01、复合有机硅橡胶粉末、其制备方法及其用途02、连续式宽幅独立气泡的发泡硅橡胶组成物及其加工方法03、高导热硅橡胶组合物,热定影辊和定影带04、导电性硅橡胶组合物05、可固化硅橡胶组合物及其固化产品06、液体硅橡胶基础胶料、液体硅橡胶材料及其它们的制备方法07、复合硅橡胶颗粒及其制备方法08、一种低成本室温硫化硅橡胶组合物09、用在硅橡胶基配方中的有机中和的煅烧高岭土10、氟橡胶与耐油硅橡胶、硅橡胶涡轮增压胶管及制备方法11、内嵌导丝的医用硅橡胶导管12、新型硅橡胶软管13、生物塑化硅橡胶专用注胶机14、一种硅橡胶模具制造工艺15、用于制备高强度透明室温固化硅橡胶的填充胶16、硅橡胶密封圈的制造方法17、硅橡胶表面磷灰石涂层的仿生法制备18、硅橡胶成型产品及其生产方法19、一种具有电磁屏蔽性能的导电硅橡胶及其制造方法20、超支化有机蒙脱土/热硫化型硅橡胶复合材料及制备方法21、用于硅橡胶的粘合剂22、丙烯酰基-硅橡胶复合组合物、制备方法及其用途23、疏水二氧化硅及其在硅橡胶中的使用24、金属饰品浇注成型用硅橡胶模具材料及其应用25、高导热绝缘硅橡胶复合材料的制备方法26、制造填充硅橡胶组合物的工艺27、半导体均压层和中导电性硅橡胶及制备合成绝缘子的工艺28、高憎水性合成绝缘子用硅橡胶及其制备工艺29、加热固化性低比重液态硅橡胶组合物与低比重硅橡胶成型物30、硅橡胶海绵用乳胶组合物、其制造方法及硅橡胶海绵的制造方法31、硅橡胶32、硅橡胶成形方法33、不粘性硅橡胶混炼胶及其制备方法34、硅橡胶胸罩35、一种力敏硅橡胶薄膜的制备方法36、可辐射固化的有机硅橡胶组合物37、室温硫化硅橡胶胶粘剂/密封剂组成物38、一种热硫化型硅橡胶纳米复合材料及其制备方法39、高导热性硅橡胶组合物40、硅橡胶抗老化的化合物及其合成方法41、液态硅橡胶止血敷料制备方法42、半硫化硅橡胶涂层织物43、一种连续式宽幅硅橡胶薄制品复合薄胶布的制作方法44、阻燃性硅橡胶用组合物、阻燃性聚硅氧烷橡胶组合物和阻燃性硅橡胶45、有保护层的LED发光体及其应用和硅橡胶模具法46、硅橡胶混炼胶组合物及其制备方法47、RTV硅橡胶组合物,电路板,银电极和银晶片电阻器48、金属化硅橡胶基底的方法49、制备金属-硅橡胶复合材料的方法50、一种混炼型硅橡胶结构化控制剂51、硅橡胶开孔海绵52、一种开孔型硅橡胶泡沫材料及其制备方法和用途53、一种液体阻燃硅橡胶及其制备工艺54、用于黏着硅橡胶与玻纤布的接着剂配方及其制作方法55、制备含有高岭土的硅橡胶组合物的方法56、一种亲水性牙科印模硅橡胶57、纳米羟基磷灰石/硅橡胶复合生物医用材料及其制备方法58、硅橡胶互感器的生产方法59、室温硫化硅橡胶复合纳米材料防污闪涂料60、用于注射成型复合硅橡胶绝缘子混炼胶专用料的制备方法61、一种含有纳米蒙脱土的热硫化型硅橡胶及其制备方法62、高耐热、快固、中性脱丙酮型室温硫化硅橡胶及其制备方法63、晶彩硅橡胶的制备方法64、硅橡胶薄膜及其制造方法65、单组份室温可固化高导电硅橡胶组合物66、海绵用硅橡胶组合物67、一种混炼型硅橡胶抗结构剂68、新型硅橡胶胶管生产工艺及其专用模芯69、硅橡胶用乳液组合物,其制造方法和硅橡胶的制造方法70、硅橡胶海绵组合物71、固化性硅橡胶组合物以及液晶聚合物与硅橡胶的复合成型体的制造方法72、硅橡胶和基底材料的一体成型复合体及其制造方法73、定影辊或定影带用绝缘性硅橡胶组合物以及定影辊和定影带74、氟硅橡胶生胶的聚合方法75、一种硅橡胶裂解渣回收利用方法76、放射远红外线及阴离子的硅橡胶组成物及被该组成物包覆的发热线77、一种长条硅橡胶制品的接头方法78、一种闭孔型硅橡胶泡沫材料及其制备方法和用途79、硅橡胶粘合剂在变光焊接护目镜胶合中的应用方法80、加成型液体硅橡胶/有机蒙脱土纳米复合材料及制备方法81、固定辊用硅橡胶组合物及固定辊82、含有矿物纤维的硅橡胶组合物83、混炼型硅橡胶抗结构剂的制备方法84、硅橡胶泡沫及其制造方法和用途85、耐高低温高阻尼硅橡胶86、高连泡率硅橡胶海绵、其制法及用其的定影辊87、一种硅橡胶成型工艺88、无色透明硅橡胶交联固化剂89、高粘接强度硅橡胶交联固化剂90、硅橡胶海绵组合物和硅橡胶海绵91、硅橡胶组合物92、生产硅橡胶的方法、生产硅橡胶用的含水乳液和生产前述乳液的方法93、包含未经处理的氢氧化铝作为填料的硅橡胶组合物94、热压粘合用硅橡胶片及其制造方法95、硅橡胶废料裂解灰渣的回收综合利用工艺96、绝缘性硅橡胶组合物97、烷基酰氧基硅烷及其制备方法和用于制备RTV室温硫化硅橡胶醋酸型交联剂的方法98、球形有机硅橡胶制品及其制造方法99、用于注射成型复合硅橡胶绝缘子混炼胶专用料的制备方法100、纳米硅橡胶改性超高分子量聚乙烯及其制备方法和用途101、用硅橡胶边角废料生产环硅氧烷的方法102、硅橡胶夹布及包绕胶管的制备方法103、双组分室温硫化硅橡胶及其单包装方法104、硅橡胶用纳米活性碳酸钙的制备方法105、自润有机硅橡胶材料、其制备方法及用途106、一种表面涂覆聚乙烯醇的硅橡胶微流控芯片及其表面修饰方法107、以硅橡胶为基础的耐焰组成物108、硅橡胶复合空心绝缘子的生产方法109、硅橡胶基压敏粘合剂片材110、RTV导热硅橡胶组合物111、使用硅橡胶的散热系统112、硅橡胶再生胶的制造方法113、电线被覆用硅橡胶组合物114、电极电路保护用硅橡胶组合物、电极电路保护材料和电气、电子零件115、一种医用硅橡胶假体材料及其制备和使用方法116、硅橡胶组合物及其制造方法117、自粘性助交联的硅橡胶混合物和其制备方法以及复合模制件的制备方法及其应用118、非高温真空脱水法电子级单组份脱醇型室温硫化硅橡胶的制备方法119、阻燃硅橡胶及其制备方法120、导电硅橡胶组合物121、双组分室温交联水性有机硅橡胶防水涂料及其制备方法122、硅橡胶海绵垫板的制备方法123、含有增量油的硅橡胶组合物和制备所述增量油的方法124、硅橡胶组合物125、室温可固化的硅橡胶组合物126、制备硅橡胶组合物的综合方法127、具有脱离特性的粘性硅橡胶128、粘性硅橡胶组合物及其用途129、热压合用硅橡胶片材130、缩合型双组份粘牢硅橡胶131、通过烷氧基交联的RTV-1硅橡胶混合物132、混凝土伸缩缝密封硅橡胶133、热固性硅橡胶组合物134、纳米硅橡胶制品及其制备方法135、树枝状分子交联的加成型高温硫化硅橡胶及其制备方法136、树枝状分子交联的过氧化型高温硫化硅橡胶及其制备方法137、移动体用硅橡胶胶粘剂组合物138、硅橡胶配剂及其应用139、涂覆玻璃纤维布用水性硅橡胶乳液140、一种硅橡胶组合物及其制备方法和用途141、一种含可溶性聚铁有机硅氧烷的硅橡胶耐热添加剂142、一种表面永久亲水性的硅橡胶及其制法和用途143、用于固定辊的液态硅橡胶组合物和氟碳树脂涂布的固定辊144、全硫化粉末硅橡胶及其制备方法145、乳液聚合硅橡胶-基冲击改性剂、制备方法及其共混物146、室温可固化的硅橡胶组合物147、用硅橡胶增韧的热塑性树脂148、剥离型接枝硅橡胶/粘土纳米复合材料及其制备方法149、全硫化粉末硅橡胶及其制备方法和用途150、阻燃性硅橡胶电线和电缆涂层组合物151、硅橡胶/三元乙丙并用导电橡胶及其制备方法152、含钴(II)改性硅橡胶富氧膜及其制备方法153、氟硅橡胶在制备合成绝缘子的用途154、卤烃基化合物交联的高温硫化硅橡胶及其制备方法155、异氰酸酯交联的高温硫化硅橡胶及其制备方法156、加热线圈用硅橡胶耐热电线157、导热硅橡胶复合片材158、阻燃性硅橡胶组合物159、散热绝缘硅橡胶材料及其制造工艺160、阻燃性室温硫化硅橡胶161、含有硅橡胶颗粒的水乳液及其制备方法162、加成交联的硅橡胶混合物、其制备方法和其用途163、模塑型硅橡胶海绵组合物、硅橡胶海绵和生产硅橡胶海绵的方法164、加热部件,图像形成装置和生产硅橡胶海绵和辊的方法165、一种从硅橡胶废品中回收硅单体的方法166、硅橡胶制树脂整体型键垫及其制造方法167、剥离型硅橡胶/粘土纳米复合材料及其制备方法168、硅橡胶用油墨和模制的硅橡胶169、生产模制硅橡胶产品的方法170、用作袖珍键盘的硅橡胶组合物171、低比重液态硅橡胶组合物172、特氟伦膜的硅橡胶压力辊生产方法及其装置173、用于嵌件模塑或双模腔模塑的硅橡胶组合物174、液体硅橡胶组合物及其制备方法和生产发泡硅橡胶的方法175、可室温固化的硅橡胶组合物176、热固性树脂组合物及其与硅橡胶的二部分复合体177、防降解室温硫化硅橡胶178、双层护套整体注射成型硅橡胶合成绝缘子179、硅橡胶的回收工艺及其应用180、热压合用硅橡胶片材181、卷式硅橡胶薄膜的制法182、磁性硅橡胶耳183、含有聚亚芳基硫化物和硅橡胶的复合型材部件184、耐热热传导性热压合用硅橡胶片材185、真空灭弧室外包硅橡胶层的方法186、含有疏水性二氧化硅的硅橡胶组合物 187、硅橡胶海绵组合物188、发泡硅橡胶189、人造革用液体硅橡胶190、可用于渡槽伸缩缝填缝止水的硅橡胶及其制备方法
硅胶生产的工艺特性及其工业应用 1引言 硅胶是具有二维空间网状结构的一氧化硅干 凝胶,属多孔性固体物质,孔分布范围广,具有很 大的比表而,表而覆盖有大量的硅烷醇基因匕 Si- OH),具有一定的活性。使它成为干燥剂、吸 附剂、催化剂及催化剂载体等,被广泛应用」几工业 生产中。 2工艺特性 硅胶的生产虽然大都经过凝胶、洗涤、干燥这 一共性,但具体到某一类型胶,又有工艺各异,相 互区别的个性。 2. 1凝胶造粒过程 凝胶造粒是硅胶生产的关键性步骤之一,是 指一定浓度的稀泡花碱液和稀硫酸在一定条件卜 充分反应形成溶凝胶溶液,达一定浓度后形成凝 胶颗粒。凝胶颗粒的形状、大小等完全山用户的需 求及工艺生产能力决定,关」几成胶方法,日前多采 用空气造粒,粒度要求微细时,考虑到空气造粒的 难度,则大多采用反应罐凝胶造粒,例微粉硅胶的 生产。凝胶所用的酸碱比例、浓度、温度及凝胶造 粒时间等是凝胶造粒过程的特定工艺参数。 酸性成胶(酸碱比例问题)时,一次凝胶粒 r(相当少初级粒向小,聚集时易形成细孔结构 的硅胶;碱性成胶时,一次凝胶粒r大,聚集时易 形成粗孔性的硅胶。这就是粗孔胶的生产优选碱 性成胶,细孔胶生产则优选酸性成胶的道理。 酸碱浓度要适中。酸碱浓度过高,一次凝 胶粒r较大,聚集时成为较粗孔径的硅胶,Ifn凝胶 溶液中一次粒I浓度也大,即凝胶网状结构的紧 密度增大,聚集时又易成为细孔,一者有相互抵消 的倾向。再者,酸碱浓度过高,凝胶溶液的粘度增 大,给造粒带来一定的难度,另外,酸碱浓度的大小还要受到凝胶粒度、结构及生产设计能力等的 限制。 2. 1. 3酸碱温度过高.酸碱反应的速度过快.Ifu 酸碱反应木身又是放热反应.一次粒r聚集时又 要放热.因此.使得一次粒r任曾大”.造粒速度减 慢.势必超出工艺要求范围.对造粒不利;酸碱温 度过低.一次粒r减小.易形成细孔.但山」几凝胶 溶液温度太低、粘度增加.同样也对造粒不利。因 此酸碱温度也要适中。 2. 1. 4凝胶造粒时间是凝胶造粒过程中又一至 关重要的工艺参数。是指从酸碱混合反应开始到 粒度凝胶形成为止所经历的时间.包括凝胶时间 与造粒时间。凝胶造粒时间短.则可能使凝胶溶液 反应不充分或均匀度不够.使得一次粒r的浓度 分布不匀.形成局部凝胶或局部紧密堆积.这就产 生造粒过程中的汽泡胶.碎胶或胶球强度不够等 现象。同时这也是造成胶球颗粒内部结构紊乱.孔 分布范围大的一个主要原因。因此.在生产实践 中.对」几空气造粒.在工艺允许范围内.颗粒大的 胶.时间要尽量长.颗粒小的胶.时间则可适当短 些。Ifn对」几在反应釜罐中凝胶造粒的特细微球硅 胶.时间则要更长.目_要加搅拌。 2. 2洗胶过程 洗胶是硅胶生产中不可少的工艺过程.是为 了将粒状凝胶所形成的NazSO}洗掉,7{将各阴 阳离r(主要为H十、N扩,SO呈一、Si0穿iY}r等)控 制到工艺要求范围内。同时.它也是一个调整颗粒 内部结构(即老化)的过程。 2. 2. 1交换吸附(即Na十与H十的交换)现象是 洗胶过程的木质特性之一。酸泡过程是交换吸附 的主要过程.1}' a'与H十的交换多在这一过程完 成。水洗过程的交换远未停止只不过是交换量越 来越小。酸泡浓度、洗水介质、水洗温度是洗胶过 程的主要工艺参数,影响交换速度、数量等。 2. 2. 2成品硅胶的孔特性好大一部分是山洗胶 过程的老化决定的,而这一过程的老化程度取决 」几洗胶介质、温度。洗胶介质、温度则是控制一次 粒子增长幅度”的主要因素,即通过调整一次粒 子的增幅”达到调整孔结构的目的。 细孔胶的洗涤要求抑制老化,因此,在凝胶造 粒形成后即进行必要而短促的老化后就进行酸 泡,洗胶介质自始至终必须显酸性,因为酸性介质 (即H十)能有效的抑制一次粒子的‘长大”,目_含 酸量的大小即决定了抑制老化程度的大小。同时, 洗胶温度应低些,因为老化是个吸收能量的过程, 温度低、供能少,老化程度自然也小。即细孔胶的 洗涤是通过抑制一次粒子的‘长大”,达到调整孔 结构的目的。特别对」几孔结构要求严整(即孔分布 范围小)目_堆密度又要求在一定范围的细孔胶的 生产,例如对于变压吸附COz专用细孔胶的生 产。洗胶时洗水的含酸量、温度均要做出严格的要 求。山」几细孔胶的洗涤温度低,交换速度慢,所以 洗涤时间要长些,但不能太大,时间太长,特别是 临近终l从时,反而加速老化。 粗孔胶的生产则要求促进老化。遵循碱性介 质、高温热水促进老化的原则,采取在酸泡前加入 高温热水,目_设法使其显碱性,提高水洗过程中的 温度,7{在终l从结束时,加入一定浓度的氨水,以 增加0 H-离子的浓度等措施,促使一次粒子‘长 大”,扩大孔径,达到老化的目的。不难看出,在整 个水洗过程中,老化程度呈上升的趋势。山」几水洗 温度高,不但颗粒内部一次粒子长大,目_颗粒间特 别是胶粉粒子间亦有‘长大”的趋向,这就是水洗 温度高时,胶粉聚集处容易结块,胶球表而粘粉的 又一主要原因。 对于较粗孔径即介于粗细孔胶间如T3型胶 的生产,适中老化即可,有时为缓冲干燥过程中的 液体表而张力作用,水洗终了进行表而处理。山」几 温度过高,时间过长,处理液的存在会使胶球变化 ,因此处理液的应用要受干燥工艺条件的限制。 2. 3干燥过程 干燥是在液体表而张力作用卜,使胶球颗粒 水分蒸发体积收缩,7{使一次粒子再度聚JI‘长 大”,达到深度老化的目的。细孔胶为了抑制老化 程度,经常是通过控制进干燥时胶球中的含酸量达到日的。在生产实践中,粗细孔胶多在一般的高 温条件卜干燥。干燥温度越高,一次粒r聚7{的速 度越大,孔径越大。焙烧扩孔就是这个道理。为制 得孔烃收缩不大,甚至不缩孔的硅胶,常常采用降 低液体表而张力的方法达到日的。 2. 4成品胶质量参数指标与硅胶工艺特性的关 系 硅胶的工艺特性决定了成品胶的质量参数指 标,反过来成品胶的质量参数指标又要求一定的 工艺特性控制。现就成品胶堆密度为例剖析一者 的关系。堆密度是硅胶成品分析中的重要质量参 数之一,能直观Ifn简便的反应硅胶颗粒内部孔结 构的物理参数。硅胶是一种多孔性的固体颗粒,它 的表观体积V u}实际山二部分组成,第一部分是 硅胶颗粒内部实际的孔所,片的体积以V a}表示。 第_部分是堆积时颗粒之间的孔隙,以V },}表示。 第二部分是硅胶肾架所具有的体积,以Vi。表示。 这样V u}-= V },}+ V a}+ V t,=,设n,为硅胶的质量,即 得Pug-= m/V },'}+ V}}+ V i',=(有别」几硅胶密度Porgy= mlVa}+ Vi',=)。 2. 4. 1同等条件卜,一定孔体积的硅胶,对应一 定的堆密度,A,T3,C二种类型胶的孔径、孔容依 次增大,V u}则依次减小,这就是堆密度变成为区 别A,T3,C二种类型胶的依据,即便是同一类型 胶,堆密度的大小会粗略的判断硅胶颗粒内部的 孔结构。 2. 4. 2一般情况卜,酸性成胶时,一次粒r小,聚 集成的凝胶颗粒的孔径小,同等条件卜,形成成品 硅胶的孔径亦小,一定体积硅胶的Va:就小,堆积 密度自然大,碱性成胶,堆密度则小。空气造粒时, 若形成气泡胶,结构疏松,或因其它原因造成凝胶 一次粒r浓度降低等均会使成品胶的V a}增大, 从Ifn使Par减小。 2. 4. 3洗胶条件影响成品胶的堆密度,例生产A 型胶时,山」几洗胶介质一直为酸性,目_温度低,一 次粒r‘长大”的幅度小,即老化程度小,成品胶的 V a}小,Pir自然大,含酸量不同,抑制老化的程度 亦不同,Pir也就不同。这就是洗胶过程中通过分 阶段取样检测堆密度来分析各阶段老化程度的一 个主要依据。对」几粗孔胶的生产山」几采取了酸泡 前用碱性热水老化一段时间,JI目_高温热水洗涤, 有时还用氨水处理终l从胶等措施,因Ifn使得老化 程度大,成品胶的孔体积增大,Pir则小。
硅胶生产的工艺特性及其工业应用 1引言 硅胶是具有二维空间网状结构的一氧化硅干 凝胶,属多孔性固体物质,孔分布范围广,具有很 大的比表而,表而覆盖有大量的硅烷醇基因匕 Si- OH),具有一定的活性。使它成为干燥剂、吸 附剂、催化剂及催化剂载体等,被广泛应用」几工业 生产中。 2工艺特性 硅胶的生产虽然大都经过凝胶、洗涤、干燥这 一共性,但具体到某一类型胶,又有工艺各异,相 互区别的个性。 2. 1凝胶造粒过程 凝胶造粒是硅胶生产的关键性步骤之一,是 指一定浓度的稀泡花碱液和稀硫酸在一定条件卜 充分反应形成溶凝胶溶液,达一定浓度后形成凝 胶颗粒。凝胶颗粒的形状、大小等完全山用户的需 求及工艺生产能力决定,关」几成胶方法,日前多采 用空气造粒,粒度要求微细时,考虑到空气造粒的 难度,则大多采用反应罐凝胶造粒,例微粉硅胶的 生产。凝胶所用的酸碱比例、浓度、温度及凝胶造 粒时间等是凝胶造粒过程的特定工艺参数。 酸性成胶(酸碱比例问题)时,一次凝胶粒 r(相当少初级粒向小,聚集时易形成细孔结构 的硅胶;碱性成胶时,一次凝胶粒r大,聚集时易 形成粗孔性的硅胶。这就是粗孔胶的生产优选碱 性成胶,细孔胶生产则优选酸性成胶的道理。 酸碱浓度要适中。酸碱浓度过高,一次凝 胶粒r较大,聚集时成为较粗孔径的硅胶,Ifn凝胶 溶液中一次粒I浓度也大,即凝胶网状结构的紧 密度增大,聚集时又易成为细孔,一者有相互抵消 的倾向。再者,酸碱浓度过高,凝胶溶液的粘度增 大,给造粒带来一定的难度,另外,酸碱浓度的大小还要受到凝胶粒度、结构及生产设计能力等的 限制。 2. 1. 3酸碱温度过高.酸碱反应的速度过快.Ifu 酸碱反应木身又是放热反应.一次粒r聚集时又 要放热.因此.使得一次粒r任曾大”.造粒速度减 慢.势必超出工艺要求范围.对造粒不利;酸碱温 度过低.一次粒r减小.易形成细孔.但山」几凝胶 溶液温度太低、粘度增加.同样也对造粒不利。因 此酸碱温度也要适中。 2. 1. 4凝胶造粒时间是凝胶造粒过程中又一至 关重要的工艺参数。是指从酸碱混合反应开始到 粒度凝胶形成为止所经历的时间.包括凝胶时间 与造粒时间。凝胶造粒时间短.则可能使凝胶溶液 反应不充分或均匀度不够.使得一次粒r的浓度 分布不匀.形成局部凝胶或局部紧密堆积.这就产 生造粒过程中的汽泡胶.碎胶或胶球强度不够等 现象。同时这也是造成胶球颗粒内部结构紊乱.孔 分布范围大的一个主要原因。因此.在生产实践 中.对」几空气造粒.在工艺允许范围内.颗粒大的 胶.时间要尽量长.颗粒小的胶.时间则可适当短 些。Ifn对」几在反应釜罐中凝胶造粒的特细微球硅 胶.时间则要更长.目_要加搅拌。 2. 2洗胶过程 洗胶是硅胶生产中不可少的工艺过程.是为 了将粒状凝胶所形成的NazSO}洗掉,7{将各阴 阳离r(主要为H十、N扩,SO呈一、Si0穿iY}r等)控 制到工艺要求范围内。同时.它也是一个调整颗粒 内部结构(即老化)的过程。 2. 2. 1交换吸附(即Na十与H十的交换)现象是 洗胶过程的木质特性之一。酸泡过程是交换吸附 的主要过程.1}' a'与H十的交换多在这一过程完 成。水洗过程的交换远未停止只不过是交换量越 来越小。酸泡浓度、洗水介质、水洗温度是洗胶过 程的主要工艺参数,影响交换速度、数量等。 2. 2. 2成品硅胶的孔特性好大一部分是山洗胶 过程的老化决定的,而这一过程的老化程度取决 」几洗胶介质、温度。洗胶介质、温度则是控制一次 粒子增长幅度”的主要因素,即通过调整一次粒 子的增幅”达到调整孔结构的目的。 细孔胶的洗涤要求抑制老化,因此,在凝胶造 粒形成后即进行必要而短促的老化后就进行酸 泡,洗胶介质自始至终必须显酸性,因为酸性介质 (即H十)能有效的抑制一次粒子的‘长大”,目_含 酸量的大小即决定了抑制老化程度的大小。同时, 洗胶温度应低些,因为老化是个吸收能量的过程, 温度低、供能少,老化程度自然也小。即细孔胶的 洗涤是通过抑制一次粒子的‘长大”,达到调整孔 结构的目的。特别对」几孔结构要求严整(即孔分布 范围小)目_堆密度又要求在一定范围的细孔胶的 生产,例如对于变压吸附COz专用细孔胶的生 产。洗胶时洗水的含酸量、温度均要做出严格的要 求。山」几细孔胶的洗涤温度低,交换速度慢,所以 洗涤时间要长些,但不能太大,时间太长,特别是 临近终l从时,反而加速老化。 粗孔胶的生产则要求促进老化。遵循碱性介 质、高温热水促进老化的原则,采取在酸泡前加入 高温热水,目_设法使其显碱性,提高水洗过程中的 温度,7{在终l从结束时,加入一定浓度的氨水,以 增加0 H-离子的浓度等措施,促使一次粒子‘长 大”,扩大孔径,达到老化的目的。不难看出,在整 个水洗过程中,老化程度呈上升的趋势。山」几水洗 温度高,不但颗粒内部一次粒子长大,目_颗粒间特 别是胶粉粒子间亦有‘长大”的趋向,这就是水洗 温度高时,胶粉聚集处容易结块,胶球表而粘粉的 又一主要原因。 对于较粗孔径即介于粗细孔胶间如T3型胶 的生产,适中老化即可,有时为缓冲干燥过程中的 液体表而张力作用,水洗终了进行表而处理。山」几 温度过高,时间过长,处理液的存在会使胶球变化 ,因此处理液的应用要受干燥工艺条件的限制。 2. 3干燥过程 干燥是在液体表而张力作用卜,使胶球颗粒 水分蒸发体积收缩,7{使一次粒子再度聚JI‘长 大”,达到深度老化的目的。细孔胶为了抑制老化 程度,经常是通过控制进干燥时胶球中的含酸量达到日的。在生产实践中,粗细孔胶多在一般的高 温条件卜干燥。干燥温度越高,一次粒r聚7{的速 度越大,孔径越大。焙烧扩孔就是这个道理。为制 得孔烃收缩不大,甚至不缩孔的硅胶,常常采用降 低液体表而张力的方法达到日的。 2. 4成品胶质量参数指标与硅胶工艺特性的关 系 硅胶的工艺特性决定了成品胶的质量参数指 标,反过来成品胶的质量参数指标又要求一定的 工艺特性控制。现就成品胶堆密度为例剖析一者 的关系。堆密度是硅胶成品分析中的重要质量参 数之一,能直观Ifn简便的反应硅胶颗粒内部孔结 构的物理参数。硅胶是一种多孔性的固体颗粒,它 的表观体积V u}实际山二部分组成,第一部分是 硅胶颗粒内部实际的孔所,片的体积以V a}表示。 第_部分是堆积时颗粒之间的孔隙,以V },}表示。 第二部分是硅胶肾架所具有的体积,以Vi。表示。 这样V u}-= V },}+ V a}+ V t,=,设n,为硅胶的质量,即 得Pug-= m/V },'}+ V}}+ V i',=(有别」几硅胶密度Porgy= mlVa}+ Vi',=)。 2. 4. 1同等条件卜,一定孔体积的硅胶,对应一 定的堆密度,A,T3,C二种类型胶的孔径、孔容依 次增大,V u}则依次减小,这就是堆密度变成为区 别A,T3,C二种类型胶的依据,即便是同一类型 胶,堆密度的大小会粗略的判断硅胶颗粒内部的 孔结构。 2. 4. 2一般情况卜,酸性成胶时,一次粒r小,聚 集成的凝胶颗粒的孔径小,同等条件卜,形成成品 硅胶的孔径亦小,一定体积硅胶的Va:就小,堆积 密度自然大,碱性成胶,堆密度则小。空气造粒时, 若形成气泡胶,结构疏松,或因其它原因造成凝胶 一次粒r浓度降低等均会使成品胶的V a}增大, 从Ifn使Par减小。 2. 4. 3洗胶条件影响成品胶的堆密度,例生产A 型胶时,山」几洗胶介质一直为酸性,目_温度低,一 次粒r‘长大”的幅度小,即老化程度小,成品胶的 V a}小,Pir自然大,含酸量不同,抑制老化的程度 亦不同,Pir也就不同。这就是洗胶过程中通过分 阶段取样检测堆密度来分析各阶段老化程度的一 个主要依据。对」几粗孔胶的生产山」几采取了酸泡 前用碱性热水老化一段时间,JI目_高温热水洗涤, 有时还用氨水处理终l从胶等措施,因Ifn使得老化 程度大,成品胶的孔体积增大,Pir则小。 哥们我也太辛苦拉,给多加点分0 这只是一半 这篇步行的我还有别的,可以加我的
有国外学者研究发现,硅胶也能吸附蛋白质,不过主要是不含芳香族氨基酸而是富含精氨酸的蛋白质。既然天然蛋白质通常都还有一定比例的芳香族氨基酸,所以不易被硅胶吸附。DNA可与硅胶富含的羟基形成氢键,因此易被硅胶吸附。参考文献:Christelle Mathé, Stéphanie Devineau, Jean-Christophe Aude, et al. Structural determinants for protein adsorption/non-adsorption to silica surface. PLoS One. 2013 Nov 25;8(11):e81346. doi: . eCollection 2013.
1. 张炳,李国军,任瑞铭,耐高温有机硅油墨的制备与表征,有机硅材料,2011,25(1):18-22;2. 林继辉,李国军,任瑞铭,40Cr钢端淬试验过程的数值模拟,热处理,2010,25(4):54-57;3. 崔学军,李国军,卢俊峰,王修春,任瑞铭,正极材料LiFePO4充放电原理及改性研究,材料导报,2010,24(6):53-57;4. 董洪亮,李国军,崔学军,任瑞铭,有机硅KH570改性硅溶胶杂化涂层的制备与研究,化工新型材料,2010,38(3):88-90;5. 崔学军,李国军,董洪亮,任瑞铭,铝合金表面不燃有机-无机复合涂层的制备与表征, 材料科学与工程学报,2009,27(5):704-708;6. 崔学军,李国军,董洪亮,任瑞铭,二次喷涂改性无机涂层,涂料工业,2009,39(7):41-44;7. 张琦,李国军,任瑞铭,新型无铅铁电陶瓷BaTi2O5粉体的制备,陶瓷,2009,12,28-30;8. 郑杰,李国军,李宝伟,黄浩,刘晓光, 沉积温度及走丝速度对SiC纤维拉伸强度和B4C涂层厚度、表面形貌的影响, 航空材料学报, 2008, 28(4):61-649. 崔学军,李国军,任瑞铭.无机非膨胀型防火涂料的现状及发展的可行性.上海涂料, 2007, 45[1]:30-3310. 崔学军,李国军,任瑞铭,一种无机防火涂料制备工艺的研究。涂料工业,37(12):56-6011. 崔学军,李国军,任瑞铭,硅溶胶-单组分水性氟树脂复合涂料的制备.化工新型材料.2007,35(12):63-6512. 崔学军,李国军,任瑞铭。提高CeO2基固体电解质电性能的几种方法。陶瓷科学与艺术。2006,40(1):9-1313. 崔学军,李国军,任瑞铭,高分子网络微区沉淀法制备纳米NIO粉体。2006年高技术陶瓷学术年会。稀有金属材料与工程,2007,36(增刊):76-7914. 李逵,李国军,任瑞铭,工艺参数对微区沉淀法制备纳米MgAl2O4粉体的影响,稀有金属材料与工程,2007,36(增刊):84-8715. 崔学军,李国军,任瑞铭,铝合金用有机-无机(硅溶胶)复合涂料的制备研究.材料保护,2008,41(6):37-4016. 崔学军,李国军,任瑞铭,铝合金表面硅溶胶防火涂层的研制, 电镀与涂饰, 2008, 27(4): 43-4617. 李国军,任瑞铭,黄校先,郭景坤,纳米晶氧化镍的制备及表征,无机化学学报,2004,20(3):287-290;(SCI)18. 李国军, 任瑞铭, 刘小光,仝建峰,陈大明, 多孔阴极材料制备及性能研究, 硅酸盐学报,2004,32(2):209-21219. 李国军,黄校先,郭景坤,Al2O3/Ni金属陶瓷显微结构和力学性能的研究,无机材料学报,2004,19(3):546-552;(SCI、Ei 收录)20. 李国军,刘晓光,陈大明,凝胶注模技术制备材料过程中的几个问题,航空材料学报,2004,24(1):32-3521. 李国军,任瑞铭,黄校先,郭景坤,工艺参数对醇法制备纳米晶NiO尺寸的影响,中国粉体技术,2004,10(2):8-1022. 李国军,黄校先, 郭景坤,陈大明,烧成温度对Al2O3/Ni复合材料的致密化、物相组成和显微结构的影响,复合材料学报,2003,20(2):58-63;(Ei)23. 李国军,黄校先, 郭景坤,晶内/晶间复合型Al2O3/Ni纳米金属陶瓷显微结构和力学性能的研究,无机材料学报,2003,18(1):71-77; (SCI、Ei)24. 李国军, 陈大明,黄校先, 郭景坤,残余应力对Al2O3/Ni金属陶瓷断裂行为和力学性能的影响,材料工程,2002, : 36-3847. 李国军,刘晓光,陈大明,锰酸镧水基料浆稳定性的研究,中国稀土学报, 2002, 20(增刊),126-12825. 李国军, 陈大明,黄校先, 郭景坤, 包裹和热压工艺制备Al2O3/Ni金属陶瓷,航空材料学报,2002,22(1),1-5; (Ei)26. 李国军,赵世柯,黄校先,郭景坤,Ni包裹Al2O3复合粉体的制备,无机材料学报,2002, 17(2), 235-240;(SCI、Ei)27. 李国军,黄校先, 郭景坤,陈大明,醇-水法制备纳米晶NiO粉体,功能材料,2002,33(4):398-400;28. 李国军, 刘晓光,陈大明,Ni含量对Al2O3/Ni金属陶瓷的致密度、晶粒尺寸和断口形貌的影响,材料工程,2002, (增刊)224-227;29. 李国军,黄校先,郭景坤, Al2O3基金属陶瓷界面润湿性的改善, 材料导报,2001,15(4),. 李国军, 刘晓光,陈大明,Ni含量对Al2O3/Ni金属陶瓷的致密度、晶粒尺寸和断口形貌的影响,材料工程,2002, (增刊)224-227;31. 李国军, 黄校先, 郭景坤, Al2O3基金属陶瓷的研究现状, 材料导报, 2000,14(9), 22-2432. 李国军,黄校先,唐绍裘,郭景坤, 2Y2O3-xCeO2对ZTM复相陶瓷相组成、显微结构、力学性能的影响,材料科学与工程,2000,18(3), 43-4733. 李国军,黄校先,唐绍裘,郭景坤, ZTM复相陶瓷材料的原位反应烧结过程的研究, 陶瓷学报, 2000,21(2),63-67;34. 唐绍裘,李国军,谢志鹏,莫来石-氧化锆复相陶瓷材料原位反应烧结机理的研究,材料科学与工艺,2000,8(3),21-25;35. 李国军,唐绍裘,曾爱香,余润洲,Al2O3含量对ZTM复相陶瓷材料结构与性能的影响,现代技术陶瓷,1998,19(,增刊)489-49336. 李国军,李德意,余润洲,PSZ的含量对Al2O3-PSZ复合陶瓷抗弯强度和断裂韧性的影响,火花塞与特种陶瓷,1997,, 45-4760. 37.李国军,任瑞铭,刘小光,仝建峰,陈大明, 凝胶注模制备多孔阴极材料, 稀有金属材料与工程,2005,34(2);244-247(SCI)38. 李国军,任瑞铭,陈春焕,刘小光,仝建峰,陈大明,料浆的制备及流变性能的研究,稀有金属材料与工程, (增刊1):393-396;39. 李国军,吴艳波,陈春焕,螯合物-凝胶法制备粉体,稀有金属材料与工程,2005,34(增刊)1-440. 刘晓光,李国军,仝建峰,周洋,陈大明,硼吖嗪聚合物先驱体热解制备BN基复合材料,航空材料学报,2002,22(3):55-58; (Ei)41. 刘晓光, 李国军仝建峰周洋陈大明氧化锆电解质薄膜制备技术最新研究进展,材料导报,2002, 16(11): 35-38;42. 刘晓光,陈大明,李国军,仝建峰,周洋,氧化锆固体电解质水基凝浇注模低成本制备技术,稀有金属材料与工程 2002, 31(增刊1): 225-228; (SCI)66. 刘晓光,李国军,陈大明,氧化锆水料浆稳定性研究,材料工程,2003,9:30-33; (Ei )545443. 刘晓光,李国军,仝建峰,陈大明,8%Y2O3-ZrO2水基料浆的流变性质研究,硅酸盐学报,2003,31(10):923-927;(Ei)44. 刘晓光,李斌太,李国军,陈大明,水基凝胶注模法制备稳定氧化锆坯体的研究,硅酸盐通报,2003,6: 68-70(78);45. 余润洲,李国军,唐绍裘,有机湿化学法制备a-Al2O3超细粉末的研究,陶瓷工程,1997,31,增刊,65-68 (第三届全国工程陶瓷学术年会)46. 余润洲,李国军,李德意,陶瓷材料烧结技术的进展,陶瓷工程,1997,31(6),35-38
发表论文:1. 张建新. Fe-Mn-Si合金热循环时g-e马氏体相变特征.河北工业大学学报,2000,29(4)70-722. 张建新,王瑞祥,谷南驹. 恒定外力对CuZnAl弹簧形状记忆性能和动作温度的影响.河北工业大学学报,2001,30(2)25-283. Gu Nanju,Zhang of Chracteristics of Cu-Zn-Al SMA Under Loaded Thermal-Recycleing and Design of Manual and Auto Temperature-Influencing,International Conference ’2000SMST(国际形状记忆材料和超弹性技术及在工程和生物医学应用讨论会,2000,5月,CA(USA)4. 张谨,谷南驹,张建新,王文水. 不同热处理对Cu-Al-Mn合金形状记忆效应和马氏体转变温度的影响.有色金属,2001,53(1)56-595. 张维连,李嘉席,陈洪建,孙军生,张建新,张恩怀. 掺锗CZSi原生晶体中氧的微沉淀,半导体学报,2002, 23(10)1073-10776. 王凯杰,张建新,薛俊明,管智贇,刘金彪,耿新华. VHF -PECVD法沉积大面积硅基薄膜的均匀性问题,半导体集成电路-硅材料学术会议论文集,2003,深圳,251-253成果获奖:谷南驹,林成新,张建新,等,马氏体相变及形状记忆合金研究. 河北省科技进步一等奖,2000年
有机硅材料之文献综述引言:随着我国经济的高速发展,我国对有机硅材料的需求量猛增,近年来有机硅行业发展很快。目前,我国有机硅单体产能将出现阶段性过剩,一直以来供不应求的局面将出现逆转,缺乏竞争力的单体生产企业将面临生存困难;而有机硅下游高端产品尚需进口,市场缺口较大,消化单体的出路在于开发下游精细有机硅产品,延伸产业链,提高附加值。有机硅深加工、高性能、多样化将是未来企业发展的必由之路。从远景看为了满足社会发展需要未来我国有机硅行业发展潜力巨大,投资机会较多。其具有卓越的耐高温、低温性,优良的绝缘性和耐老化性,突出的表面活性、憎水性和生理惰性等特点必将成为发展主流。本文主要阐述硅树脂。关键字:有机硅、硅树脂有机硅材料的发展历程:现状与未来发展前景与方向:一是生产技术比较落后,尤其在有机硅单体生产技术方面与国外相比差距更大。国外有机硅单体生产装置的流化床反应器直径已达3米,单台设备最大能力超过7万吨/年,全部流程采用计算机控制,原料消耗定额接近理论值。2.应用方面还没有得到广泛的应用,因而加大投资开发进度,使之实现多样性、技术性。3.功能材料方面的拓展,有机硅产品不再局限于仅能耐高温、低温还具有优良的电绝缘性、耐候性、耐臭氧性、表面活性等特殊性能,而且无毒、无味属于环境友好型材料。发展过程中的优势与不足:已解决的问题和尚存的问题重点、详尽地阐述对当前的影响及发展趋势,参考文献,说明文献综述所依据的资料,增加综述的可信度,便于读者进一步检索。一、文献综述不应是对已有文献的重复、罗列和一般性介绍,而应是对以往研究的优点、不足和贡献的批判性分析与评论。因此,文献综述应包括综合提炼和分析评论双重含义。文献综述要文字简洁,尽量避免大量引用原文,要用自己的语言把作者的观点说清楚,从原始文献中得出一般性结论。目的是通过深入分析过去和现在的研究成果,指出目前的研究状态、应该进一步解决的问题和未来的发展方向,并依据有关科学理论、结合具体的研究条件和实际需要,对各种研究成果进行评论,提出自己的观点、意见和建议
基于P2N 结的太阳能电池伏安特性的分析与模拟摘 要 通过分析实际P2N 结与理想模型之间的差别,建立了P2N 结二极管及太阳能电池的数学模型;利用Matlab 中的系统仿真模块库建立仿真模型,设置参量,求解模型方程并绘制了图形1 对太阳能电池在一定光照下旁路电阻及串联电阻取不同数值时对其开路电压、短路电流及填充因子的影响做了模拟,并与实际测得的硅太阳能电池伏安特性进行了比较1 模型分析与实验测量的结果表明:等效的旁路电阻和串联电阻分别影响电池的开路电压和短路电流1 仿真结果与实验测量结果一致1关键词 P2N 结;伏安特性;等效电路模型;太阳能电池中图分类号 O475 文献标识码 A0 引言P2N结是许多微电子和光电子器件的核心部分1这些半导体器件的电学特性及光电特性由P2N 结的性质所决定,掌握P2N 结的性质是分析这些器件特性的基础1 半导体导电是通过两种载流子的漂移、扩散及产生与复合实现的[1 ]1 由于P2N 结的非线性特性,其电流电压关系无法通过一个简单的解析模型来确定1 虽然肖克莱方程给出了理想P2N结的电流电压关系,但与实际器件的性质差别很大1在实际器件中,由于表面效应、势垒区载流子的产生及复合、电阻效应等因素的影响,其电流电压特性只在很小的范围内接近理想值1 正向电压增大时, I2V曲线由指数关系转变为线性关系1 反向电压增大时,在一定范围内也是线性关系,反向电压过大还会发生P2N 结的击穿1本文通过一个简单的电路模型模拟了实际的P2N 结,讨论了各实际参量对伏安特性的影响1 并针对太阳能电池在一定光照下其实际参量如旁路电阻和串联电阻对其开路电压、短路电流及填充因子的影响,利用计算机对其伏安特性进行建模分析,以获得接近实际器件的特性11 P2N结的伏安特性分析及等效电路理想P2N 结模型满足小注入、突变耗尽层及玻耳兹曼边界条件,且不考虑耗尽层中载流子的产生和复合作用[2 ]1 其电流电压关系可由肖克莱方程给出,即J = J s expqVk T- 1 (1)式中,V 为P2N 结两端的电压, J 为通过P2N 结的电流密度, J s 为反向饱和电流1 当正向偏压较大时,括号中的指数项远大于1 ,因而第二项可以忽略,电流密度与电压呈指数增加关系1 反向偏压时,当q| V | m k T 时, 指数项趋于0 , 电流不随电压改变,趋于饱和值J s1实验测量发现,肖克莱方程与实际P2N 结的伏安特性偏离较大,主要表现在两个方面:1) 正向电压较小时,理论值比实验值小,正向电压较大时,J2V关系变为线性关系;2) 反向偏压时,反向电流比理论值大许多,反向电流不饱和,随反向偏压的增大略有增加1 这说明理想模型不能真实反映实际器件的特性,需要建立更为完善的P2N 结模型[3 ]1 在实际器件中,载流子的产生、传输和复合会对P2N 结中的空间电荷场产生影响[4 ] ,从而导致P2N 结电流电压特性偏离理想方程1正向偏压时,注入势垒区的载流子有一部分形成复合电流,其大小与exp ( qV/ 2 k T) 成正比, 总电流密度为扩散电流密度与复合电流密度之和1 对于硅,在较低正向偏压下, 复合电流占主要地位, 因而总电流大于理想条件下的电流,正向偏压较高时,复合电流可以忽略具体的去我们论坛看看吧!!
硅是比锗更经得起当今器件工艺发展考验的半导体材料。在1966年已经生产40000千克半导体级硅(单晶超纯硅,杂质含量小于1/109),从而制造出40亿个元件。到1966年,用于这方面的硅已超过锗的用量。 由硅晶体管和其他元件组成的集成电路,集成度越来越高,规模越来越大,而元件则愈做愈小。一个直径为75毫米的硅片,可集成几万至几十万甚至几百万个元件,形成了微电子学,从而出现了微型计算机、微处理机等。 在铝衬底上,生长—层10—25微米厚的多晶硅薄膜,就是一种便宜而轻巧的太阳能电池材料,适于在太空和地面上使用。 硅是同位素电池中换能器的主要材料。换能器是将同位素热源发出的热能转变为电能的装置。硅-锗合金做的换能器,其工作温度可达1000oC,机械性能和抗氧化性能很好,高温下不易蒸发和中毒,无论在真空还是空气中都能工作。 航天飞机用的耐热而极轻的硅瓦,在航天飞机返回大气层时,它可保护机身不受超过1000oC高温的损伤。 天然橡胶和合成橡胶的使用温度,一般都在150oC以下,否则就会老化变质。20世纪40年代发展起来的硅橡胶,是以硅一氧一硅为主链的半无机高分子弹性体,兼有无机材料和有机材料的某些特点,使用温度范围宽广。硅橡胶具有优异的耐臭氧、耐碱、生理惰性(对人机体没有不良影响,可做为某些脏器的修复材料,如人工关节)和电气性能。某些特殊结构的硅橡胶,更具有优良的耐油、耐溶剂、耐辐射等特性,因此硅橡胶已广泛用于航空、宇宙航行技术、电气及电子工业部门。 用110—2甲基乙烯基硅橡胶做生胶原料,乙炔炭黑做填料可制成导电橡胶,是电子表中连接集成电路与液晶屏的理想导电材料。 硅酸在水中能形成凝胶,因此可制得一种吸附剂---硅胶。硅胶是一种极性吸附剂,对H20等极性物质都有较强的吸附能力,工业上常用做干燥剂和吸附剂。 硅酸钠的水溶液叫水玻璃,工业上称做泡花碱。木材及织物浸过水玻璃后,可以防腐,不易着火。 硅溶胶是以Si02为基本单位的水中分散体。在羊毛纺织过程中,它可做为轻纺上浆的胶剂,以减少羊毛纤维的断头率,在涂层中含有硅溶胶,可提高无机纤维材料的表面抗 热强度。 在搪瓷器皿制造业中,加进硅溶胶以后,可降低膨胀系数,以改进对四氟乙烯的粘合性,在玻璃及玻璃陶瓷中亦有同样效果。若在玻璃中掺入25—30%的硅溶胶,可制得优质的硅硼酸玻璃。 某些钠硼硅酸盐玻璃(含氧化钠、氧化硼和氧化硅)经过热处理,原子重新组合,就分为互不熔混的两部分。一部分主要含氧化硅,另一部分主要含氧化钠和氧化硼。如果再用酸处理,那么二氧化硅将不受酸的影响而留下来,而氧化钠和氧化硼则溶于酸中,剩下众多的空洞一—微孔,于是就制成了用途广泛的微孔玻璃。 将微孔玻璃烘干,烧结,就得到高硅氧透明玻璃。它耐高温,热稳定性好,透紫外线能力强,可在多方面代替石英玻璃,适宜做高温观察窗, 比如宇宙飞船上的观察窗。迫过它去观察物体,不会发生变形,因为它的光学均匀性也很好。 如果在普通的钠铝硼硅酸盐玻璃中加入少量卤化银做感光剂,微量铜做增感剂,用玻璃常规工艺熔化,退火再经适当处理,就能制成卤化银光色玻璃。它会因光的强度不同而改变颜色,在强光防护、显示装置、光信息存储、交通工具上的挡风玻璃等方面,都有重要用途。 纯净的二氧化硅晶体叫做石英。石英在1600℃熔化成粘稠液体,内部变为无规则形态,再遇冷时,因为粘度大而不易再结晶,成为石英玻璃。它有很多特殊的性质,如能让可见光和紫外光通过,可用它制造紫外灯和光学仪器;它的膨胀系数小,能经受温度的剧变,而且有很好的抗酸性(除氢氟酸外),因此,常被用来制造高级化学器皿。 医用激光器配置的光能传输系统是用石英光导纤维制成的,它不仅细巧轻便,灵活自如,且可将激光能量传入人体内脏器官进行医治。 一种新型水泥——双快水泥,具有快凝、快硬的特点。它浇注一天后的强度,相当于普通水泥浇注7-28天的强度,可用于滑升模板施工、预应力混凝土构件、砌块的快速成型和脱模,也可用它做矿井巷道喷射混凝土或机械铸件造型自硬砂。 用废轮胎等制成海绵状弹性体,与粘结性强的乳剂和水泥混和搅拌,就成为橡胶水泥。它克服了原有混凝土的缺点,能防止龟裂、剥离和吸水,既可用于铺路,又可用于建筑物上。 SiC叫碳化硅,又叫金刚砂。它具有类似金刚石的结构,硬度极大,而且分解温度又很高,所以在工业上大量用作磨料。 氮化硅陶瓷的强度和硬度很高,抗热震性和耐化学腐蚀性好,摩擦系数小且有自润性,是一种优越的耐磨材料。用氮化硅陶瓷制成的机械密封圈,经过几百到几千小时的运转后,磨损较小,寿命较原用材料提高几倍到十几倍。 以碳化硅陶瓷为基板的碳化硅远红外辐射板,被加热到一定温度后,能辐射出2—15微米以上的长波红外线,它对有机物,高分子物质以及对远红外线有强烈吸收峰的含水物质等,有很高的干燥效率。目前,这种碳化硅远红外辐射板巳用于自行车、缝纫机、家俱;木材,皮革,纺织,食品及粮食作物的干燥。答案补充 这篇字数绰绰有余 可根据您的学习内容删减 保留您学过的精华 删去偏离课本的糟粕 文秘杂烩网
需要的话~QQ我365592930~~著名要论文的~~我在校园网上帮你免费下
很明显的意义,因为是硅光电池,那么光电转换效率是大家最关心的问题。首先材料要吸收光才可能利用光子能量激发电子;其次,材料要吸收光,但是一种材料不可能吸收全光谱波段的所有光子,那么如何设计材料使其尽可能吸收更宽的光谱范围的光子能量,提高光子能量利用率。硅光电池相对光谱响应量正是研究这两方面的内容,研究可以检测硅光电池材料的光谱吸收范围,又能检测各个波段的硅光电池材料的吸收强度。
毕业论文常见的参考文献介绍
参考文献来源分类: 期刊文章-[J],普通图书、专着-[M],论文集、会议录-[C],学位论文-[D],规范、标准-[S],报告-[R],未说明文献类型或资料类-[Z].
毕业论文常见的参考文献介绍
1 期刊论文-[J]
[1] 汤晓光。 无砟轨道客运专线沉降变形观测评估系统建设管理[J]. 铁道标准设计,2010( 1) : 3-6.
[2] 王天亮,刘建坤,彭丽云,等。 冻融循环作用下水泥改良土的力学性质研究[J]. 中国铁道科学,2010,31( 6) : 7-13.
[3] 周丹,田红旗。 强侧风下客车在不同路况运行的气动性能比较[J]. 中南大学学报: 自然科学版,2008,39 ( 3) :554-559.
2 普通图书、专着-[M]
[1] 郑健。 中国高速铁路桥梁[M]. 北京: 高等教育出版社,2008.
[2] 龚晓南。 地基处理手册[M]. 2 版。 北京: 中国建筑工业出版社,2000.
[3] 布列耶夫,克拉夫错夫。 轨道电路的分析与综合[M]. 孙铭甫,译。 北京: 中国铁道出版社,1981: 55-56.
3 论文集、会议论文-[C]
[1] 王梦恕,骆建军。 客运专线长大隧道设计施工的讨论[C]∥铁路客运专线建设技术交流会论文集。 武汉: 长江出版社,2005: 186-195.
[2] 张忠智。 科技书刊的总编( 主编) 的角色要求[C]/ /中国科学技术期刊编辑部学会建会十周年学术研讨会论文汇编。 北京: 中国科学技术期刊编辑学会学术委员会,1997:33-34.
4 学位论文-[D]
[1] 李小珍。 高速铁路列车-桥梁系统耦合振动理论及应用研究[D]. 成都: 西南交通大学,2000.
5 标准、规范-[S]
[1] 中华人民共和国铁道部。 铁建设[2007]47 号 新建时速300 ~ 350 公里客运专线铁路设计暂行规定[S]. 北京: 中国铁道出版社,2007.
[2] 铁道第二勘察设计院。 TB10003-2005 铁路隧道设计规范[S]. 北京: 中国铁道出版社,2005.
6 科研报告-[R]
[1] 中铁第四勘察设计院集团有限公司。 武广铁路客运专线大跨度预应力混凝土连续梁桥技术研究总报告[R]. 武汉: 中铁第四勘察设计院集团有限公司,2008.
7 专利-[P]
[1] 闫友联,沈良成,金仓,等。 一种大跨度悬索桥施工中的先导索水面牵引的放索装置: 中国,[P]. 2010-05-05.
8 电子文献( 包括专着或连续出版物中析出的电子文献) [M /OL][J /OL]等
[1] 江向东。 互联网环境下的信息处理与图书管理系统解决方案[J/OL]. 情报学报,1999,18( 2) : 4[2000-01-18].
9 报纸中析出的文献-[N]
[1] 丁文祥。 数字革命与竞争国际化 [N]. 中国青年报,2000-11-20( 15) .
10 未说明文献类型或资料类-[Z]
[1] 中华人民共和国铁道部。 铁路 GSM - R 数字移动通信系统网络技术规划[Z]. 北京: 中 华 人 民 共 和 国 铁 道部,2005.
关于毕业论文
毕业论文是大专院校学生毕业之前写作的体现学习成果的论说文。从整个写作过程来说,要抓好三件事:一是选题要得当,二是材料收集要充分,三是论证要严密。一个环节失误,都会严重影响论文质量。在此仅就写法上的问题谈几点应注意事项:
一、题目最好小一点,角度新一点 。
由于完成论文的时间大体上只有三五个月,论文字数也有一定限制,因此选的题目不能过大。否则,为时间、精力、资料等条件所限,将难以写好。题目小一点,写得实在一点,把问题讲得透彻一点,对于初学写论文的同学来说,是一个较好的锻炼。确定题目之后,还要考虑从哪个角度写比较好。譬如论一部作品,究竟是论它的思想性、艺术技巧还是人物形象等,要在调查研究的基础上,根据自己的特长和所掌握的资料来确定,最好是从前人所没有论述过的地方或前人虽有论述但自己有新见解的地方着手。当然,也不是题目越小越好,越冷僻越好。钻牛角尖也容易走上歧途。
二、依理定形,顺理成章。
论文和文学作品不同,它要求用简明的语言讲清楚一个最基本的道理。因此,论文的结构只能以理为中心,结构形式必须服从事理发展逻辑。所以,在写作之前要细致地分析所有的材料,理清思路。在写作时,要紧紧抓住自己所要阐述的问题组织和使用材料,用严密的论证来说明自己的观点。
三、中心突出,层次清楚。
要使文章中心突出,首先要确定论证重点,然后在材料的安排上下功夫,即先找出材料安排的顺序,看看什么材料该先用,什么该后用,放在什么地方最为合适。如材料安排是平行关系,即列举式的,材料之间并无内在的逻辑联系,谁先谁后没有多大关系。如果是递进关系,不论是递增式还是递减式,就象阶梯一样,有一定先后次序,它们之间就不能随意颠倒顺序,否则,就会造成气不通、理不顺。此外,还有接续关系和对立关系等。总之,在使用材料时,要把握它们之间的内在联系,用得恰到好处,这样,文章就可以做到中心突出、层次清楚。层次清楚还要求:段落之间的衔接要紧凑,文势的曲折变化要自然。段落之间的过渡不论采用什么形式,如用联接词,用插叙或说明等,都要有连贯性,不要给人突如其来的感觉。为了使文章曲折变化、引人入胜,有时要退一步讲,有时要抓住关键性的字眼反复挖掘深意,有时需要间接证明,有时需要用顿笔造成奇峰突起等。但无论怎样曲折变化,都不能离开文章的中心,横生枝节,而要显得自然、合理。
动笔写作之前,最好先列一个提纲,确定文章的架子,看看要讲哪几层道理,用什么材料,怎么论证,如何开头、结尾等。这样,一方面可以检查自己材料是否够用,另外,写作时也不致因时间较长而使思路中断。当然,写作过程中,随着认识的加深或新材料的发现,部分修改甚至提纲的事也是有的,但有提纲总比没有要好。初稿写毕,要在听取指导老师和同学的意见之后反复修改,最后再定稿。
毕业设计说明书与毕业论文撰写的规范化要求
一篇完整的毕业设计说明书或毕业论文要有题目、摘要及关键词、目录、引言(前言)、正文、结论、谢辞、参考文献、附录等几部分构成,毕业论文规范。理工科专业的毕业设计说明书(毕业论文)要求不少于2500字,文科专业不少于3000字,具体实施细则如下:
一、毕业设计说明书撰写的主要内容与基本要求
1.题目
毕业设计课题名称,要求简洁、确切、鲜明。
2.中外文摘要及关键词
应扼要叙述本设计的主要内容、特点,文字要简练。中文摘要求约100字左右。关键词3-5个。
3.目录
主要内容的目录。
4.前言
应说明本设计的目的、意义、范围及应达到的技术要求;简述本课题在国内(外)的研究概况及尚可开拓空间;本设计的指导思想;阐述本设计要解决的主要问题。
5.正文
(1)设计方案论证:应说明设计原理并进行方案选择。应说明为什么要选择这个方案(包括各种方案的分析、比较);应阐述所采用方案的特点(如采用了何种新技术、新措施、提高了什么性能等)。
(2)设计及计算部分:设计及计算部分是设计说明书的重要组成部分,应详细写明设计结果及计算结果。
(3)样机或试件的各种实验及测试情况:包括实验方法、线路及数据处理等,开题报告《毕业论文规范》。
(4)方案的.校验:说明所设计的系统是否满足各项性能指标的要求,能否达到预期效果。校验的方法可以是理论分析(即反推算),包括系统分析,也可以是实验测试及计算机的上机运算等。
6.结论
概括说明本设计的情况和价值,分析其优点、特色,有何创新,性能达到何水平,并指出其中存在的问题和今后的改进方向。
7.谢辞
简述自己通过本设计的体会,并对指导老师和协助完成设计的有关人员表示谢意。
8.参考文献
应列出主要参考文献。
9.附录
将各种篇幅较大的图纸、数据表格、计算机程序等作为附录附于说明书之后。
二、毕业论文撰写的主要内容与基本要求
1.题目
题目应该简短、明确,要有概括性,让人看后能大致了解文章的确切内容、专业的特点和学科的范畴。题目的字数要适当。
2.中外文摘要及关键词
摘要,即内容提要,应当以浓缩的形式概括研究课题的主要内容、方法和观点,以及取得的主要成果和结论,应反映整个论文的精华。中文摘要约100字左右为宜,关键词3-5个。摘要应写得扼要、准确,一般在毕业论文全文完成后再写摘要。在写作中要注意以下几点:
(1)用精练、概括的语言表达,每项内容均不宜展开论证。
(2)要客观陈述,不宜加主观评价。
(3)成果和结论性意见是摘要的重点内容,在文字上应着重陈述,以加深读者的印象。
(4)要独立成文,选词用语要避免与全文尤其是前言和结论雷同。
(5)既要写得简短扼要,又要行文活泼,在词语润色、表达方法和章法结构上要尽可能写得有文采,以唤起读者对全文的阅读的兴趣。
3.目录(必要时)
论文编写完成后,为了醒目和便于读者阅读,可为论文编写一个目录。目录可分章节,每一章节之后应编写明页码。
4.前言
前言是全篇论文的开场白,它包括:
(1)选题的缘由。
(2)对本课题已有研究情况的评述。
(3)说明所要解决的问题和采用的手段、方法。
(4)概括成果及意义。
作为摘要和前言,虽然所定的内容大体相同,但仍有很大的区别。区别主要在于:摘要一般要写得高度概括、简略,前言则可以稍微具体些;摘要的某些内容,如结论意见,可以作为笼统的表达,而前言中所有的内容则必须明确表达;摘要不写选题的缘由,前言则明确反映;在文字量上前言一般多于摘要。
高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。下文是我为大家整理的有关高分子材料毕业论文的范文,欢迎大家阅读参考! 有关高分子材料毕业论文篇1 浅析高分子材料成型加工技术. 【摘要】高分子材料成型加工技术在工业上取得的飞速发展,介绍高分子材料成型加工技术的发展情况,探讨其创新研究,并详细阐述高分子材料成型加工技术的发展趋势。 【关键词】高分子材料;成型加工;技术 近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。 一、高分子材料成型加工技术发展概况 近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。 在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为,2000年增加至亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。 据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。 目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。 二、现今高分子材料成型加工技术的创新研究 (一)聚合物动态反应加工技术及设备 聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。 目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。 该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。 (二)以动态反应加工设备为基础的新材料制备新技术 1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。 2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。 3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。 三、高分子材料成型加工技术的发展趋势 近年来,各个新型成型装备国家工程研究中心在出色完成了国家级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,完成产业化工程配套项目20多项,创办了广州华新科机械有限公司和北京华新科塑料机械有限公司,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。 例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。 综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。 参考文献: [1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999. [2]瞿金平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435. [3]瞿金平,聚合物电磁动态塑化挤出方法及设备[J].中国专利,I990;美国专利5217302,1993. 有关高分子材料毕业论文篇2 浅论高分子材料的发展前景 摘要:随着生产和科技的发展,以及人们对知识的追求,对高分子材料的性能提出了各种各样新的要求。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。本文主要分析了高分子材料的发展前景和发展趋势。 关键词:高分子材料;发展;前景 一 高分子材料的发展现状与趋势 高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。从高分子材料与国民经济、高技术和现代生活密切相关的角度说, 人类已进人了高分子时代。高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。 鉴于此, 我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进? 步的发展, 高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。 二 高分子材料各领域的应用 1高分子材料在机械工业中的应用 高分子材料在机械工业中的应用越来越广泛, “ 以塑代钢” ,“ 塑代铁” 成为目前材料科学研究的热门和重点。这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出, 在某些有机溶剂 如煤油、砂浆混合液中, 其磨耗低于其它材料。聚氨醋弹性体可制成浮选机叶轮、盖板, 广泛使用在工况条件为磨粒磨损的浮选机械上。又如聚甲醛材料聚甲醛具有突出的耐磨性, 对金属的同比磨耗量比尼龙小, 用聚四氟乙烯、机油、二硫化钥、化学润滑等改性, 其摩擦系数和磨耗量更小, 由于其良好的机械性能和耐磨性, 聚甲醛大量用于制造各种齿轮、轴承、凸轮、螺母、各种泵体以及导轨等机械设备的结构零部件。在汽车行业大量代替锌、铜、铝等有色金属, 还能取代铸铁和钢冲压件。 2 高分子材料在燃料电池中的应用 高分子电解质膜的厚度会对电池性能产生很大的影响, 减薄膜的厚度可大幅度降低电池内阻, 获得大的功率输出。全氟磺酸质子交换 膜的大分子主链骨架结构有很好的机械强度和化学耐久性, 氟素化合物具有僧水特性, 水容易排出, 但是电池运转时保水率降低, 又要影响电解质膜的导电性, 所以要对反应气体进行增湿处理。高分子电解质膜的加湿技术, 保证了膜的优良导电性, 也带来电池尺寸变大增大左右、系统复杂化以及低温环境下水的管理等问题。现在一批新的高分子材料如增强型全氟磺酸型高分子质子交换膜耐高温芳杂环磺酸基高分子电解质膜纳米级碳纤维材料新的一导电高分子材料等等, 已经得到研究工作者的关注。 3 高分子材料在现代农业种子处理中的应用及发展 高分子材料在现代农业种子处理中的应用:新一代种子化学处理一般可分为物理包裹利用干型和湿形高分子成膜剂, 包裹种子。种子表面包膜利用高分子成膜剂将农用药物和其他成分涂膜在种子表面。种子物理造粒将种子和其他高分子材料混和造粒, 以改善种子外观和形状, 便于机械播种。高分子材料在现代农业种子处理中研究开发进展:种子处理用高分子材料已经从石油型高分子材料逐步向天然型以及功能型高分子材料的方向发展。其中较为常见和重要的高分子材料类型包括多糖类天然高分子材料, 具有在低温情况下维持较好膜性能的高分子材料, 高吸水性材料, 温敏材料, 以及综合利用天然生物资源开发的天然高分子材料等, 其中利用可持续生物资源并发的种衣剂尤为引人关注。 4 高分子材料在智能隐身技术中的应用 智能隐身材料是伴随着智能材料的发展和装备隐身需求而发展起来的一种功能材料,它是一种对外界信号具有感知功能、信息处理功能。自动调节自身电磁特性功能、自我指令并对信号作出最佳响应功能的材料/系统。区别于传统的外加式隐身和内在式雷达波隐身思路设计,为隐身材料的发展和设计提供了崭新的思路,是隐身技术发展的必然趋势 ,高分子聚合物材料以其可在微观体系即分子水平上对材料进行设计、通过化学键、氢键等组装而成具有多种智能特性而成为智能隐身领域的一个重要发展方向。 三 高分子材料的发展前景 1高性能化 进一步提高耐高温,耐磨性,耐老化,耐腐蚀性及高的机械强度等方面是高分子材料发展的重要方向,这对于航空、航天、电子信息技术、汽车工业、家用电器领域都有极其重要的作用。高分子材料高性能化的发展趋势主要有创造新的高分子聚合物,通过改变催化剂和催化体系,合成工艺及共聚,共混及交联等对高分子进行改性,通过新的加工方法改变聚合物的聚集态结构,通过微观复合方法,对高分子材料进行改性。 2高功能化 功能高分子材料是材料领域最具活力的新领域,目前已研究出了各种各样新功能的高分子材料,如可以像金属一样导热导电的高聚物,能吸收自重几千倍的高吸水性树脂,可以作为人造器官的医用高分子材料等。鉴于以上发展,高分子吸水性材料、光致抗蚀性材料、高分子分离膜、高分子催化剂等都是功能高分子的研究方向。 3复合化 复合材料可克服单一材料的缺点和不足,发挥不同材料的优点,扩大高分子材料的应用范围,提高经济效益。高性能的结构复合材料是新材料革命的一个重要方向,目前主要用于航空航天、造船、海洋工程等方面,今后复合材料的研究方向主要有高性能、高模量的纤维增强材料的研究与开发,合成具有高强度,优良成型加工性能和优良耐热性的基体树脂,界面性能,粘结性能的提高及评价技术的改进等方面。 4智能化 高分子材料的智能化是一项具有挑战性的重大课题,智能材料是使材料本身带有生物所具有的高级智能,例如预知预告性,自我诊断,自我修复,自我识别能力等特性,对环境的变化可以做出合乎要求的解答;根根据人体的状态,控制和调节药剂释放的微胶囊材料,根据生物体生长或愈合的情况或继续生长或发生分解的人造血管人工骨等医用材料。由功能材料到智能材料是材料科学的又一次飞跃,它是新材料,分子原子级工程技术、生物技术和人 工智能诸多学科相互融合的一个产物。 5绿色化 虽然高分子材料对我们的日常生活起了很大的促进作用,但是高分子材料带来的污染我们仍然不能小视。那些从生产到使用能节约能源与资源,废弃物排放少,对环境污染小,又能循环利用的高分子材料备受关注,即要求高分子材料生产的绿色化。主要有以下几个研究方向,开发原子经济的聚合反应,选用无毒无害的原料,利用可再生资源合成高分子材料,高分子材料的再循环利用。 四 结束语 高分子材料为我国的经济建设做出了重要的贡献,我国已建立了较完善的高分子材料的研究、开发和生产体系,我国虽然在高分在材料的开发和综合利用方面起步较晚,但目前来看也取得了不错的进步,我们应提高其整体技术水平,致力于创新的高分在聚合反应和方法,开发出多种绿色功能材料和智能材料,以提高人类的生活质量,并满足各项工业和新技术的需求。 参考文献: [1]金关泰.《高分子化学的理论和应用》,中国石化出版社,1997 [2]李善君 纪才圭等.《高分子光化学原理及应用》复旦大学出版社2003 6. [3]李克友, 张菊华, 向福如. 《高分子合成原理及工艺学》,科学出版社,1999 猜你喜欢: 1. 全国高分子材料学术论文报告 2. 全国高分子材料学术论文 3. 全国高分子材料学术论文 4. 全国高分子材料学术论文报告 5. 关于材料学方面论文
[1]陶维屏,苏德辰.中国非金属矿产资源及其利用与开发.北京:地震出版社,2002.
[2]刘研,李宪洲.高岭土的深加工与新材料.世界地质,2004,23(2):195~200.
[3]孔浩.高岭土改性和层柱材料的制备与表征.天津:天津大学硕士论文,2002.
[4]中国矿床编委会编著.中国矿床.北京:地质出版社,1994.
[5]王怀宇,张仲利.世界高岭土市场研究.中国非金属矿工业导刊,2008,(2):58~62.
[6]吴铁轮.我国高岭土市场现状及展望.非金属矿,2004,27(1):1~4.
[7]张术根,刘小胡,丁俊.湖南辰溪仙人湾埃洛石型高岭土的矿物学特征与成因简析.岩石矿物学杂志,2006,25(5):433~439.
[8]张术根,刘小胡,丁俊.湖南辰溪仙人湾埃洛石型高岭土矿床特征及成因分析.矿物岩石,2006,26(4):1~7.
[9]张术根,丁俊,刘小胡,等.湖南辰溪仙人湾高岭土矿物学特征与应用途径探索.矿物学报,2006,26(4):357~362.
[10]李凯琦,刘钦甫,许红亮.煤系高岭岩及深加工技术.北京:中国建材工业出版社,2001.
[11] Frost R deformation in and Clay Minerals,1998,46(3):280~289.
[12] ,41:738.
[13]袁树来,等.中国煤系高岭岩(土)及加工利用.北京:中国建材工业出版社,2001.
[14] Ma C,Eggleton R layer types of kaolinite:Ahigh-resolution transmission electron microscope and Clay Minerals,1999,47:181~191.
[15] Frost R L,Kristof J,Schmidt J M,et spectroscopy of potassium acetate-intercalated kaolinites at liquid nitrogen Acta Part A,2001,57:603~609.
[16] Van Duin A C T,Steve R dynamics investigation into the adsorption of organic compounds on kaolinite Geochemistry,2001,32:143~150.
[17]刘摔摔,张培萍,吴永功.层状硅酸盐矿物填料在聚合物中的应用及发展.世界地质,2001,20(4):360~365.
[18]刘欣梅,潘正鸿,李国,阎子峰.用煤系高岭土制取白炭黑的研究.石油大学学报(自然科学版),2005,29(2):121~124.
[19]王万军,张术根,孙振家,刘纯波.用伊利石高岭石质煤矸石试制橡胶填料.中南大学学报(自然科学版),2004,35(5):769~773.
[20]张文良.非金属矿物高岭土在涂料中的应用.广东化工,2002,4:38~41.
[21]张怀彬,贾同文,等.沸石催化剂在精细化工中的应用.精细石油化工,1993,(1):6~11.
[22] Rong T J,Xia J catalytic cracking activity of the kaolin-group Letters,2002,57:297~301.
[23]王雪静,张甲敏,杨胜凯,杨风霞.偏高岭土水热合成NaY分子筛的机理研究.无机化学学报,2008,24(2):235~240.
[24]蒋荣立,孔德顺,夏小波,陈文龙.偏高岭石-碱-硅酸钠水热反应体系13X分子筛的合成.硅酸盐学报,2008,36(6):832~836.
[25]孙书红,马建泰,庞新梅,等.高岭土微球合成ZSM-5沸石及其催化裂解性能.硅酸盐学报,2006,36(4):757~761.
[26]蒋笃孝,魏红梅.由高岭土合成环境友好的无磷洗涤剂用沸石添加剂.现代化工,1999,19(12):27~28.
[27]沈水发,陈耐生,陈柽生,等.利用高岭土制备聚合氯化铝净水剂.无机盐工业,1999,31(5):33~35.
[28]陈国斌,唐课文,黄凯明.用高岭土制备聚氯化铝铁-淀粉复合絮凝剂及性能研究.湖南理工学院学报(自然科学版),2006,19(2):52~58.
[29]吴宏海,刘佩红,张秋云,何广平.高岭石对重金属离子的吸附机理及其溶液的pH条件.高校地质学报,2005,11(1):85~91.
[30]侯梅芳,崔杏雨,李瑞丰.沸石分子筛在气体吸附分离方面的应用研究.太原理工大学学报,2001,(3):135~139.
[31]刘燕.高岭土类粘土矿物材料对模拟核素Sr、Co、Cs的吸附性能研究.中国非金属矿工业导刊,2007,(5):25~28.
[32]李恒德.现代材料科学与工程词典.济南:山东科技出版社,2001:411~412.
[33] Bandyopadhyoy S,Mukerji of nitrogen content on the sintering behavior and properties of Sialon prepared from ,1993,19(3):133~139.
[34] Suvorov S A,Dolqushev N V,Zabolotskij A synthesis of dispersed sialon i Tekhnicheskaya Keramika,2002,4:2~5.
[35] Antsiferov V N,Gilev V materials from i Tekhnicheskaya Keramika,2001,2:2~8.
[36] Panda P K,Mariqppan L,Kannan T reduction of kaolinite under nitrogen Inter,2000,26(5):455~461.
[37] Panneerselvam M,Rao K microwave method for the preparation and sintering of β R Bull,2003,38(4):663~674.
[38]张海军,李文超,钟香崇.天然原料合成o′-Sialon-ZrO2-SiC复合材料.稀有金属,2000,34(1):25~29.
[39]张海军,李文超,钟香崇.粘土还原氮化合成o′-Sialon基复合材料.耐火材料,2000,34(3):137~140.
[40]李亚伟,李楠,王斌耀,等.β-赛隆(Sialon)/刚玉复合耐火材料研究.无机材料学报,2000,15(4):612~618.
[41]钱扬保,王福明,徐利华,等.粘土碳热还原氮化二步法制备β-Sialon结合刚玉复相材料.耐火材料,2002,36(2):77~69.
[42] Davidovits and geopolymeric Then Angl,1989(35):429~441.
[43] Miao J Y,Dennis W H,Chang C C,et carbon spheres of high purity prepared on kaolin by and Related Materials,2003,12:1368~1372.
[44]王银叶.天然矿高岭土制备莫来石复合纳米晶微观结构表征.硅酸盐学报,2000,28(2):68~71.
[45] Karch J,Birringer R,Gleiter at low ,1987,33(6148):556~559.
[46]吕凤柱,张宝砚,王文斌,窦臻.PA1010/高岭土杂化材料的制备和探讨.高分子材料科学与工程,2002,18(2):187~191.
[47]古映莹,廖仁春,吴幼纯,等.高岭石-MBT复合材料的制备及其对Pb2+的吸附性能.贵州化工,2001,26(3):23~25.
[48]魏月琳,吴季怀.高岭土-丙烯酰胺系超吸水性复合材料表征.华侨大学学报(自然科学版),2002,23(4):412~416.
[49]王新.聚合填充法制备 UHMWPE/Kaolin复合材料的结构与性能.北京:中国科学院化学研究所博士论文,2001.
[50]朱秀林,顾梅,赵峰.高岭土-聚丙烯酸钠高吸水性复合树脂的合成及性能研究.高分子材料科学与工程,1994,(5):46~49.
[51]熊传溪,刘起虹,董丽杰,王雁冰.HDPE/高岭土复合材料的制备与性能.武汉理工大学学报,2002,24(1):1~3.
[52]陈汉周,刘钦甫,侯丽华,赵庆章.高岭土/PET纳米复合材料的制备与表征.非金属矿,2008,31(3):42~44.
[53]蔡会武,江照洋,王瑾璐,等.丙烯酸/淀粉/高岭土复合高吸水树脂的制备及性能研究.化工新型材料,2008,36(4):47~49.
[54]刘钦甫,杨晓杰,张鹏飞.中国煤系高岭岩(土)资源成矿机理与开发利用.矿物学报,2002,22(4):359~364.
[55]陆军.煤矸石发电是扩大煤矸石综合利用的有效途径.中国煤炭,2001,27(7):36~37.
[56]张术根,王万军,谭建农.湖南煤矸石资源环境评价与开发利用研究.长沙:中南大学出版社,2003.
[57]刘春荣,宋宏伟,董斌.煤矸石用于路基填筑的探讨.中国矿业大学学报(自然科学版),2001,30(3):294~297.
[58]刘俊尧,裴春平,刘晓惠,张淑娟.煤矸石做道路基层材料的应用分析.云南交通科技,2000,16(3):23~26.
[59]施龙青,韩进,尹增德,陆鸿.煤矸石改良土壤的应用研究.中国煤炭,1998(5):37~39.
[60]王刚.利用煤矸石生产肥料.煤炭加工与综合利用,1996,(6):10~11.
材料学是学生接触材料领域、定位未来方向的入门课程,学习和掌握该课程内容意义至关重要。下文是我为大家整理的材料学方面论文的 范文 ,欢迎大家阅读参考!
浅析高分子材料成型加工技术
摘要:近些年来,国防尖端工业和航空工业等特殊领域的发展对高分子材料成型的加工技术要求更高,更精细。在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的 方法 ,对促进我国高新技术及产业的发展具有重要的意义。
关键词:高分子材料加工方法成型技术
一、前言
近些年来,国防尖端工业和航空工业等特殊领域的发展要求更高性能的聚合物材料,开发研制满足特定要求的高聚合物迫在眉睫[1]。在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的方法,对促进我国高新技术及产业的发展具有重要的意义。
二、高分子材料成型成型加工技术的相关定义
1.高分子材料
高分子材料是指由相对分子质量较高的化合物为基础构成的材料,其一般基本成分是聚合物或以含有聚合物的性质为主要性能特征的材料;主要是橡胶、塑料、纤维、涂料、胶黏剂和高分子基复合材料。高分子材料独特的结构和易改性与易加工特点,使它具有其他材料不可取代与不可比拟的优异性能,从而广泛运用到科学技术、国防建设和国民经济等领域,并已成为现代社会生活中衣食住行用等各方面不可缺少的材料。
2.高分子材料成型加工技术
在高分子工业的生产中分为高分子材料的制备与加工成型两个过程。高分子材料的成型加工技术就是运用各种加工方法对高分子材料赋予形状,使其成为具有使用价值的各种制品。高分子材料加工主要目的是高性能、高生产率、快捷交货和低成本;向小尺寸、轻质与薄壁方向发展是高分子材料成型技术制品方面的目标;成型加工方向是全回收、零排放、低能耗,从大规模向较短研发周期的多品种转变。判断高分子材料的成型加工技术的质量因素是加工后制品的外观性、尺寸精度、技能性中的耐化学性、耐热性等等。
三、高分子材料成型加工技术的方法
高分子材料的的成型方法有挤出成型、吹塑成型、注塑成型、压延成型、激光成型等。以下介绍的是现今高分子材料成型加工的主要技术方法。
1.挤出成型技术
挤出成型技术是指物料通过挤出机料筒和螺杆间的作用,边受热塑化,边被螺杆向前推送,连续通过机头而制成各种截面制品或半制品的一种加工方法。它的具体原理是高分子原材料自料斗进入料筒,在螺杆旋转作用下,通过料筒内壁和螺杆表面摩擦剪切作用向前输送到加料段,在此松散固体向前输送同时被压实;在压缩段,螺槽深度变浅,进一步压实,同时在料筒外加热和螺杆与料筒内壁摩擦剪切作用,料温升高开始熔融,压缩段结束;均化段使物料均匀,定温、定量、定压挤出熔体,到机头后成型,经定型得到制品。挤出成型又有共挤出技术、挤出注射组合技术、成型技术、反应挤出工艺与固态挤出工艺等。
2.注塑成型技术
注射成型技术是目前塑料加工中最普遍的采用的方法之一,可用来生产空间几何形状非常复杂的塑料制件[2]。注射成型技术根据组合材料的特征,又有以组合惰性气体为特征的气体辅助注射成型,以组合组成化学反应过程为特征的反应注射成型,以组合混合混配为特征的直接注射成型,以组合不同材料为特征的夹心成型等多种方法。
3.吹塑成型技术
吹塑技术一种发展迅速的塑料加工方法。热塑性树脂经挤出或注射成型得到的管状塑料型坯,趁热或加热到软化状态,置于对开模中,闭模后立即在型坯内通入压缩空气,使塑料型坯吹胀而紧贴在模具内壁上,经冷却脱模,即得到各种中空制品。根据型坯制作方法,吹塑可分为挤出吹塑和注射吹塑,新发展起来的有拉伸吹塑和多层吹塑。
四、高分子材料成型加工技术的发展新趋势
目前,高分子加工成型技术正在快速地进步,它的发展总方向是高度集成化、高度产量、高度精密化,不断实现对加工制品材料的聚集态、组织形态与相形态等的控制,最大程度地达到制品高性能的目的。具体的创新技术之处主要体现在以下几项新技术上。
1.聚合物动态反应加工技术
聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的[3]。这项技术解决振动力场下聚合反应加工过程中质量、动量和能量传递与平衡的难点,从技术上解决了设备结构集化的问题。
2.热塑性弹性体动态全硫化制备技术
这项技术引入振动立场到混炼挤出的全过程,实现混炼过程中橡胶相动态全硫化,控制硫化反直的进程,防止共混加工过程共混物相态发生发转。此技术非常有意义,研制发明出新的热塑性弹性体动态硫化技术与设备,能有效地提高我国TPV技术的水平。
3.信息存储光盘盘基直接合成反应成型技术
此技术是将盘级PC树脂生产、中间储运与光盘盘基成型三个过程融合为一体,联系动态连续反应成型技术,研制开发精密光盘注射成型装备,达到有效提高产品质量、节约能源,降低消耗的目的。该技术避免了传统方式中间环节多、能耗大、周期时间长、成型前处理复杂、储运过程易受污染等缺陷。
五、结语
综上所述,我国在新时期要把握高分子成型加工技术的前沿,注重培育自主的知识产权,努力打破国外技术的垄断,实现科学技术研究与产业界的良好结合的目的。这能有效地将科学研究成果转化为实际的生产力,有效地加快我国高分子材料成型加工技术及其相关产业的快速发展。
参考文献
[1] 王云飞;孙伟.浅谈高分子材料成型加工技术[J].城市建设理论研究,2012,(11): 32.
[2] 甄延波.高分子材料成型加工技术的进展[J].化工中间体,2012,(09): 25.
[3]黄贵禹.浅析高分子材料成型加工技术[J].东方 企业 文化 ,2011,(16): 97.
浅析高分子材料成型
摘要:我国的高分子材料成型技术在工业上取得了飞速的发展,本文主要阐述了高分子材料成型的原理以及高分子材料成型的加工技术。
关键词:高分子材料;成型;技术
一、前言
高分子材料是指以高分子化合物为基体组分的材料。高分子材料按来源可分为天然高分子材料、合成高分子材料;按化学组成分类可分为有机高分子材料、无机高分子材料;按性能可分为通用高分子材料、新型高分子材料。高分子材料比传统材料发展迅速的主要原因是原料丰富、制造方便、加工容易、品种繁多、形态多样、性能优异以及在生产和应用领域中所需的投资低,经济效益比较显著。高分子反应加工分为反应挤出和反应注射成型两个部分,目前我国普遍采用的设备包括螺杆挤出机和螺杆注射机。现阶段,我国的高分子材料成型也取得了较好的成绩。
二、高分子材料成型的原理
高分子材料的合成和制备一般都是由几个化工单元操作组成的,高分子反应加工把多个单元操作熔为一体,有关能量的传递和平衡,物料的输运和平衡问题,与一般单个化工单元操作完全不同。传统聚合过程解决传热和传质问题主要是利用溶剂和缓慢反应来进行的,但是在聚合反应加工过程中,物料的温度在数分钟内就能达到400℃~800℃,此时对于反应过程中产生的热,如果不能进行脱除的话,那么降解和炭化将会发生在物料中。传统的加工过程是通过设备给聚合物加热,而需要快速将聚合生成的热量通过设备移去是聚合反应加工所进行的,由此可见,必须从化学和热物理两个方面开展相应的基础研究。
高分子材料的物理机械性能、热性能、加工性能等均取决于其化学结构、分子结构和凝聚态的形态结构,而加工工艺与高分子材料的形态结构关系是非常密切的。
流变学,指从应力、应变、温度和时间等方面来研究物质变形和(或)流动的物理力学。它是力学的一个新分支,它主要研究物理材料在应力、应变、温度湿度、辐射等条件下与时间因素有关的变形和流动的规律。高分子材料成型加工成制备的理论基础是高分子材料流变学。高分子材料的自身的规律和特点是伴随化学反应的高分子材料的流变性质而产生的。
三、高分子材料成型的加工技术
(一)聚合物动态反应加工技术及设备
目前国外已经研发出可以解决其他挤出机作为反应器所存在的问题,即连续反应和混炼的十螺杆挤出机。在我国高分子材料成型加工工业的发展中占有极其重要的地位,但是我国的高分子材料成型的加工技术的开发目前还处于初步阶段。缩聚反应器的反应挤出设备就是指交换法聚碳酸酯连续化生产和尼龙生产中的比较关键的技术,除此之外,我国每年还有数以千万吨的改性聚合物生产,反应挤出技术及设备也是其关键技术。
采用传统的加工设备存在一些问题,例如传热、化学反应过程难以控制等,另外投资费用大、噪音大等问题。无论是在反应加工原理还是设备的结构上,聚合物动态反应加工技术及设备与传统技术都完全不同,将聚合物反应挤出全过程引入到电磁场引起的机械振动场,从而达到控制化学反应过程、反应制品的物理化学性能以及反应生产物的凝聚态结构的目的,这就是聚合物动态反应加工技术及设备。高分子材料成型加工是高能耗过程作业,无论是挤出、注射还是中空吹塑成型塑料原理都必须经过熔融塑化及输送这一基本和共性的过程,目前普遍采用的设备包括螺杆挤出机和螺杆注射机等。该技术使得控制聚合物单体及停留时间分布不可控的问题得到了解决,而且也使得振动立场作用下聚合物反应加工过程中的质量、动量以及能量传递和平衡问题得到了解决,同时也使得设备结构集成化问题得到了解决。新设备的优点很多,例如:体积重量小、适应性好、噪音低、可靠性高等等,而这些技术是传统技术和设备是比不了的。
(二)以动态反应加工设备为基础的新材料制备新技术
此技术的研究实现,加强了我国在该领域内的发言权。以动态反应技术为基础方向,进行深入的研究,从而产生了新的材料制备技术。我们以存储光盘盘基为基础原型,以反应成型技术直接作用于其上。通过对这些技术的研究改进,改变了传统技术中多环节、消耗大、复杂度高、周期长、而且环境污染比较严重等诸多不利因素。通过学习研究,可以把制作光盘的PC树脂原料工业、中途存放、盘基成型工业串联于一体,提高了工业生产效率、减少了资源浪费、能够完全有效的进行控制,而且产品的质量有大幅度的提高。
聚合物/无机物复合材料物理场强化制备新技术。研究表明,对无粒子进行适当的处理,可以得到一些好的效果,比如说利用聚合物进行原位表面改性处理、原位包覆、强制分散等处理后,就可以使我们复合材料成型。
热塑性弹性体动态全硫化制备技术。此技术将混炼引入到振动力场挤出全过程,为实现混炼过程中橡胶相动态全硫化,对硫化反直进程进行控制,从而使得共混加工过程共混物相态反转问题得到了解决。实现自主知识产权的热塑性弹性体动态硫化技术与设备研制开发出来,促进我国TPV技术水平的提高。
四、结语
我国必须根据自身的实际情况来发展高分子材料成型加工技术及设备,把握技术前沿,不断地培育自主知识产权,从而使得我国高分子材料成型技术及其产业发展不断加快。
参考文献:
[1] 黄汉雄. 高分子材料成型加工装备及技术的进展、趋势与对策(下)[J]. 橡塑技术与装备, 2006, (06) :13-18
[2] 黄汉雄. 高分子材料成型加工装备及技术的进展、趋势与对策(上)[J]. 橡塑技术与装备, 2006, (05) :17-27
[3] 王玉东, 付鹏, 李晓光, 赵清香, 刘民英. 尼龙612等温结晶的球晶形态与生成条件[J]. 高分子材料科学与工程, 2009, (09):76-79
[4] 吴刚. 高分子材料成型加工技术的进展[J]. 广东化工, 2008, (09) :8-12
[1]曾清华,王栋知,王淀佐.聚合物-粘土矿物纳米复合材料.化工进展,1998,17(2):13~16.
[2]王立新,张楷亮,任丽,等.聚合物/层状硅酸盐纳米复合材料的研究进展.复合材料学报,2001,18(3):5~9.
[3] Giannalis E layered silicate Mater,1996,8(1):29~35.
[4] Alexandre M,Dubois silicate nanocomposites:Preparation,properties and uses of a new class of Sci Eng,2000,Report,28(1~2):1~63.
[5]徐卫兵.聚合物/蒙脱土插层纳米复合材料的研究.中国科学技术大学,博士论文,2001.
[6]张琴.熔体插层聚丙烯纳米复合材料:形成过程、剥离机理、形态与性能.四川大学,博士论文,2002.
[7]袁昌来,董发勤.粘土/有机纳米复合粉体材料.中国非金属矿工业导刊,2003,(4):14~17.
[8]吕建坤.环氧树脂及高性能热塑性树脂与粘土插层复合的研究.浙江大学,博士论文,2001.
[9]须藤俊男,著.严寿鹤,刘万,贾克实,译.粘土矿物学.北京:地质出版社,1981.
[10] OlejnikSL,,1968,72(1):241~249.
[11] Theng B K G,Churchman G J,Whitton J S,Claridge G G of Intercalation Methods for differentiating halloysite from and Clay Minerals,1984,32(4):249~258.
[12] of Solid State13Cand29Si nuclear Magnetic Resonance spectra of Kaolinite and Clay Minerals,1985,33(3):173~180.
[13] Sugahara Y,Satokawa S,Kuroda K,Kato for the Formation of Interlayer Polyacrylonitrile in and Clay Minerals,1988,36(4):343~348.
[14] Sidheswaran P,Bhat A N,Ganguli of Salts of Fatty Acids into and Clay Minerals,1990,38(1):29~32.
[15] Sugahara Y,Satokawa S,Kuroda K,Kato of a kaolinite-polyacrylamide intercalation and Clay Minerals,1990,38(2):137~143.
[16] Tunney J J,Detellier and characterization of two distinctet hylene glycol derivatives of and Clay Minerals,1994,42(5):552~560.
[17] Tunney J J,Detellier nanocomposite (ethyleneglycol)-kaolinite ,8:927~935.
[18] Frost R L,Tran T H,Kristof spectroscopy of the lattice region of kaolinite and its Spectroscopy,1997,13:175~186.
[19] Frost R L,Kristof of halloysite:a Raman Spectroscopic and Clay Minerals,1997,45(4):551~563.
[20] Frost R L,Tran T H,Kristof structure of a intercalated ordered kaolinite-a Raman microscopy Minerals,1997,32:587~596.
[21] Komori Y,Sugahara kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of ,1998,13(4):930~934.
[22] Komori Y,Sugahara Y,Kuroda transformation of a kaolinite-poly(acrylamide)intercalation ,1999,9:3081~3085.
[23] Gardolinski J E,Zamora P P,Wypych and Characterization of akaolinite-1-methyl-2-pyrrolidone Intercalation of Colloid and Interface Science,1999,211:137~141.
[24] Itagaki T,Komori Y,Sugahara Y,Kuroda of a kaolinite-poly(β-alanine)intercalation ,2001,11:3291~3295.
[25] Komori Y,Sugahara intercalation of poly(vinylpyrrolidone)into kaolinite by arefined guest displacement ,1999,11:3~6.
[26] Komori Y,Sugahara Y,Kuroda of alkylamines and water into kaolinite with methanol kaolinite as an Clay Science,1999,15:241~252.
[27] Takenawa R,Komori Y,Hayashi S,Kawamata J,Kuroda of nitroanilines into kaolinite and second harmonic ,2001,13:3741~3746.
[28] Matsumura A,Komori Y,Itagaki T,Sugahara Y,Kuroda of a kaolinite-nylon 6 intercalation ,2001,74:1153~1158.
[29] Szilvia Papp,Anna Szucs,Imre synthesis of monodisperse Pd nanoparticles in layered State Ionics,2001,141~142:169~176.
[30] Patakfalvi R,Oszko A,Dekany and characterization of silver nanoparticle/kaolinite and Surfaces A:,2003,220:45~54.
[31]卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999.
[32]杨雅秀,张乃娴,苏昭冰,等.中国粘土矿物.北京:地质出版社,1994.
[33] Hayashi Study of Dynamics and Evolution of Guest Molecules in Kaolinite/Dimethyl and Clay Minerals,1997,45(5):724~732.
[34] Hayashi Study of Dynamics of dimethyl Sulfoxide Molecules in Kaolinite/Dimethyl Sulfoxide Intercalation ,1995,99:7120~7129.
[35] Hayashi S,Ueda T,Hayamizu K,et study of kaolinite.Ⅰ.29Si,27Al, Phys Chem,1992,96:10992~10928.
[36] Xie X L,Hayashi study of kaolinite in tercalation compound with formamide and its derivatives.Ⅰ.Structure and orientation of guest Phys Chem B,1999,103:5949~5955.
[37] Tunney J J,Detellier nanocomposite (ethyleneglycol)~kaolinite ,1998,8:927~935.
[38] Komori Y,Sugahara kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of ,1998,13(4):930~934.
[39] Komori Y,Sugahara Y,Kuroda transformation of a kaolinite-poly(acrylamide)intercalation ,1999,9:3081~3085.
[40] Kelleher B P,Sutton D,O'Dwyer T Effect of Kaolinite Intercalation on the Structural Arrangements of NMethylformamide and of Colloid and Interface Science,2002,255:219~224.
[41]Frost R L,Kristof J,Horrath E,et Interface Sci,1999,412:380.
[42]王林江,吴大清,袁鹏,等.高岭石/甲酰胺插层的1H魔角旋转核磁共振谱.科学通报,2001,46(22):1910~1913.
[43] Tunney J J,Detellier modified of methoxy groups on the interlamellar aluminol surface of ,1996,6(10):1679~1685.
[44]赵顺平,夏华,张生辉.高岭石/有机插层复合材料的研究进展.材料科学与工程学报,2003,21(4):620~624.
[45]古映莹,廖仁春,吴幼纯,等.高岭石-MBT复合材料的制备及其对Pb2+的吸附性能.贵州化工,2001,26(3):23~25.
[46] FrostRL,VanDerGaastSJ,Zbik M,Kloro eJT,Paroz G kaolinite:a hihly ordered kaolinite that is difficult to intercalate-an XRD,SEM and Raman spectroscopic Clay Science,2002,20:177~187.
[47]王林江,吴大清.高岭石有机插层反应的影响因素.化工矿物与加工,2001,(5):29~32.
[48]李伟东,黄建国,许承晃.高岭土-二甲亚砜夹层复合物的形成机理.华侨大学学报(自然科学版),1994,15(1):48~52.
[49]李学强,夏华.高岭土-乙酸钾夹层复合物制备.非金属矿,2002,25(4):22~23.
[50] Tunney J J,Detellier and Characterization of two Distinct Ethylene Glycol Derivatives of and Clay Minerals,1994,42(5),552~560.
[51] Sato of Kaolinite-Amino acid intrecalates derived from hydrated and Clay Minerals,1999,47(6):793~802.
[52] Itagati A,Matsumura A,Kato M,et of material of science letters,2001,20:1483~1484.
[53]沈忠悦,袁明永,叶瑛,杨帅杰.高岭石的夹层化合物及其剥片作用.非金属矿,2000,23(6):12~13.
[54]刘岚,罗远芳,贾德民.聚合物/高岭石嵌入纳米复合材料研究进展.合成橡胶工业,2002,25(3):190~193.
[55] Lawrence G,Ginanelis polymer electrolyte nanocomposites:Melt intercalation of poly(ethyleneoxide)in micatype Mater,1995,7(2):154~156.
[56] LiuYJ,Schindler J L,DeGroot D C,et ,structure,and reactions of poly(ethyleneoxide)/V2O5intercalative Mater,1996,8(2):525~534.
[57] Murray H and new applications for kaolin,smectite,and palygorskite:A general Clay Sci,2000,17(5~6):207~221.
[58] Balbir Singh,Woodlands,Ian Donald Richard Mackinnon,Ellengrove,Both of Patent 6022821,2000.
[59] John Gerard Thompson,Page;Ian Donald Richard Mackinnon,Ellengrove;Sasha Koun,Cook;Neil Gabbitas,Kambah,all of Patent 5858081,1999.