先,对得到的数据进行规格化;接着,构造模糊相似矩阵;最后,利用编网法对学生素质的评定进行聚类分析,该方法简单易懂且计算量小达到了预期的效果。模糊数学在畜禽血液蛋白多态性聚类分析中的应用我国动植叨蛋白多态性的研究进展迅速,国内外有关这方面的报道越来越多.但这一研究已有近百年的历史,真正发展是近=十年的事.我国起步较晚,近年的研究和应用较快,现已推向地,县级阶段,可见这一研究和应用的普及在我国为时不远1.西南民族学院2.西昌农业专科学校3.面昌市畜牧局了..本研究表明我国畜牧兽医工作进入了分子水平阶段.由于蛋白多态性的研究和方法简便,节时省钱,基层单位均可应用.但此法的关键问题是聚类分析.聚类分析的方法很多,如遗传距离聚类分析中的最短遗传距离聚类分析,类平均法聚类分析再如遗传相似系数分析中我们见有矩阵法,但在畜禽蛋白多态性聚类分析上,均无统一的具体分析方法.为此,我们根据模糊数学集合论的原理,对遗传相似系数进行聚类分析,现介绍出来,供同行们应用时参考.模糊数学是研究和处理一些模糊现象的数学.但不是把数学变成模糊的东酉,而是在许多控制过程中,用模糊的手段达到精确的目的.在畜禽蛋白多态性研究中,遗传相似系数也是聚类分析中常用的分析指标.模糊数学聚类分析在鲤鱼杂交种后代性状研究中的应用杂交鲤与亲本相似,用数学语言来说是存在模糊性问题。采用模糊数学聚类分析法,首先建立模糊相似矩阵,得到鲤鱼生长性状聚类分类图谱,最后得到三杂交鲤、荷元鲤等F1代与母本相似比父本大的结论。这在鱼类杂交选育理论与生产上有一定意义
你是写原理 还是写应用 写原理可以比较不同方法的结果比较 应用的话可以写某一方面 也可以写与其它方法的联用
模式识别是计算机应用的重要领域之一。人脑能在很低的准确性下有效地处理复杂问题。如计算机使用模糊数学,便能大大提高模式识别能力,可模拟人类神经系统的活动。
在工业控制领域中,应用模糊数学,可使空调器的温度控制更为合理,洗衣机可节电、节水、提高效率。在现代社会的大系统管理中,运用模糊数学的方法,有可能形成更加有效的决策。
扩展资料:
一、相关应用
模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。
在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机智能,不少人认为它与新一代计算机的研制有密切的联系。
二、研究内容
第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。
查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。
第二,研究模糊语言学和模糊逻辑。
人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。
第三,研究模糊数学的应用。
模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。
参考资料来源:百度百科-模糊数学
现代计算机的计算速度及贮存能力几乎达到了无与伦比的程度,它不仅可以解决复杂的数学问题,还可以参与控制航天飞机等。既然计算机有如此威力,那么为什么在判断和推理方面有时不如人脑呢? 美国加利福尼亚大学Zadeh(扎德)教授仔细的研究了这个问题,以至于他在科研工作中经常回旋与“人脑思维”、“大系统”与“计算机”的矛盾之中。1965年,他发表了论文《模糊集合论》“隶属函数”这个概念来描述现象差异中的中间过渡,从而突破了古典集合论中属于或不属于的绝对关系。Zadeh教授这一开创性的工作,标志着模糊数学这门学科的诞生。模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为,即“半老”,60岁属于“老”的程度。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立合适的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他近义的,以及能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。现时,模糊语言还很不成熟,语言学家正在深入研究。人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,即:非真即假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。现时,模糊逻辑还很不成熟,尚需继续研究。第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,现今已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。
二十世纪六十年代,产生了模糊数学这门新兴学科。 模糊数学的产生 现代数学是建立在集合论的基础上。集合论的重要意义就一个侧面看,在与它把数学的抽象能力延伸到人类认识过程的深处。一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它。符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合。从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都一可能纳入集合描述的数学框架。 但是,数学的发展也是阶段性的。经典集合论只能把自己的表现力限制在那些有明确外延的概念和事物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可。对于那些外延不分明的概念和事物,经典集合论是暂时不去反映的,属于待发展的范畴。 在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。但是,在客观世界中还普遍存在着大量的模糊现象。以前人们回避它,但是,由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出现。 各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题推向中心地位。更重要的是,随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理模糊性。 我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。从认识方面说,模糊性是指概念外延的不确定性,从而造成判断的不确定性。 在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。在人们的工作经验中,往往也有许多模糊的东西。例如,要确定一炉钢水是否已经炼好,除了要知道钢水的温度、成分比例和冶炼时间等精确信息外,还需要参考钢水颜色、沸腾情况等模糊信息。因此,除了很早就有涉及误差的计算数学之外,还需要模糊数学。 人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然性。 模糊数学的研究内容 1965年,美国控制论专家、数学家查德发表了论文《模糊集合》,标志着模糊数学这门学科的诞生。 模糊数学的研究内容主要有以下三个方面: 第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。察德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。 在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为,即“半老”,60岁属于“老”的程度。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。 第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。 为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立和是的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。 如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他文法稍有错误,但尚能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。目前,模糊语言还很不成熟,语言学家正在深入研究。 人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,既非真既假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。 为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。目前,模糊罗基还很不成熟,尚需继续研究。 第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。 模糊数学的应用 模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。 目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。 模糊数学还远没有成熟,对它也还存在着不同的意见和看法,有待实践去检验。
你是写原理 还是写应用 写原理可以比较不同方法的结果比较 应用的话可以写某一方面 也可以写与其它方法的联用
现代计算机的计算速度及贮存能力几乎达到了无与伦比的程度,它不仅可以解决复杂的数学问题,还可以参与控制航天飞机等。既然计算机有如此威力,那么为什么在判断和推理方面有时不如人脑呢? 美国加利福尼亚大学Zadeh(扎德)教授仔细的研究了这个问题,以至于他在科研工作中经常回旋与“人脑思维”、“大系统”与“计算机”的矛盾之中。1965年,他发表了论文《模糊集合论》“隶属函数”这个概念来描述现象差异中的中间过渡,从而突破了古典集合论中属于或不属于的绝对关系。Zadeh教授这一开创性的工作,标志着模糊数学这门学科的诞生。模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为,即“半老”,60岁属于“老”的程度。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立合适的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他近义的,以及能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。现时,模糊语言还很不成熟,语言学家正在深入研究。人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,即:非真即假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。现时,模糊逻辑还很不成熟,尚需继续研究。第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,现今已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。
模糊聚类是采用模糊数学方法,依据客观事物间的特征、亲疏程度和相似性,通过建立模糊相似关系对客观事物进行分类的一门多元技术。其算法主要有传递闭包法、动态直接聚类法和最大树法等,其中动态直接聚类法计算量最少。在实际应用中必须经过数据预处理、特别是归一化等处理步骤,选取合适的模糊关系建立模糊相似矩阵,然后进行聚类和模式识别。糊聚类分析在学生素质评定中的应用学生素质的评定工作,对学校的发展具有重要的作用。本文就学生素质从德、智、体、能、劳5个方面作出评价。首先,对得到的数据进行规格化;接着,构造模糊相似矩阵;最后,利用编网法对学生素质的评定进行聚类分析,该方法简单易懂且计算量小达到了预期的效果。模糊数学在畜禽血液蛋白多态性聚类分析中的应用我国动植叨蛋白多态性的研究进展迅速,国内外有关这方面的报道越来越多.但这一研究已有近百年的历史,真正发展是近=十年的事.我国起步较晚,近年的研究和应用较快,现已推向地,县级阶段,可见这一研究和应用的普及在我国为时不远1.西南民族学院2.西昌农业专科学校3.面昌市畜牧局了..本研究表明我国畜牧兽医工作进入了分子水平阶段.由于蛋白多态性的研究和方法简便,节时省钱,基层单位均可应用.但此法的关键问题是聚类分析.聚类分析的方法很多,如遗传距离聚类分析中的最短遗传距离聚类分析,类平均法聚类分析再如遗传相似系数分析中我们见有矩阵法,但在畜禽蛋白多态性聚类分析上,均无统一的具体分析方法.为此,我们根据模糊数学集合论的原理,对遗传相似系数进行聚类分析,现介绍出来,供同行们应用时参考.模糊数学是研究和处理一些模糊现象的数学.但不是把数学变成模糊的东酉,而是在许多控制过程中,用模糊的手段达到精确的目的.在畜禽蛋白多态性研究中,遗传相似系数也是聚类分析中常用的分析指标.模糊数学聚类分析在鲤鱼杂交种后代性状研究中的应用杂交鲤与亲本相似,用数学语言来说是存在模糊性问题。采用模糊数学聚类分析法,首先建立模糊相似矩阵,得到鲤鱼生长性状聚类分类图谱,最后得到三杂交鲤、荷元鲤等F1代与母本相似比父本大的结论。这在鱼类杂交选育理论与生产上有一定意义
1、模糊数学作为一个新兴的数学分支,使过去那些与数学毫不相关或关系不大的学科(如生物学、心理学、语言学、社会科学等)都有可能用定量化和数学化加以描述和处理,从而显示了强大的生命力和渗透力,使数学的应用范围大大扩展2、模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。第三,研究模糊数学的应用。3、模糊数学的应用 模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。
你是写原理 还是写应用 写原理可以比较不同方法的结果比较 应用的话可以写某一方面 也可以写与其它方法的联用
(1)文献研究法根据所要研究内容 ,通过查阅相关文献获得充足的资料,从而全面地了解所研究课题的背景、历史、现状以及前景。(2)研究项目分析法在进行理论的搜集与分析之后,根据现有的研究项目整体系统进行分析与设计,实现理论与实践的相结合,使理论有理有据,设计更合理。
这样我懂得,我马宁好
数学硕士论文开题报告
导语:数学是一门博大高深的学科,要想学好数学必须进行艰苦的研究与知识的积淀。数学硕士撰写论文可以提高学术水平,在写作之前需要提交开题报告。下面和我一起来看数学硕士论文开题报告,希望有所帮助!
一、数学文化的内涵
数学作为一种科学的语言、工具和技术渗透在现代科技的方方面面早已是不争的事实,但是现代数学在人们心中的地位却远远没有达到它应当达到的高度。随着数学专业化程度的提高,它仿佛离人们越来越远了。专业的知识因为艰涩和高深仅仅掌握在少数人手中而无法被大众共享,这直接导致了新的成果无人理解,获得的奖项无人关注,所以数学人是“孤独的”.孤独造成高傲,高傲造成疏远,这其中有误解也有无奈。所以我们强调文化,因为脱离了文化基础的数学只能离人们越来越远。
受目前学校教育情况的影响,很多人认为数学是高高在上的,除了作为升学的工具,毫无用处。这样一来,对于数学这样一门富有深刻文化内涵的学科,就连一些受过良好教育的人也持无视的态度,对数学的无知成了一种很普遍的社会现象,这是一个令人十分担忧的事实。就像美丽的图画并非只是线条和色彩,动人的乐曲并非只是音符和节拍,数学也不是只有数字、符号和运算。了解数学的人都知道,运算只是数学微不足道的方面,数学的精神、思想、方法都蕴藏着无比深刻的内涵,渗透到科学的每个角落。如果将数学比作一棵大树,那么这棵大树的生命力是旺盛的,这种生命力体现在数学起源、发展、完善和应用的每一个过程当中,而数学文化就像土壤一样几百几千年来滋养这棵大树,使它繁衍生息,长盛不衰。因此,扎根于文化土壤的数学教育是十分必要的,也是我们目前十分需要的,这一点将在第五章进行详细论述。
19世纪末到20世纪初的几十年是数学哲学研究领域的黄金时代,关于数学基础的讨论十分活跃,也形成了不同的学派,包括逻辑主义学派、形式主义学派、直觉主义学派、集合论公理化学派等,大家都在筹划为数学建立牢固的哲学基础。虽然几个学派各有优缺点,但都为数学基础的严密性做出了贡献。然而哥德尔的工作击碎了他们的幻想,使数学哲学的研究一度陷入谷底。直到20世纪60年代,西方学者提出了数学文化观,从新的立场为数学哲学研究提出新的观点、新的方法。最早系统地完成这一开创性工作的是美国数学家怀尔德(),他提出了数学作为文化体系的数学哲学观。怀尔德是一名出色的数学家,主要从事拓扑学和数学基础的研究。他的《数学基础引论》和《数学概念演变初探》对数学基础研究有着深远的意义。受到人类学家朋友的影响,他对人类学产生了浓厚的兴趣,并大胆地从人类学的视角考察数学的本质和发展,在数学研究中融入了人类学的研究体会,出版了着作《数学概念的进化》和《作为文化体系的数学》。
他在著作中从文化生成和发展的理论等角度考察数学,率先提出了数学文化的概念并构建了数学文化的理论体系,形成了很长时期以来出现的第一个成熟的数学哲学观,强调了数学的发展动力、发展规律、思维方式等文化内涵,强调了遗传、环境、人类以及人类文化等对数学的作用影响。
二、数学文化研究的意义
区别于其他文化,数学文化具有独特的研究对象、研究视角及价值评判标准,它的出现为数学研究提出了新的思想和方法,使得我们可以从人类文化的任意一个角度切入数学、理解数学、解构数学,最大范围地打开研究思路,拓宽研究范围。
数学文化首先研究的是数学本身,包括从科学体系角度对数学科学进行研究和从哲学角度对数学哲学进行研究。数学科学研究就是一般意义上的数学理论研究,而数学哲学研究则是对数学基础、数学悖论和数学本体论进行探讨,包括数学的对象、性质、特点、地位与作用,数学新分支、新课题提出的哲学意义,着名数学家和数学流派的数学和哲学思想以及数学方法、数学的实在性和真理性等。
数学文化同时研究的是数学学科与其他学科、数学文化与其他文化之间的交互作用,比如数学与文学、数学与经济学之间的渗透影响等。
数学文化研究从文化因素思考数学的演变和发展,为数学史的研究提供新的思考方向。数学文化的历史研究不同于数学史的研究,数学史研究追求的是完善数学知识、数学思想的演化史,数学文化的历史研究是基于全局视角,思考数学与其他文化系统历史的互动关系,关注这些关系对现代数学发展的影响和启示。
如中国的传统文化和实用哲学使中国传统数学重视实用性,制定实际问题的算法成为中国传统数学的本质,也是中国数学存在和发展的基点。古希腊的数学思想产生在城邦航海贸易的氛围中,兼容并追求独立的思辨思想孕育了演绎数学,这是古希腊哲学的深入渗透和文化价值观的体现。从中西文化的差异角度,我们找到了东西方数学体系大相径庭的原因,不是数学本身的要求,而是文化的要求。
数学文化研究强调和突出社会文化心理、价值观念以及人类文化对数学发生的作用,从新的角度诠释了某些理论出现、发展、停滞或覆灭的原因。如古希腊的数学之所以昌盛,是因为希腊人以数学为万学之基,二元论的宇宙观也引导科学家将物质与自身分离而进行科学有效的客观分析。中国的儒家思想将数学放在六艺之末,天人合一的宇宙观使得东方人表现出长于直觉而短于抽象,擅于综合而不擅分析。这也是古代东方数学不能蓬勃发展的原因。
三、数学的文化特征
1.数学的抽象性
在早期的人类文明,数学的创始之初,人类学会了思考数字并进行一定程度的运算。苏联数学家亚历山大洛夫()说:“抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却并不打算每次都把它们同具体的对象联系起来。我们在学校学的是抽象的乘法表--总是数字的.乘法表,而不是男孩的数目乘上苹果的数目,或者苹果的数目乘上苹果的价钱等等。”
数学成为抽象的学科,人们将这一巨大的功劳记在希腊人身上,毕达哥拉斯学派纯凭心智考虑抽象问题,认为数是真实物质的终极组成部分,是宇宙的要素,完全的演绎推理证明也加深了数学的抽象程度。希腊人有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是完全不同的。物质实体是短暂的、不完善的,而抽象概念却是永恒的、完美的。虽然抽象相对实体更困难,但它的优点也是实体无法企及的,那就是一般性。在抽象的世界里,点没有大小,线没有宽度,面没有厚度,堆积的石子、成捆的树枝都可以表示数量关系。
2.数学的确定性
数学追求一种完全确定、完全可靠的知识。这种结果得益于数学体系的特殊而有效的方法,即从一系列不证自明的公理出发,准确地描述将要讨论的概念和定义,经过严密的逻辑推理演绎得出明确无误的结论,这也是数学得以长足发展的动力因素。几千年来,数学的真理性得到人们的高度认同和尊崇。
然而,十九世纪以后,数学的这种真理性地位却一次次受到巨大的冲击。非欧几何、四元数理论、集合论悖论给数学“真理的化身”形象笼罩上了阴影,使得数学丧失了揭示客观世界的“真理性”,也丧失了自身基础的严密性。克莱因(Morris Kline)在《数学:确定性的丧失》中提到“数学的当前困境是有许多种数学而不是只有一种,而且由于种种原因每一种都无法使对立学派满意。显然,普遍接受的概念、正确无误的推理体系--1800年时的尊贵数学和那时人的自豪--现在都成了痴心妄想。与未来数学相关的不确定性和可疑,取代了过去的确定性和自满。关于”最确定的“科学的基础意见不一致不仅让人吃惊,而且,温和一点说,是让人尴尬。”
3.数学的继承性
科学知识是在长期的历史发展过程中形成的,其过程就说明了知识具有继承性,没有继承,就没有积累。我认为继承性应该从两方面理解。
从个人来讲,我们学习一些知识,无须重新经历科学家们艰苦的实践过程,短时间内就可以掌握到一门学科千百年来积累的成果。这种继承通过教育实现,极大的加速了科学技术的发展,故而现在一个中学生掌握的知识可以超过若干古代著名的科学家。“只有有效地继承人类知识,同时把世界最先进的科学技术知识拿到手,我们再向前迈出半步,就是最先进的水平,第一流的科学家(诺贝尔物理学奖得主温伯格(Steven Weinberg))。”正因如此,知识领域才能发展成今天的面貌。法国的着名科学家庞加莱被誉为“全能数学家”,因为他在数学、天文、物理的几乎每一个领域都做出了杰出的贡献,然而今天,一个人想要掌握全部数学知识的三分之一都是不可能的。
四、提纲
目录
第1章 概述
文化的内涵
文明的内涵
数学文化的内涵
数学文化研究的意义与现状
第2章 数学的文化特征
数学的文化特征
数学的抽象性
数学的确定性
数学的继承性
数学的简洁性
数学的统一性
数学的功能特征
数学的渗透性
数学的传播性
数学的工具性
数学的预见性
数学的艺术特征
数学的艺术性
数学与音乐
数学与美术
数学与文学
第3章 数学与人类文明
数学是人类逻辑能力的来源
数学唤醒人类理性精神
数学促进人类思想解放
数学改善人类生活
数学完善人类品格
数学提高人类文化素质
第4章 数学与社会文明
数学促进社会进步
数学推动知识发展
第5章 我国数学文化与数学教育的研究进展
数学文化与数学教育研究综述
数学文化与数学教育活动进展
第6章 对数学教育的若干思考
数学素养是国民文化素质的重要构成.
数学教育现状
数学文化教育亟需解决的问题与建议
结束语
参考文献
致谢
五、亟需解决的问题与建议
1.数学技能的培养与数学素养的培育应当紧密结合为一个有机的整体,一方面提高学生对于数学的学习兴趣,另一方面,也可以使学生在学习数学技能的过程中,不断地加深对于数学的理解,提高逻辑思维能力,养成理性思考的习惯。高等学校数学文化教育普遍存在的一个问题是数学文化与数学技能培养相脱节。目前,数学文化课或者数学教育课都是选修课,在本质上仍属于“弥补型”课程,通常都是在学生入学一到两个学期以后开设的。当数学文化课引发了学生对于数学的兴趣和思考的时候,数学基础课程已经修完或即将修完,于是,对于学生来说,数学文化课有着某种“相见恨晚”的感觉。正像有些学生所反映的那样,如果早一点开设数学文化课,早一点了解数学的文化内涵,他们的高等数学会学得更好。由于一直以来积重难返的应试教育所致,学生在初、高中阶段主要接受的是数学技能方面的知识,而极少接触到数学文化方面的知识,于是,在进入高等学校以后,学生对于数学文化的了解几近空白。这也在客观上造成了数学文化与技能的培养脱节。
2.近年来,由于各个领域对工作者建模能力的需要,数学建模教育逐渐得到了重视。在建模过程中培养学生的创新意识、思维能力,培养学生良好的数学素养是数学建模教育的主要目标。路易斯安那州立大学一项研究表明,与细菌的生存发展方式类似,学生对知识的探求和接受并非只是个体行为,学生与学生之间形成的交流网络会使学生相互影响、相互促进,对教学效果产生质的影响。数学建模教育形式正是突破了时间和空间的限制,改变“师对生”的传统、单一的教学
六、进度安排
20XX年11月01日-11月07日 论文选题。
20XX年11月08日-11月20日 初步收集毕业论文相关材料,填写《任务书》。
20XX年11月26日-11月30日 进一步熟悉毕业论文资料,撰写开题报告。
20XX年12月10日-12月19日 确定并上交开题报告。
20XX年01月04日-02月15日 完成毕业论文初稿,上交指导老师。
20XX年02月16日-02月20日 完成论文修改工作。
20XX年02月21日-03月20日 定稿、打印、装订。
20XX年03月21日-04月10日 论文答辩。
七、参考文献
[1]曹红军,厉树忠,刘亚楠.《易经》卦象符号的拓扑群结构[J].周易研究.
[2](美)塞缪尔·亨廷顿.文明的冲突与世界秩序的重建[M].北京:新华出版社,2005.
[3]范森林.中国政治思想的起源[M/OL].
[4]黄秦安.论数学文化的本质、功能及其在人类文化变革中的角色[J].陕西师范大学学报,1993(2):54-61.
[5]郑毓信.数学哲学的内容和意义[J/OL].
[6]普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003.
[7]顾沛.数学文化[M],北京:高等教育出版社,2008.
[8]南开大学数学文化课程简介.
[9]吉林大学本科生数学文化课程教学大纲--数学文化.
[10](美)莫里斯·克莱因.古今数学思想(第一册)[M].上海:上海科学技术出版社,2002.
[11]郑毓信.数学方法论[M].南宁:广西教育出版社,2001.
[12]张维忠.数学:丧失了确定性吗?[J]自然辩证法研究,1998,14(11).
[13]郭光华,常春艳,王小燕.试论数学的文化特性[J].par数学教育学报,2005,14(3):25-27.
[14]蒋岚.论数学美[J].温州职业技术学院学报,2003,3(2):38-42.
[15]杨毅.论体育数学与体育科学[J].衡阳师范学院学报,2002,23(3):95-96.
[16]数学地质四川省高校重点实验室.
[17]林履端.《易经》与模糊数学[J].闽江学院学报,2002,22(2):116-118.
论文开题报告格式须知(精选6篇)
接地气的大学生活即将结束,大学生们一定都对毕业设计充满畏惧,在做毕业设计之前指导老师都会要求先写好开题报告,来参考自己需要的开题报告吧!以下是我精心整理的论文开题报告格式须知,供大家参考借鉴,希望可以帮助到有需要的朋友。
一个清晰的选题,往往已经隐含着论文的基本结论。对现有文献的缺点的评论,也基本暗含着改进的方向。论文开题报告就是要把这些暗含的结论、论证结论的逻辑推理,清楚地展现出来。论文开题报告的写作步骤:课题选择—课题综述—论题选择—论文开题报告。论文开题报告的基本内容主要包括:选题的意义;研究的主要内容;拟解决的主要问题(阐述的主要观点);研究(工作)步骤、方法及措施;毕业论文(设计)提纲;主要参考文献。为了写好论文开题报告,江苏工业学院研究生部专门出台了详细的规定,规定论文开题报告的一般内容包括:
(1)论文开题报告——课题来源、开题依据和背景情况,课题研究目的以及理论意义和实际应用价值,秘书工作《论文开题报告格式》。
(2)论文开题报告——文献综述。在阅读规定文献量(不少于50篇,其中外文文献占40%以上)的基础上,着重阐述该研究课题国内外的研究现状及发展动态,同时介绍查阅文献的范围以及查阅方式、手段。
(3)论文开题报告——主要研究内容。包括学术构思、研究方法、关键技术、技术路线、实施方案、可行性分析、研究中可能遇到的难点、解决的方法和措施以及预期目标。
(4)论文开题报告——拟采用的实验手段,所需科研和实验条件,估计课题工作量和所需经费,研究工作进度计划。
(5)论文开题报告——主要参考文献,列出至少10篇所查阅参考的文献。
一 研究目标
本研究试图在GIS和遥感软件支持下,综合野外调查、遥感及定位数据,结合专家系统、数据库、多媒体和网络技术,引入可视化技术、交互技术和虚拟现实技术,建立多维的热带亚热带植被信息系统,探讨3S技术在不同组织层次植被研究中的应用如森林群落的水平和垂直分析、植被的时空动态模拟和预测、以及森林景观的格局研究等。
二 研究内容和研究方法
GIS平台为ESRI ARCVIEW 及其扩展模块,遥感软件为PCI GEOMATICA (?), 编程语言为C ,图形处理用OPENGL。主要的研究方法参见表1。
1 种群 Population:以距离为基础的种群分布格局、种间联结、邻体效应、种间竞争、母树-幼苗空间关系等。
2 群落 Community:以面积为基础的重取样技术、各种面积曲线、冠层分析等。
3 生态系统 Ecosystem:以地图为基础的植被分类、生产力或生物量估算、植被水平或垂直分布等。
4 景观 Landscape: 以DEM为基础的景观格局结构、缀块分析、生境评价、虚拟3D森林等。
5 植被信息系统:构建多维热带亚热带植被信息系统(图1)。
三 拟解决的关键问题
1遥感生物信息提取
遥感影象的光谱特征、空间特征、极化特征和时间特性是我们鉴别各种物体和现象的依据。如何从遥感图象中识别植被、昆虫种群、大型动物等生物信息,则是建立多维生物地理信息系统的基础。通常是用植被不同波段的反射率及其它因子的组合来获得植被指数(VI),并采用非监督分类或监督分类的方法,区分不同地物和不同植被类型,但只能用于较大的植被分类阶元;较小的植被单位如群丛必须结合实地调查和其它环境因子,能否直接利用遥感判断还有待于进一步研究。昆虫种群和大型动物的判定一般是根据这种昆虫的生境,也可以考虑标记和电子反射器的办法来定位。引入专家系统或者决策支持系统,模糊数学、遗传算法、神经网络理论,可以更加有效地和精确地进行识别。
2 时空数据模型和时空分析
传统的GIS面向的是只含空间维度和属性维度的SGIS(Static GIS),而能够处理时间维度的GIS则称为TGIS(Temporal GIS)。时间维度具有和空间维度不一样的特点,如何将空间数据模型的概念和方法引申到时空数据模型,是当前GIS研究的热点和难点之一。时空一体化的数据模型必须具有时空二维的拓扑特征,才能有效地提高数据质量和分析效率,减少数据存贮的冗余(陈晋等,1995)。生物学中涉及了许多时空分析问题,也发展了时序分析和生物地理统计的方法,但这些方法的理论和应用都有待完善。而且,现有的GIS软件均不能很好地完成这些分析。
3 专业组件设计
现有的许多GIS软件并不包含生物学专业模块;建立独立的完全面向生物学的GIS费时费力,而且也不必要。因此,组件GIS是不错的选择。我们可以用各种计算机语言或GIS软件附带的语言,编写出适用于生物学的控件或模块,组合到现有的GIS软件中。
4 其它
不同数据类型、不同维度数据的操作和管理,真三维GIS和虚拟景观的构建等,也是急待解决的问题。
四 可行性分析
1 实验室具备必须的软硬件;
2 实验组具备相关的软件操作和编程能力;
3 导师组具备相当的指导水平;
4 实验组具备一定的野外调查和室内分析能力。
五 创新之处
1可能填补GIS在种群/种间空间分析方面的空白。
2 首次进行GIS应用于生态学不同组织水平的综合研究。
3 国内首次建立多维热带亚热带综合植被信息系统。
一、研究的目的和意义
二、国内外在该方向的研究现状及分析
三、主要研究内容
四、研究方案及进度安排,预期达到的目标
(一)研究方案
(二)进度安排及预期达到的目标
第一阶段 确定题目
第二阶段 —— 收集资料
第三阶段 完成开题报告
第四阶段 资料搜集及整理、归纳、分析,充分与导师进行沟通,完成论文初稿,并完成论文中期报告。
第五阶段 继续进行资料搜集及整理、归纳、分析,在导师指导下进行修改,完成论文二稿。
第六阶段 导师审评,修改并最终定稿,进行答辩。
五、主要参考文献:
参考文献要求列出中文参考文献5篇以上
一,本研究的主要依据和目标.
1,本项目的意义
团队建设顾名思义就是要搞好整体,维护整体,带动一个企业的发展前进.团队建设注重团队的核心目标,团队的管理机制,团队的精神."团队的业绩大于个体业绩的总和"——这是团队建设根本利益之所在.一个良好团队的建设还会在公司决策执行,项目开发,企业形象,资源整合,公司效率和管理行为的执行中起极其有效的作用.广告公司的业务团队的建设又有其特殊性,它不仅具有"协作性"团队所拥有的合作作用,同时,它也十分重视团队个体的个性发挥.建设良好的广告业务团队将有助于广告公司效率的大大提高,具有十分重要的意义.
2,国内外的研究现状以及存在的问题
随着我国广告业的不断发展,广告之间的竞争也是越来越激烈.广义上来说,服务的竞争实质上是一种无形产品的竞争.但最终意义上的竞争是人的竞争,人的竞争是更高层次,更高品位的竞争.福州广告公司经过几年的发展,从经营业务较为单一,部门设置较为简单,管理制度较为简单的企业,发展成为现在的广告业务多元化,部门设置较为齐全,管理制度较为规范化的公司.
目前,根据目前的广告公司的资料表明,大多数都存在以下问题:(一)传统的经营思想和淡薄的发展意识阻碍了福州地区广告公司的业务团队建设发展.(二)福州地区的广告专业人才大量缺乏阻碍了广告公司的业务团队建设(三)缺乏有效的行业管理和监管,对福州广告业的发展带来严重的负面影响,破坏了福州广告公司业务团队建设大环境.
主要参考文献:
[1]朱海松.国际4a广告公司基本操作流程[l]广东经济出版社:XX(4)
[2]杰弗里·兰开斯特,莱斯特·马幸哈姆著,丁梅生冯晓波,应斌译.战略营销计划和评估[m]远东出版社:1998(6):53-67
[3]杭州日报报业集团XX年报(l)内部刊物,XX
[4]福州博采广告广告调查报告(l)内部资料,XX
[5]刘大东.高效团队建设5w1h.中国管理传播网XX(2)
[6]陆斌,媒体广告经营策略[l],现代广告XX(106)
[7]朱月昌,公共广告研究[l]国际广告,1994(3)
[8]朱月昌,略论电视广告解说词的创作[l],福建广告论文集,福建科技出版社,1998
[9]于晓茹,从福视广告看广告业的发展趋势[l],视听天地,XX(6):68
[10]广告业呼唤整体策划人才和广告创意人才
[11]王军光,网络广告业步入分众传播
[12]XX年中国广告业统计分析报告
[13]新浪网.丁俊发,中国城乡居民消费需求变化的新趋势
[14]新浪网络.郑和平,世纪之交的广告业发展方针和政策
[15]丁俊杰,中国广电媒介集团化研究[m]北京:中国物价出版社
(二)本项目的研究内容,研究目标和拟解决的关键问题
1.研究内容
团队建设的相关理论
本项目主要以一个具体的广告公司为例,考察和分析其在寻求发展中,团队建设方面所面临的具体问题,团队建设顾名思义就是要搞好整体,维护整体,带动一个企业的发展前进.团队建设注重团队的核心目标,团队的管理机制,团队的精神."团队的业绩大于个体业绩的总和"——这是团队建设根本利益之所在.
福州地区广告公司业务团队建设现状
业务团队的建设是广告公司发展的重要管理工作,它是广告公司各个具体工作任务的实施和企业经营目标的实现的关键.福州广告公司的业务正向更加多元化的方向发展,主要有业务项目的多元化,业务服务的多元化以及业务范围的多元化.随着福州广告业的发展壮大,对福州广告公司业务团队建设提出了更高的要求.
福州地区广告公司业务团队建设方面存在问题
导致福州地区的广告公司在业务团队建设上面临了许多问题,也成为了大多广告公司急需解决的问题.解决业务团队建设将直接关系到福州地区广告公司的发展.
4改善广告公司业务团队建设的主要措施
调整经营思路,建设高效业务团队是发展广告业的关键.业务团队的建设,最关键是加强对福州地区广告人才的"开发,吸引和保留".建立良好的地区的行业发展的大环境,应建立完善的监管体制和加大行业市场的'宏观调控力度来有效的管理和监管.
2.研究目标
通过本课题的研究,力求初步建立一个科学合理的,广告业团队建设.为同行们构建一个新经营战略思路,实现人力资源战略整合研究在广告业中能蓬勃发展并得以在实际中应用和创新.
3.拟解决的关键问题
.通过实际广告业团队建设的现状,对其实际操作中所存在问题进行剖析,并提出相应解决实用型的人力资源战略整合方法和建设新的团队建设.
.解决其在特定环境下广告业如何按照地区行业发展的大环境建立完善的监管体制和加大行业市场的宏观调控力度来有效的管理和监管.
(三)本研究的特色和立论依据
1.本项目的特色和创新之处:
.针对性.人力资源战略问题是一个宏观而且抽象的问题,当前许多专家和学者都对其进行了大量的研究并取得了显著成果,但是针对一个具体行业做的研究还比较少,也不够系统和深入,不够针对性.本文试图在这些专家学者研究的基础上,联系自己在实际的操作中的过程,综合探讨广告业团队建设问题.
.引入人力资源战略分析理念.近几年来,人力资源战略研究在我国各行各业中迅速蔓延开,短短的几年中,已经取得巨大的成果并有很大的突破,初步建立了具有中国特色的人力资源战略分析体系,人力资源战略整合是其中的一个方面.结合具体的行业对其进行人力资源战略整合问题,不仅细化了人力资源战略整合的作用,而且突出了行业的特殊性.本文将借鉴国内外先进的经验,对这一问题进行全面和深入的探讨.
2.立论依据
本文以科学的人力资源战略分析理论为指导,根据具体的具体的广告公司的分析总结和调查研究,运用管理学,经济学,市场营销学和社会调查学等多学科理论,借鉴国内外相关研究成果,通过分析对比,对广告业中的团队建设问题进行分析和对策研究.
二,研究方法和调研安排
1,研究方法
本文拟采用系统分析,比较分析,理论分析与实证解剖相结合的研究方法,着重研究分析广告业中的团队建设方面存在的主要问题,并针对性地提出了建议和措施.
2,调研安排
搜集和整理各类相关文献,统计数据等相关资料并总结广告业中的基本数据
对资料进行认真研究分析,了解国内外的成功经验及其存在的问题
根据所研究分析成果,采用上述研究方法,提出广告业中的团队建设存在的问题和措施方案,写出毕业论文初稿.
征求指导老师的意见,并对论文初稿进行必要修改,最后定稿.
三,论文基本大纲
福州地区广告公司业务团队建设方面存在问题
(一),传统的经营思想和淡薄的发展意识阻碍了福州地区广告公司的业务团队建设发展.
(二),福州地区的广告专业人才大量缺乏阻碍了广告公司的业务团队建设.
(三),缺乏有效的行业管理和监管,对福州广告业的发展带来严重的负面影响,破坏了福州广告公司业务团队建设大环境.
广告公司业务团队建设的主要措施
(一)业务团队的建设是广告公司发展的需求.
(二)加大对福州地区广告人才的"开发,吸引和和保留"是解决地区人才匮乏的重要手段.
(三)建立良好的地区的行业发展的大环境,应建立完善的监管体制和加大行业市场的宏观调控力度来有效的管理和监管.
论文题目:要求准确、简练、醒目、新颖。
2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)
3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。
4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。
5、论文正文:
(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:
a.提出-论点;
b.分析问题-论据和论证;
c.解决问题-论证与步骤;
d.结论。
6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。
中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息
所列参考文献的要求是:
(1)所列参考文献应是正式出版物,以便读者考证。
(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
1、毕业论文选题的原则
毕业论文选题一般要求满足以下原则:
①开拓性:前人没有专门研究过或虽已研究但尚无理想的结果,有待进一步的探讨和研究,或是学术界有分歧,有必要深入研究探讨的问题;
②先进性:硕士毕业论文要有新的见解,博士毕业论文要做出创造性成果;
③成果的必要性:所选课题应有需要背景,针对实际的和科学发展的需要,即应有实际效益或学术价值;
④成果的可能性:课题的内容要有科学性,难易程度和工作量要适当,充分考虑到在一定时间内获得成果的可能性。
2、开题报告的内容与撰写要求
开题报告的内容一般包括:题目、立论依据(毕业论文选题的目的与意义、国内外研究现状)、研究方案(研究目标、研究内容、研究方法、研究过程、拟解决的关键问题及创新点)、条件分析(仪器设备、协作单位及分工、人员配置)等。
(1) 开题报告毕业论文题目
题目是毕业论文中心思想的高度概括,要求:
①准确、规范。要将研究的问题准确地概括出来,反映出研究的深度和广度,反映出研究的性质,反映出实验研究的基本要求处理因素、受试对象及实验效应等。用词造句要科学、规范。
②简洁。要用尽可能少的文字表达,一般不得超过20个汉字。
(2)开题报告毕业设计立论依据
开题报告中要考虑:
① 毕业论文的选题目的与意义,即回答为什么要研究,交代研究的价值及需要背景。一般先谈现实需要由存在的问题导出研究的实际意义,然后再谈理论及学术价值,要求具体、客观,且具有针对性,注重资料分析基础,注重时代、地区或单位发展的需要,切忌空洞无物的口号。
② 国内外研究现状,即文献综述,要以查阅文献为前提,所查阅的文献应与研究问题相关,但又不能过于局限。与问题无关则流散无穷;过于局限又违背了学科交叉、渗透原则,使视野狭隘,思维窒息。所谓综述的综即综合,综合某一学科领域在一定时期内的研究概况;述更多的并不是叙述,而是评述与述评,即要有作者自己的独特见解。要注重分析研究,善于发现问题,突出选题在当前研究中的位置、优势及突破点;要摒弃偏见,不引用与导师及本人观点相悖的观点是一个明显的错误。综述的对象,除观点外,还可以是材料与方法等。
此外,文献综述所引用的主要参考文献应予著录,一方面可以反映作者立论的真实依据,另一方面也是对原著者创造性劳动的尊重。
(3) 开题报告毕业设计研究方案
开题报告中要考虑:
① 研究的目标。只有目标明确、重点突出,才能保证具体的研究方向,才能排除研究过程中各种因素的干扰。
② 研究的内容。要根据研究目标来确定具体的研究内容,要求全面、详实、周密,研究内容笼统、模糊,甚至把研究目的、意义当作内容,往往使研究进程陷于被动。
③ 研究的方法。选题确立后,最重要的莫过于方法。假如对牛弹琴,不看对象地应用方法,错误便在所难免,相反,即便是已研究过的课题,只要采取一个新的视角,采用一种新的方法,也常能得出创新的结论。
④ 研究的过程。整个研究在时间及顺序上的安排,要分阶段进行,对每一阶段的起止时间、相应的研究内容及成果均要有明确的规定,阶段之间不能间断,以保证研究进程的连续性。
⑤ 拟解决的关键问题。对可能遇到的最主要的、最根本的关键性困难与问题要有准确、科学的估计和判断,并采取可行的解决方法和措施。
⑥ 创新点。要突出重点,突出所选课题与同类其他研究的不同之处。
(4) 开题报告毕业设计条件分析
突出仪器设备等物质条件的优势。明确协作单位及分工,分工要合理,明确各自的工作及职责,同时又要注意全体人员的密切合作。提倡成立导师组,导师组成员的选择要充分考虑课题研究的实际需要,要以知识结构的互补为依据。
知识扩展:研究生开题报告需要扎实的六个基础
1、兴趣
研究生论文题目的确定,不管题目的来源如何,最关键的是要对其感兴趣,有了兴趣才会有兴奋点,才会花费大量的时间、付出艰辛的努力来达成。同时,需要注意兴趣要和自己的问题域相联系,不能泛化兴趣,增加研究成本。
2、师承
研究生的开题最好在导师及其指导的研究生已有研究基础上进行。研究生在开题前,应该对导师、导师的导师及导师的弟子所进行的研究进行针对性的梳理,了解群体研究过什么,近几年正在研究什么,所选题目最好与群体研究方向一致,并成为这一群体研究成果的重要组成部分。
3、目标
研究生论文的写作可以有三个层次的目标:(1)拿到硕士学位;(2)为考博打基础;(3)为一生的持续研究奠定基础。研究生进行开题报告时可以先自我确定一下自己的目标属于哪一个层次,根据目标进行开题报告和论文的写作。当然,对于研究生而言,最好达到第二或第三层次,进入一个学术领域去进行持续的研究。
4、文献
开题报告的写作建立在大量文献查阅的基础上。研究生在开题前,应在基本确定问题域的基础上,依据全国报刊索引、中国人民大学复印资料、知网等进行检索,了解自己想要研究的方向前人已经做过哪些相关方面的研究,在掌握详实资料的基础上进行论文开题和论文写作,提高开题报告的水平和论文的质感。
5、知识
开题报告的顺利进行,除了查阅大量的一手、二手文献外,还需要调动自己已有的知识储备,思考自己对这一问题已经形成的认识,将文献中查阅到的内容和自己已有的知识融会贯通,形成对这一问题比较清晰、连贯的理解。
6、实践
研究生开题报告的顺利进行还需要以实践为基础,也就是说,需要研究生对社会实践、教育实践等有很好的体验和体悟,在这种亲身体验的基础上,形成对该问题的直观认识,加深对该问题的直接体悟,使自己在该问题上有更多的话语权。目前看来,这种实践可以分为三种,历史的实践、亲身实践和网络实践。要在这些实践基础上,对自己所研究的问题进行更深层次的探讨。