首页 > 学术论文知识库 > 数学建模开题报告论文综述

数学建模开题报告论文综述

发布时间:

数学建模开题报告论文综述

你的问题问的太宽泛了,我就是搞建模的,都不到从何开始回答你,想要进一步讨论的话可以hi我。论文七大部分肯定是必不可少的:问题重述,模型假设,问题分析,模型建立,模型求解,结果分析及检验,(包括灵敏度分析,如果需要的话)模型推广,当然还得有目录和摘要以及参考文献了

就是对所要解决的问进行复述一遍,当然要尽可能的简介,达到用最少的字数能够吧问题说明白,本问题是要干嘛的,要求我们做什么?

数学硕士论文开题报告

导语:数学是一门博大高深的学科,要想学好数学必须进行艰苦的研究与知识的积淀。数学硕士撰写论文可以提高学术水平,在写作之前需要提交开题报告。下面和我一起来看数学硕士论文开题报告,希望有所帮助!

一、数学文化的内涵

数学作为一种科学的语言、工具和技术渗透在现代科技的方方面面早已是不争的事实,但是现代数学在人们心中的地位却远远没有达到它应当达到的高度。随着数学专业化程度的提高,它仿佛离人们越来越远了。专业的知识因为艰涩和高深仅仅掌握在少数人手中而无法被大众共享,这直接导致了新的成果无人理解,获得的奖项无人关注,所以数学人是“孤独的”.孤独造成高傲,高傲造成疏远,这其中有误解也有无奈。所以我们强调文化,因为脱离了文化基础的数学只能离人们越来越远。

受目前学校教育情况的影响,很多人认为数学是高高在上的,除了作为升学的工具,毫无用处。这样一来,对于数学这样一门富有深刻文化内涵的学科,就连一些受过良好教育的人也持无视的态度,对数学的无知成了一种很普遍的社会现象,这是一个令人十分担忧的事实。就像美丽的图画并非只是线条和色彩,动人的乐曲并非只是音符和节拍,数学也不是只有数字、符号和运算。了解数学的人都知道,运算只是数学微不足道的方面,数学的精神、思想、方法都蕴藏着无比深刻的内涵,渗透到科学的每个角落。如果将数学比作一棵大树,那么这棵大树的生命力是旺盛的,这种生命力体现在数学起源、发展、完善和应用的每一个过程当中,而数学文化就像土壤一样几百几千年来滋养这棵大树,使它繁衍生息,长盛不衰。因此,扎根于文化土壤的数学教育是十分必要的,也是我们目前十分需要的,这一点将在第五章进行详细论述。

19世纪末到20世纪初的几十年是数学哲学研究领域的黄金时代,关于数学基础的讨论十分活跃,也形成了不同的学派,包括逻辑主义学派、形式主义学派、直觉主义学派、集合论公理化学派等,大家都在筹划为数学建立牢固的哲学基础。虽然几个学派各有优缺点,但都为数学基础的严密性做出了贡献。然而哥德尔的工作击碎了他们的幻想,使数学哲学的研究一度陷入谷底。直到20世纪60年代,西方学者提出了数学文化观,从新的立场为数学哲学研究提出新的观点、新的方法。最早系统地完成这一开创性工作的是美国数学家怀尔德(),他提出了数学作为文化体系的数学哲学观。怀尔德是一名出色的数学家,主要从事拓扑学和数学基础的研究。他的《数学基础引论》和《数学概念演变初探》对数学基础研究有着深远的意义。受到人类学家朋友的影响,他对人类学产生了浓厚的兴趣,并大胆地从人类学的视角考察数学的本质和发展,在数学研究中融入了人类学的研究体会,出版了着作《数学概念的进化》和《作为文化体系的数学》。

他在著作中从文化生成和发展的理论等角度考察数学,率先提出了数学文化的概念并构建了数学文化的理论体系,形成了很长时期以来出现的第一个成熟的数学哲学观,强调了数学的发展动力、发展规律、思维方式等文化内涵,强调了遗传、环境、人类以及人类文化等对数学的作用影响。

二、数学文化研究的意义

区别于其他文化,数学文化具有独特的研究对象、研究视角及价值评判标准,它的出现为数学研究提出了新的思想和方法,使得我们可以从人类文化的任意一个角度切入数学、理解数学、解构数学,最大范围地打开研究思路,拓宽研究范围。

数学文化首先研究的是数学本身,包括从科学体系角度对数学科学进行研究和从哲学角度对数学哲学进行研究。数学科学研究就是一般意义上的数学理论研究,而数学哲学研究则是对数学基础、数学悖论和数学本体论进行探讨,包括数学的对象、性质、特点、地位与作用,数学新分支、新课题提出的哲学意义,着名数学家和数学流派的数学和哲学思想以及数学方法、数学的实在性和真理性等。

数学文化同时研究的是数学学科与其他学科、数学文化与其他文化之间的交互作用,比如数学与文学、数学与经济学之间的渗透影响等。

数学文化研究从文化因素思考数学的演变和发展,为数学史的研究提供新的思考方向。数学文化的历史研究不同于数学史的研究,数学史研究追求的是完善数学知识、数学思想的演化史,数学文化的历史研究是基于全局视角,思考数学与其他文化系统历史的互动关系,关注这些关系对现代数学发展的影响和启示。

如中国的传统文化和实用哲学使中国传统数学重视实用性,制定实际问题的算法成为中国传统数学的本质,也是中国数学存在和发展的基点。古希腊的数学思想产生在城邦航海贸易的氛围中,兼容并追求独立的思辨思想孕育了演绎数学,这是古希腊哲学的深入渗透和文化价值观的体现。从中西文化的差异角度,我们找到了东西方数学体系大相径庭的原因,不是数学本身的要求,而是文化的要求。

数学文化研究强调和突出社会文化心理、价值观念以及人类文化对数学发生的作用,从新的角度诠释了某些理论出现、发展、停滞或覆灭的原因。如古希腊的数学之所以昌盛,是因为希腊人以数学为万学之基,二元论的宇宙观也引导科学家将物质与自身分离而进行科学有效的客观分析。中国的儒家思想将数学放在六艺之末,天人合一的宇宙观使得东方人表现出长于直觉而短于抽象,擅于综合而不擅分析。这也是古代东方数学不能蓬勃发展的原因。

三、数学的文化特征

1.数学的抽象性

在早期的人类文明,数学的创始之初,人类学会了思考数字并进行一定程度的运算。苏联数学家亚历山大洛夫()说:“抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却并不打算每次都把它们同具体的对象联系起来。我们在学校学的是抽象的乘法表--总是数字的.乘法表,而不是男孩的数目乘上苹果的数目,或者苹果的数目乘上苹果的价钱等等。”

数学成为抽象的学科,人们将这一巨大的功劳记在希腊人身上,毕达哥拉斯学派纯凭心智考虑抽象问题,认为数是真实物质的终极组成部分,是宇宙的要素,完全的演绎推理证明也加深了数学的抽象程度。希腊人有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是完全不同的。物质实体是短暂的、不完善的,而抽象概念却是永恒的、完美的。虽然抽象相对实体更困难,但它的优点也是实体无法企及的,那就是一般性。在抽象的世界里,点没有大小,线没有宽度,面没有厚度,堆积的石子、成捆的树枝都可以表示数量关系。

2.数学的确定性

数学追求一种完全确定、完全可靠的知识。这种结果得益于数学体系的特殊而有效的方法,即从一系列不证自明的公理出发,准确地描述将要讨论的概念和定义,经过严密的逻辑推理演绎得出明确无误的结论,这也是数学得以长足发展的动力因素。几千年来,数学的真理性得到人们的高度认同和尊崇。

然而,十九世纪以后,数学的这种真理性地位却一次次受到巨大的冲击。非欧几何、四元数理论、集合论悖论给数学“真理的化身”形象笼罩上了阴影,使得数学丧失了揭示客观世界的“真理性”,也丧失了自身基础的严密性。克莱因(Morris Kline)在《数学:确定性的丧失》中提到“数学的当前困境是有许多种数学而不是只有一种,而且由于种种原因每一种都无法使对立学派满意。显然,普遍接受的概念、正确无误的推理体系--1800年时的尊贵数学和那时人的自豪--现在都成了痴心妄想。与未来数学相关的不确定性和可疑,取代了过去的确定性和自满。关于”最确定的“科学的基础意见不一致不仅让人吃惊,而且,温和一点说,是让人尴尬。”

3.数学的继承性

科学知识是在长期的历史发展过程中形成的,其过程就说明了知识具有继承性,没有继承,就没有积累。我认为继承性应该从两方面理解。

从个人来讲,我们学习一些知识,无须重新经历科学家们艰苦的实践过程,短时间内就可以掌握到一门学科千百年来积累的成果。这种继承通过教育实现,极大的加速了科学技术的发展,故而现在一个中学生掌握的知识可以超过若干古代著名的科学家。“只有有效地继承人类知识,同时把世界最先进的科学技术知识拿到手,我们再向前迈出半步,就是最先进的水平,第一流的科学家(诺贝尔物理学奖得主温伯格(Steven Weinberg))。”正因如此,知识领域才能发展成今天的面貌。法国的着名科学家庞加莱被誉为“全能数学家”,因为他在数学、天文、物理的几乎每一个领域都做出了杰出的贡献,然而今天,一个人想要掌握全部数学知识的三分之一都是不可能的。

四、提纲

目录

第1章 概述

文化的内涵

文明的内涵

数学文化的内涵

数学文化研究的意义与现状

第2章 数学的文化特征

数学的文化特征

数学的抽象性

数学的确定性

数学的继承性

数学的简洁性

数学的统一性

数学的功能特征

数学的渗透性

数学的传播性

数学的工具性

数学的预见性

数学的艺术特征

数学的艺术性

数学与音乐

数学与美术

数学与文学

第3章 数学与人类文明

数学是人类逻辑能力的来源

数学唤醒人类理性精神

数学促进人类思想解放

数学改善人类生活

数学完善人类品格

数学提高人类文化素质

第4章 数学与社会文明

数学促进社会进步

数学推动知识发展

第5章 我国数学文化与数学教育的研究进展

数学文化与数学教育研究综述

数学文化与数学教育活动进展

第6章 对数学教育的若干思考

数学素养是国民文化素质的重要构成.

数学教育现状

数学文化教育亟需解决的问题与建议

结束语

参考文献

致谢

五、亟需解决的问题与建议

1.数学技能的培养与数学素养的培育应当紧密结合为一个有机的整体,一方面提高学生对于数学的学习兴趣,另一方面,也可以使学生在学习数学技能的过程中,不断地加深对于数学的理解,提高逻辑思维能力,养成理性思考的习惯。高等学校数学文化教育普遍存在的一个问题是数学文化与数学技能培养相脱节。目前,数学文化课或者数学教育课都是选修课,在本质上仍属于“弥补型”课程,通常都是在学生入学一到两个学期以后开设的。当数学文化课引发了学生对于数学的兴趣和思考的时候,数学基础课程已经修完或即将修完,于是,对于学生来说,数学文化课有着某种“相见恨晚”的感觉。正像有些学生所反映的那样,如果早一点开设数学文化课,早一点了解数学的文化内涵,他们的高等数学会学得更好。由于一直以来积重难返的应试教育所致,学生在初、高中阶段主要接受的是数学技能方面的知识,而极少接触到数学文化方面的知识,于是,在进入高等学校以后,学生对于数学文化的了解几近空白。这也在客观上造成了数学文化与技能的培养脱节。

2.近年来,由于各个领域对工作者建模能力的需要,数学建模教育逐渐得到了重视。在建模过程中培养学生的创新意识、思维能力,培养学生良好的数学素养是数学建模教育的主要目标。路易斯安那州立大学一项研究表明,与细菌的生存发展方式类似,学生对知识的探求和接受并非只是个体行为,学生与学生之间形成的交流网络会使学生相互影响、相互促进,对教学效果产生质的影响。数学建模教育形式正是突破了时间和空间的限制,改变“师对生”的传统、单一的教学

六、进度安排

20XX年11月01日-11月07日 论文选题。

20XX年11月08日-11月20日 初步收集毕业论文相关材料,填写《任务书》。

20XX年11月26日-11月30日 进一步熟悉毕业论文资料,撰写开题报告。

20XX年12月10日-12月19日 确定并上交开题报告。

20XX年01月04日-02月15日 完成毕业论文初稿,上交指导老师。

20XX年02月16日-02月20日 完成论文修改工作。

20XX年02月21日-03月20日 定稿、打印、装订。

20XX年03月21日-04月10日 论文答辩。

七、参考文献

[1]曹红军,厉树忠,刘亚楠.《易经》卦象符号的拓扑群结构[J].周易研究.

[2](美)塞缪尔·亨廷顿.文明的冲突与世界秩序的重建[M].北京:新华出版社,2005.

[3]范森林.中国政治思想的起源[M/OL].

[4]黄秦安.论数学文化的本质、功能及其在人类文化变革中的角色[J].陕西师范大学学报,1993(2):54-61.

[5]郑毓信.数学哲学的内容和意义[J/OL].

[6]普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003.

[7]顾沛.数学文化[M],北京:高等教育出版社,2008.

[8]南开大学数学文化课程简介.

[9]吉林大学本科生数学文化课程教学大纲--数学文化.

[10](美)莫里斯·克莱因.古今数学思想(第一册)[M].上海:上海科学技术出版社,2002.

[11]郑毓信.数学方法论[M].南宁:广西教育出版社,2001.

[12]张维忠.数学:丧失了确定性吗?[J]自然辩证法研究,1998,14(11).

[13]郭光华,常春艳,王小燕.试论数学的文化特性[J].par数学教育学报,2005,14(3):25-27.

[14]蒋岚.论数学美[J].温州职业技术学院学报,2003,3(2):38-42.

[15]杨毅.论体育数学与体育科学[J].衡阳师范学院学报,2002,23(3):95-96.

[16]数学地质四川省高校重点实验室.

[17]林履端.《易经》与模糊数学[J].闽江学院学报,2002,22(2):116-118.

我觉得应该是用最简洁、通俗易懂的文字来描述问题。表达清楚即可

论文开题报告综述模板

文献综述

文献综述一般在1500--2000字左右。毕业论文的“文献综述”的格式多样,但主要应该从以下3个方面进行写作:

1、前言。主要说明论文写作的目的,介绍有关的概念、定义以及综述的范围。扼要说明有关主题的现状,以及自己引用参考文献的总体情况,使读者对全文有一个粗略的了解。

2、主体部分。将所参考、引用过的文献资料进行整理、归纳及分析比较,阐明有关主题的历史背景、现状和发展方向以及评述,还要阐明资料中的观点对自己论文写作的帮助、启发,从哪些方面做了借鉴、引用。

3、结语。将综述的主题进行扼要总结,体现出对相关资料和所研究课题的某些见解。写“文献综述”时应做到收集文献尽量齐全,注意引用文献的代表性、可靠性和科学性,引用文献要忠实文献内容,应分清作者的观点和文献的内容。

在长期的教学实践中:

因发现许多同学不能很快地掌握文献综述的文体形式,甚至有些同学将文献综述写成了读书笔记摘抄和论文,其实文献综述也是有“式”可循的。

因此笔者将文献综述的“式”总结为常用的模式结构,在教学中,让同学从模仿开始,首先训练同学体会写作该文体特殊形式的规范和程式,对该文体产生一定的感性认识。

开题报告文献综述格式及范文

大学生活在不经意间即将结束,大学生们都在认真的做毕业设计,在我们做毕业设计之前要先写好开题报告,开题报告应该怎么写呢?下面是我整理的开题报告文献综述格式及范文,仅供参考,大家一起来看看吧。

一、文献综述格式一般包括:

(1)文献综述的引言:包括撰写文献综述的原因、意义、文献的范围、正文的标题及基本内容提要;

(2)文献综述的正文:是文献综述的主要内容,包括某一课题研究的历史(寻求研究问题的发展历程)、现状、基本内容(寻求认识的进步),研究方法的分析(寻求研究方法的借鉴),已解决的问题和尚存的问题,重点、详尽地阐述对当前的影响及发展趋势,这样不但可以使研究者确定研究方向,而且便于他人了解该课题研究的起点和切入点,是在他人研究的基础上有所创新;

(3)文献综述的结论:文献研究的结论,概括指出自己对该课题的研究意见,存在的不同意见和有待解决的问题等;

(4)文献综述的附录:列出参考文献,说明文献综述所依据的资料,增加综述的可信度,便于读者进一步检索。

2、文献综述不应是对已有文献的重复、罗列和一般性介绍,而应是对以往研究的优点、不足和贡献的批判性分析与评论。因此,文献综述应包括综合提炼和分析评论双重含义。

二、文献综述范文

论文题目:“问题——探索——交流”小学数学教学模式的研究。

我们在网上浏览了数百种教学模式,下载了二百余篇有关教学模式的文章,研读了五十余篇。概括起来,我国的课堂教学模式可分三类:

(1)传统教学模式——“教师中心论”。这类教学模式的主要理论根据是行为主义学习理论,是我国长期以来学校教学的主流模式。它的优点是……,它的缺陷是……

(2)现代教学模式——“学生中心论”。这类教学模式的主要理论依据是建构主义学习理论,主张从教学思想、教学设计、教学方法以及教学管理等方面均以学生为中心,20世纪90年代以来,随着信息技术在教学中的应用,得到迅速发展。它的优点是……,它的缺陷是……

(3)优势互补教学模式——“主导——主体论”。这类教学模式是以教师为主导,以学生为主体,兼取行为主义和建构主义学习理论之长并弃其之短,是对“教师中心论”和“学生中心论”的扬弃。“主导——主体论”教学模式体现了辩证唯物主义认识论,但在教学实践中还没有行之有效的可以操作的'教学方法和模式。

以教师为中心的传统小学数学教学模式可表述为“复习导入——传授新知——总结归纳——巩固知识——布置作业”。这种教学模式无疑束缚了学生学习主体作用的发挥。当今较为先进的小学数学教学模式可表述为“创设情境,提出问题——讨论问题,提出方案——交流方案,解决问题——模拟练习,运用问题——归纳总结,完善认识”。这种教学模式力求重视教师的主导作用和学生的主体作用,为广大教师所接受,并在教学实践中加以运用。但这种教学模式将学生的学习局限于课堂,学习方式是为数学而数学,没有把数学和生活结合起来,没有把学生学习数学置于广阔的生活时空中去,学生多角度多途径运用数学知识解决问题的能力受到限制,尤其是学生运用数学知识创造性地解决生活中的数学问题的能力发展受到限制,不利于培养学生的创新精神和实践能力。为此,我们提出“‘问题——探索——交流’小学数学教学模式研究”课题。

研究者对有关研究领域的情况有一个全面、系统的认识和了解,对相关文献作了批判性的分析与评论。对于正在从事某一项课题的研究者来说,查阅文献资料有助于他们从整体上把握自己研究领域的发展历史与现状、已取得的主要研究成果、存在争议的地方、研究的最新方向和趋势、被研究者忽视的领域、对进一步研究工作的建议等。

有关数学建模论文的开题报告

随着我国基础 教育 课程改革的不断深入,数学建模越来越受到重视,在小学数学中的地位也逐渐显著。下面是我带来的关于小学数学建模小论文的内容,欢迎阅读参考!小学数学建模小论文篇1 浅谈小学数学教学中的数学建模 什么是数学建模呢?下面我从两个方面谈谈小学数学教学中的数学建模。 一、从建模的角度解读教材 小学数学教材中的大部分内容已经按照数学建模的思想编排,即“创设问题情境——对问题进行分析——建立数学模型——模型应用、拓展”的模式,只是大部分数学教师还没有意识到这一点。数学教师首先要从数学建模的角度解读教材,充分挖掘教材中蕴含的建模思想,运用建模思想创造性的解释运用教材。 例如人教版三年级上册,第一章“测量”的第一节“毫米的认识”这一内容,书中是这样编排的: 1、通过插图创设问题情境:(1)、让学生估计数学书的长、宽、厚大约是多少厘米,再让学生测量“数学书的长、宽、厚的长度”。(2)、学生汇报测量的结果:“我量出的宽不到15厘米,还差------”,“我量出的宽比14厘米多,多------”,“数学书的厚不到1厘米是------”这里让学生量的数学书的宽和高都不是整厘米,学生不会表述。(3)、小精灵提出数学问题:“当测量的长度不是整厘米时,怎么办?” 2、将实际问题数学化,建立数学模型: 当测量的长度不到1厘米时怎么办呢?这时学生就会产生“有比1厘米更短的长度单位吗?”的念头,然后教师启发学生:“数学家们把1厘米平均分成10格,每1小格的长度叫1毫米,请同学们看自己的直尺,数一数1厘米的长度里有几小格?1厘米里有几毫米呢?”。在这里教师一定要帮助学生建立“毫米”这个数学模型的概念。 3、解释、应用与拓展: (1)、请同学们看实物1分钱硬币,它的厚是1毫米。(2)、让学生再次测量数学书的宽、厚各是多少?(学生测量后汇报:宽是14厘米8毫米,厚是6毫米)。(3)、请同学们说一说生活中的哪些物品一般用“毫米”作单位? 二、让学生亲身经历数学模型的产生、形成与应用过程 小学阶段的数学建模重在让学生体验建模的过程。从学生亲身经历的现实问题情境出发,将实际问题数学化,使学生经历数学模型建立的过程,再运用建立的数学模型解决实际问题。例如人教版六年级上册“圆的周长”一课教师可以这样设计。 1、让学生亲身经历问题产生的过程: 出示主题图:一个学生绕着圆形花坛骑自行车。教师提出问题“骑一圈大约有多少米?”。自行车绕着圆形花坛骑一圈的轨迹是一个圆,它的长度就是这个圆的周长(如果忽略自行车行走时与花坛的距离)。学生产生疑问:怎样才能知道一个圆的周长呢?什么是圆的周长? 2、让学生亲身经历猜测、分析、验证的过程: (1)、师:请同学回忆什么是周长?正方形、长方形的周长怎么求?与什么有关系? (2)、师:什么是圆的周长?同桌互相指一指自己桌面上的圆形物体的周长。 (3)、师:猜想圆的周长与什么有关?(生1:我认为圆的周长与半径有关,自行车的半径越大车轮就越大。生2:我认为圆的周长与直径有关,圆形花坛的直径越大圆形花坛的周长就越长。) (4)、学生动手验证自己的猜想 a、请同学拿出课前准备的学具(两个大小不同的圆,一个直径5厘米,另一个直径10厘米),同桌合作分别量出两圆的周长,验证生1与生2的猜测是否正确。 b、学生汇报交流自己测量的结果,并谈谈自己的看法。(生1:我用细绳绕直径是10厘米的圆一周,然后量出细绳的长大约是厘米。生2:我在作业本上画了一条直线,让直径是5厘米的圆沿直线滚动一周,量出一周的直线长大约是厘米。生3:我认为刚才我们的猜想是正确的,直径是10厘米,周长大约是厘米;直径是5厘米,周长大约是厘米。直径越大周长越长,直径越小周长越短,所以圆的周长与直径、半径有关。) 3、让学生亲身经历数学模型(圆周率π)的产生过程 刚才同学们已验证了圆的周长与直径有关,那么它们到底有怎样的关系呢? (1)、师:正方形的周长是边长的4倍,猜猜圆的周长与直径有倍数关系吗?如果有,你认为是几倍?仔细观察下图后回答。 (2)、师:同学们的猜想有道理吗,让我们利用前面测量过的圆的直径与周长的数据来算一算圆的周长是直径的几倍,学生计算后汇报交流。(生1:第一个圆的周长与直径的比值是:÷10=,第二个是:÷5=。生2:我发现周长与直径的比值都是3倍多一些,难道它也和正方形的一样,比值是个固定值吗?)师:你的猜想太对了,发现了一个数学秘密。一个圆的周长与它的直径的比值是一个固定值,数学家们把它叫做圆周率,用字母π表示。 (3)、介绍中国古代数学著作《周髀算经》与数学家祖冲之1500年前就计算出圆周率应在和之间的 故事 。然后课件呈现:π是一个无限不循环小数,再呈现小数点后面4百位的分布情况。 师:π的小数部分有很多位数。为了计算方便,一般把它保留两位小数,取近似值。刚才同学们用自己测量的周长与直径算出的比值分别是和,虽然存在误差,但是老师认为你们已经很不错了,不仅发现了圆的周长与直径有关,而且还发现他们的比值是一个固定值。 4、让学生归纳、 总结 、应用圆的周长计算公式 师:既然圆的周长与它的直径的比值是一个固定值π,那么圆的周长怎样求?(生:圆的周长=直径×π)。请同学们利用公式计算“骑一圈大约有多少米?”【量得圆形花坛的直径是20米,学生计算×20=(米)。】 反思 :建构主义认为,知识是不能简单地进行传授的,而必须通过学生自身以主动、积极的建构方式获得。这里从贴近学生的生活背景出发,提出“绕着圆形花坛骑一圈大约有多少米?”的问题,到“怎样求圆的周长”,再到学生不断地猜想验证“圆的周长与直径有关”,“圆的周长与它的直径的比值是一个固定值”,最后得到“圆的周长计算公式”这个数学模型,学生亲身经历了猜测、分析、验证、交流、归纳、总结的过程,实际上这就是一个建立数学模型的过程。在这个建模过程中培养了学生的初步建模能力,自觉地运用数学 方法 去发现、分析、解决生活中的问题的能力,培养了学生的数学应用意识。 小学数学建模小论文篇2 浅谈小学数学的数学建模教学策略 摘 要:小学数学的“数学建模”是教学方式中新的改革亮点。近年来许多学校都陆续展开小学数学的“数学建模”活动。希望通过积极的实践为小学数学教育总结出一条全新的教育模式。 关键词:小学数学;数学建模;教学策略探究 数学教育是引导学生形成具有缜密逻辑性的思想方式。建立和解析数学模型能够有效提高学生的数学学习热情,降低数学学习的难度,使学生运用数学知识更加轻松自然。然而,在小学的数学教育内容中,就已经包含许多初级的数学模型。所以,在研究“数学建模”的过程中,教育界的学者们认为,小学的“数学建模”需要注意三个方面:小学“数学建模”的意义与目标;小学“数学建模”的定位;小学“数学建模”的教学演绎。 一、小学“数学建模”的意义与目标 1、小学“数学建模”的意义 小学的“数学建模”活动早已经有学校展开研究。从目前研究资料来分析,小学数学建模是指:学生在教师设计的生活情景之中,通过一定的数学活动建立能够解读的数学模型并以此为学习数学的基本载体,进行学习相关的数学知识。 小学数学建模在建模目的、活动方式、背景知识三方面,与传统数学模型存在较大差异。(1)建模目的方面:小学的数学建模目的是让学生了解数学知识,通过数学模型掌握新吸收的数学知识和争强对数学知识的正确应用,使学生在潜移默化中形成数学思考能力。(2)活动方式方面:小学的数学建模是为了培养学生的学习数学兴趣和更好掌握数学知识的教学方式,所以在教学活动方式上需要教师精心设计活动内容,由教师引导逐渐参与和体会数学世界的丰富和与现实生活的紧密联系。(3)知识背景方面:小学的数学建模,是在小学生毫无数学基础的情况下进行构建数学模型,所以在小学的数学建模中,需要简单的数学知识,以此为学生的数学知识结构打下良好基础。 通过上述三个方面的分析,小学“数学建模”的意义,在于通过数学教育方式的改进,引导小学生发现数学与生活的紧密联系,提高小学生对数学知识的兴趣,培养小学生数学思维能力和学习能力,为日后的数学学习打下结实基础。 2、小学“数学建模”的目标导向 小学的数学建模,其目标导向是培养小学生的建模意识。通过培养建模意识来提升数学思维能力,积累数学知识,提升数学素养。建模意识的培养需要通过挖掘教学内容中蕴涵的建模元素,采用教师引导、学生寻找、以生活内容加强记忆的方式,使学生掌握数学建模的过程和通过数学模型解决生活问题的能力,在不断反复的学习和锻炼中组建使学生提升数学建模的意识。 二、小学“数学建模”的定位 数学建模,是建立数学模型并且通过使用数学模型,解决生活中存在的数学问题,整体过程的简称。 如果通过大学或高中的教学视角审视数学建模,无疑会对学生日后学习和工作产生积极的影响。不过,从小学生的视角考虑数学建模,就需要特别注意建模的合理性定位,既不能失去数学建模的意义,又不能过于拔苗助长,导致教学效果的反向反弹。所以“数学建模”的定位要适合小学生的生活 经验 和环境,同时适合小学生的思维模式。 1、定位于 儿童 的生活经验 在小学对小学生的数学教学过程中,提供学生探讨研究的数学问题,其难易程度和复杂程度需要尽量贴近小学生的日常生活。在设计教学内容的时候,需要多设计小学生常见的生活数学问题,使学生因为好奇心而对学习产生动力,通过思考探索,体会数学模型的存在。 同时,在教学的过程中需要循序渐进,随着学生的年龄争长,认知度的加强,生活关注内容的变化,适时地增加数学问题的难度。在此过程中,既需要照顾学生们的学习差异性,又要尊重学生的学习兴趣和个性。 2、定位于儿童的思维模式 小学生的思维模式比较简单。在小学数学的建模过程中,需要根据学生的具体学习程度循序渐进,通过由简入深的学习过程,让学生具有充分的适应过程。只有适应学生思维模式的教学定位,才能使学生的数学意识得到提高,并且通过循序渐进的学习过程掌握运用数学模型解决实际问题的能力。 举例:在小学二年级,关于认知乘法和除法的过程中,将时间、路程、速度引入教学场景之中。学生跟随教师引导,逐渐发现时间与路程的关系,并且结合所学的数学知识,乘法与除法,找到了“一乘两除”的数学原型。从而使学生通过“数量关系”中,认知到生活与数学的关系。 三、小学“数学建模”的教学演绎 小学“数学建模”的教学演绎,主要分析以下两个方面。 1、在小学“数学建模”中促进结构性生长 因为小学生的 逻辑思维 能力还处于发展构成阶段,所以必须在数学建模教学过程中从学生的“逻辑结构图式”出发,充分考虑小学生的知识结构和认知规律,通过整合实际问题,从数学问题角度为学生整合抽象的、具有清晰结构认知性的,数学教育模型,从而使小学生能够直接清晰地对数学模型拥有直观深刻的认知。 2、在小学“数学建模”中促进学生自主性建构 在小学“数学建模”中教师需要引导和帮助学生,运用已学习的数学知识,构建具有应用性的数学模型。在教学过程中,教师需要对学生们习以为常的事物进行剖析,使事物露出具有吸引性的数学问题,通过激发学生的好奇心,引导学生探索生活中存在的数学问题,帮助学生发现生活中隐藏的数学问题和解决问题,最终促使学生能够独立自主地根据实际问题建立数学模型。 小学数学的“数学建模”是教学方式中新的尝试,它作为一种学习数学的方式、方法、策略和将生活与数学紧密联系的纽带,对引导学生更好的认识数学、学习数学、运用数学、具有十分积极的作用。小学生学习建模过程,实际就是锻炼逻辑思维能力的过程,对学生日后学习学习知识和 兴趣 爱好 都有显著的帮助。 参考文献: [1] 陈进春.基于数学建模视角的教学演绎[J].江苏教育,2013(4). [2] 储冬生.小学数学建模的分析讨论[J].湖南教育,2012(12). [3] 陈明椿.数学教育中的数学建模方法[J].福建师范大学,2014(1). 小学数学建模小论文篇3 浅析数学建模在小学数学中的应用 摘 要:小学阶段进行数学基础知识的教学时,适时适度渗透数学思想模式,不仅成为一种可能,也成为一种必需。学校教育由于长期受“应试教育”的影响,学生中存在着知识技能强,实际应用差的情况.为此,本文引入了“数学模型”这一概念,就此讨论如何帮助学生建立数学模型以及建立数学模型的意义,旨在促进学生的学习兴趣,提高他们的实际应用能力。 关键词:小学数学 模型 概念 应用 一、数学教学中数学模型应用的缺乏 数学课程改革的思路之一就是数学应强化应用意识,允许非形式化。事实上,数学课程中数学的应用意识早已成为发达国家的共识,而我国目前应用意识却十分淡薄,与世界数学课程的发展潮流极不合拍。 当前使用的数学教材中的习题多是脱离了实际背景的纯数学题,或者是看不见背景的应用数学题,这样的训练,久而久之,使学生解现成的数学题能力很强,而解决实际问题的能力却很弱。教师要独具慧眼,善于改造教材,为学生创造一个可操作,可探索的数学情境,引领他们探索知识的生成过程,再现数学知识的生活底蕴。因此,引入“数学模型”这一概念。 二、概念界定 何谓数学模型?数学模型可描述为:对于现实世界的一个特定对象,为了一个特定的目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到一个数学结构,而建立数学模型的过程,则称之为数学建模。 三、数学建模在小学数学中的应用 1、 让学生经历数学概念形成的过程,探索数学规律。《新课标》的总体目标中提出,要让学生“经历将一些实际问题抽象为数与代数的问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。”让学生经历就必须有一个实际环境。学生在实际环境中通过活动体会数学、了解数学、认识数学。 在教学中“鱼段中烧”常常存在。没有在教学的应用上给予足够的注意和训练,即没有着意讨论和训练如何从实际问题中提炼出数学问题(鱼头)以及如何应用数学来满足实际问题中的特殊需求(鱼尾),很少给学生揭示有关数学概念及理论的实际背景和应用价值。为了避免这一情况,教师要帮助学生建立数感,在自己的水平上探索不同的数学模型。比如:在教学连减应用题时,可以让学生进行模拟购物。小售货员讲一讲自己怎样算帐,体会两种方法的不同:小强带了90元钱去买了一只 足球 45元,一只 排球 26元,要找回几元?大部分小售货员都这样算:先用90元钱去减一只足球的钱,再减去一只排球的钱,求出来的就是要找回的钱。算式是90-45-26=19(元)。也有一小部分售货员列出了这样的算式:45+26=71(元) 90-71=19(元)两种方法我都给予肯定,并总结:遇到求剩余问题的题目时都用减法来做。并总结出求大数用加法,求小数用减法的模型。学生只要在做题中知道求的是大数还是小数就可以了,从而培养了学生从数学的角度去观察和解释生活。 2、 开设数学活动课,重视实践活动,为学生解决问题积累经验。开设数学活动课,让学生自己动脑、动手解决问题,可以使他们获取数学实际问题的背景、情境,理解有关的名词、概念,有助于学生正确理解题目意思,建立数学模型,是培养学生主动探究精神和实践能力的自由天地。 比如:在上“几个与第几个”的拓展课时,出现一道题:从左往右数,小华是第9个,从右往左数,小华是第8个,这一排有多少人?在解这道题之前,我让一个组6个人站起来,数其中的一个人,发现就直接3+4=7,会多出一人来。为什么会这样?学生讨论后得出:其中的那个人多数一次了,要把他减掉。于是,得到一个模型:左边数过来的数+右边数过来的数-1=总人数。有了这个模型之后,解决这一类问题就容易多了。 3、 引导学生用图形解决问题,确立从代数到几何的过渡。代数与几何并不是孤立的两块。他们也有相通之处。我们可以用几何的观念来解代数问题。图形对于低段学生来说是更直观、更有效的形式。 例:让学生观察热水瓶、茶杯、可乐罐、电线杆、大树、房屋柱子等,通过现代教学手段(如用CAI课件或实物投影仪),学会撇开扶手柄、树枝、颜色等非本质特征,分析主体部分的形状,再配以必要的假设,得出它们的共同属性:只能往一个方向滚动,且上下两个底面是大小相同的圆面,抽象出“圆柱体”这一数学模型。这样通过向学生展示上述数学建模的过程,使学生知道数学来源于实际生活,生活处处有数学,在此基础上再引导学生把数学知识运用到生活和生产的实际中去。又如,在教学应用题时,我们往往借助线段图来解,将文字题有效地转化为图形,使题目变得浅显易懂。 四、数学模型在小学数学中的现实意义 1、 通过数学建模理论的学习研讨,有利于提高教师的数学素养。一般地说,在建模过程中,原始问题中的本质特征应被保留下来,当然也要简化,这种简化基于科学,而不完全基于数学,另一方面,一定的简化又是必须的,以便得到的数学体系是易处理的。这就需要教师必须具备精深的专业知识,能帮助学生建立准确的数学模型。 2、 建立数学模型能有效地激发学生的求知欲望。数学模型是数学基础知识与数学应用之间的桥梁,建立和处理数学模型的过程,更重要的是,学生能体会到从实际情景中发展数学,获得再创造数学的绝好机会,学生更加体会到数学与大自然和社会的天然联系。因而,在小学数学教学中,让学生从现实问题情景中学数学、做数学、用数学应该成为我们的一种共识。 3、 数学建模是培养学生建模能力的重要途径。数学建模就是找出具体问题的数学模型,求出模型的解,验证模型解的全过程。由于小学生以形象思维为主,因此他们的数学模型大多和形象图有关。引导学生从画实物图、矩形图、线段图开始,逐步做到自觉主动地构建数学模型,并把它作为一种极好的解决问题的工具,使他们在这个过程中提高兴趣,增强能力。 4、 现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。 五、结束语 学生的建模思想的培养是长期的、复杂的过程,采用的方法是多样、灵活的。只要教师用心设计,耐心诱导,全体学生都能建立不同水平的数学模型。 猜你喜欢: 1. 数学建模教学相关小论文 2. 小学数学建模优秀论文 3. 关于小学数学建模论文 4. 学习数学建模心得体会 5. 小学数学教学小论文

数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。关键词:创新能力;数学建模;研究性学习。《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力。其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:现实原型问题数学模型数学抽象简化原则演算推理现实原型问题的解数学模型的解反映性原则返回解释列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。四、培养学生的其他能力,完善数学建模思想。由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:(1)理解实际问题的能力;(2)洞察能力,即关于抓住系统要点的能力;(3)抽象分析问题的能力;(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;(5)运用数学知识的能力;(6)通过实际加以检验的能力。只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。例2:解方程组x+y+z=1 (1)x2+y2+z2=1/3 (2)x3+y3+z3=1/9 (3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根t3-t2+1/3t-1/27=0 (4)函数模型:由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)平面解析模型方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

哥们 咱选的题一样

朋友: 给您几个好的网址,是有关论文的,很全! 真心希望能够对你有所帮助!! 自己找找吧! 祝你好运! 中文免费论文地址集锦 一、 综合类 1、蓝之韵论文 门类较全。 2、学生大论文中心 3、蜂朝无忧论文网 门类很全。 4、论文下载中心 门类很全。 5、论文帝国 二、 教育类 1、教研论文交流中心 以中小学教育为主,基础教育、英语教学文章居多。 2、教育教学论文网 以教育论文为主,包含:语文论文 美术论文 物理论文 化学论文 英语论文 历史论文 德育论文 教学论文 数学论文 音乐论文 生物论文 自然论文 体育论文 地理论文 摄影论文 劳动技术 农村教育 毕业论文 素质论文 医学论文 电子电器学 思维科学 计算机论文 活动课教学 书法篆刻论文 创新教育研究 心理健康教育 西部教育论文 信息技术论文 3、教育论文 4、中国园丁网论文大观 5、北大附小学校教师的文章: 三、 专业类 1、优秀论文杂志 以科技类为主。 2、论文资料网 以财经经济管理类为主。 3、法律图书馆 文如其名。 4、法学论文资料库 文如其名。 5、中国总经理网论文集 6、mba职业经理人论坛 7、中国农业在线-农业论文 8、体育论文 9、财经学位论文下载中心 10、公开发表论文_深圳证券交易所 11、中国路桥资讯网论文资料中心 12、论文商务中心 13、法律帝国: 四、 论文写作教学类 1、学术论文 其实是学术论文的写作网站。 五、 博硕士论文 1、论文统计 实际上就是万方的论文统计。 2、台湾博硕士论文咨讯网 3、北京大学学位论文样本收藏 4、学位论文 (清华大学) ] 中国科技论文在线 论文中国 : 新浪论文网分类: 中国论文联盟: 大学生论文库 论文资料网: 论文下载中心: 毕业论文网: 学位论文: 无忧论文网: 北京语言文化大学论文库:

毕业论文开题报告书数学建模

研究生毕业论文开题报告模板三篇

篇一:硕士学位论文开题报告

硕士学位论文开题报告书

选题名称汉英方位认知异同及其对汉语国际教育的影响与应用

培 养 单 位: 河南大学

学 科 专 业: 汉语国际教育

研 究 方 向: 对外汉语教学

学 号: 104754110145

开 题 人 姓 名: 程文芳

导师姓名、职称:

填 表 日 期: 2012 年 06 月 20日

河南大学研究生院 制表

填 表 说 明

1.开题报告为A4大小,封面及Ⅰ至Ⅶ项必须用计算机输入,不得随意改变表结构。开题人应逐项认真填写,完毕,将本表全部打印输出,于左侧装订成册。

2.文字输入部分,一律五号字、仿宋体、单倍行间距编排。

3.“参考文献”著录按照GB7714-87文参考文献著录规则执行。书写顺序为:序号·作者·论文名或著作名·杂志或会议名·卷号、期号或会议地点·出版社·页号·年。

4.开题报告应由本学科专业导师组评审通过。指导教师审阅通过后,由开题人在学科组或更大范围内宣读,并接受质疑、评议。导师组由三名以上导师组成。评审合格后,本报告暂由导师负责保管。

5.为加强论文撰写进程的.跟踪指导和督查,在论文定稿之前,至少应对研究写作进行三次考察。开题人要向导师、本学科专业的内研究生汇报论文进展情况,包括论文已经取得的成果、目前面临的难题等,进行充分的讨论,并认真做好记录。

6.论文撰写完成,由导师确定定稿后,方可进入学位申请环节。本表上交学院研究生教育管理办公室,归入开题人学位档案。

Ⅰ.选题简况

Ⅱ.

选题依据

Ⅲ.选题材料收集

篇二:硕士毕业论文开题报告模板

华 东 师 范 大 学

硕士研究生学位论文开题报告

研 究 生 姓 名 学 号导师姓名、职称 系 所 专 业 研 究 方 向 入 学 时 间毕 业 时 间

论 文 题 目 与欧洲

篇三:硕士研究生开题报告范本

研究生学位论文开题报告

(学术型研究生)

课课

题名题来

大学生和谐就业问题研究

√导师研究课题 □自选课题 源 □

□其它

√基础研究 □应用基础研究 项目所属性质 □

□综合研究 □其它

姓层

赵海连 S10030505017

学 号

次 硕士研究生

所在学院 马克思主义学院 学科专业 指导教师 开题时间

思想政治教育 金玉秋

2011年11月6日

燕山大学研究生学院制

注:以下1-8项内容,如填写不下,均可加页。

1、立论依据

数学建模的论文一般可以分为以下几个部分:

1. 引言

在引言中,需要简单介绍研究的背景、目的和意义,可以阐述研究问题的重要性和现实应用,引出论文的研究内容。

2. 问题描述

在问题描述中,需要准确明确研究的问题,并对问题进行详细的描述。需要注意的是,问题描述需要清晰明了,表述精准,可以用图表等方式辅助描述,以便读者更好地理解问题。

3. 模型建立

在模型建立中,需要提出适合于解决研究问题的模型,并对模型进行详细的介绍和推导。需要注意的是,模型建立需要符合实际情况,并且需要考虑到模型的可行性和实际操作性。

4. 模型求解

在模型求解中,需要对建立的模型进行求解,并对求解结果进行分析和讨论。需要注意的是,模型求解需要使用合适的数学方法和工具,并且需要对求解过程进行详细的记录和说明。

5. 结果分析

在结果分析中,需要对求解结果进行详细的分析和讨论,包括结果的准确性、合理性和实际意义等方面。需要注意的是,结果分析需要与研究问题密切相关,并且需要结合实际情况进行分析。

6. 结论和展望

在结论和展望中,需要对研究结果进行总结,并对未来研究方向进行展望。需要注意的是,结论和展望需要简明扼要,表述清晰,具有实际意义和指导意义。

7. 参考文献

在参考文献中,需要列出论文中引用的所有文献,包括已发表的文献和未发表的文献。需要注意的是,参考文献需要符合学术规范,并且需要详细记录文献的相关信息。

朋友: 给您几个好的网址,是有关论文的,很全! 真心希望能够对你有所帮助!! 自己找找吧! 祝你好运! 中文免费论文地址集锦 一、 综合类 1、蓝之韵论文 门类较全。 2、学生大论文中心 3、蜂朝无忧论文网 门类很全。 4、论文下载中心 门类很全。 5、论文帝国 二、 教育类 1、教研论文交流中心 以中小学教育为主,基础教育、英语教学文章居多。 2、教育教学论文网 以教育论文为主,包含:语文论文 美术论文 物理论文 化学论文 英语论文 历史论文 德育论文 教学论文 数学论文 音乐论文 生物论文 自然论文 体育论文 地理论文 摄影论文 劳动技术 农村教育 毕业论文 素质论文 医学论文 电子电器学 思维科学 计算机论文 活动课教学 书法篆刻论文 创新教育研究 心理健康教育 西部教育论文 信息技术论文 3、教育论文 4、中国园丁网论文大观 5、北大附小学校教师的文章: 三、 专业类 1、优秀论文杂志 以科技类为主。 2、论文资料网 以财经经济管理类为主。 3、法律图书馆 文如其名。 4、法学论文资料库 文如其名。 5、中国总经理网论文集 6、mba职业经理人论坛 7、中国农业在线-农业论文 8、体育论文 9、财经学位论文下载中心 10、公开发表论文_深圳证券交易所 11、中国路桥资讯网论文资料中心 12、论文商务中心 13、法律帝国: 四、 论文写作教学类 1、学术论文 其实是学术论文的写作网站。 五、 博硕士论文 1、论文统计 实际上就是万方的论文统计。 2、台湾博硕士论文咨讯网 3、北京大学学位论文样本收藏 4、学位论文 (清华大学) ] 中国科技论文在线 论文中国 : 新浪论文网分类: 中国论文联盟: 大学生论文库 论文资料网: 论文下载中心: 毕业论文网: 学位论文: 无忧论文网: 北京语言文化大学论文库:

综述论文开题报告模板范文

开题报告文献综述格式及范文

大学生活在不经意间即将结束,大学生们都在认真的做毕业设计,在我们做毕业设计之前要先写好开题报告,开题报告应该怎么写呢?下面是我整理的开题报告文献综述格式及范文,仅供参考,大家一起来看看吧。

一、文献综述格式一般包括:

(1)文献综述的引言:包括撰写文献综述的原因、意义、文献的范围、正文的标题及基本内容提要;

(2)文献综述的正文:是文献综述的主要内容,包括某一课题研究的历史(寻求研究问题的发展历程)、现状、基本内容(寻求认识的进步),研究方法的分析(寻求研究方法的借鉴),已解决的问题和尚存的问题,重点、详尽地阐述对当前的影响及发展趋势,这样不但可以使研究者确定研究方向,而且便于他人了解该课题研究的起点和切入点,是在他人研究的基础上有所创新;

(3)文献综述的结论:文献研究的结论,概括指出自己对该课题的研究意见,存在的不同意见和有待解决的问题等;

(4)文献综述的附录:列出参考文献,说明文献综述所依据的资料,增加综述的可信度,便于读者进一步检索。

2、文献综述不应是对已有文献的重复、罗列和一般性介绍,而应是对以往研究的优点、不足和贡献的批判性分析与评论。因此,文献综述应包括综合提炼和分析评论双重含义。

二、文献综述范文

论文题目:“问题——探索——交流”小学数学教学模式的研究。

我们在网上浏览了数百种教学模式,下载了二百余篇有关教学模式的文章,研读了五十余篇。概括起来,我国的课堂教学模式可分三类:

(1)传统教学模式——“教师中心论”。这类教学模式的主要理论根据是行为主义学习理论,是我国长期以来学校教学的主流模式。它的优点是……,它的缺陷是……

(2)现代教学模式——“学生中心论”。这类教学模式的主要理论依据是建构主义学习理论,主张从教学思想、教学设计、教学方法以及教学管理等方面均以学生为中心,20世纪90年代以来,随着信息技术在教学中的应用,得到迅速发展。它的优点是……,它的缺陷是……

(3)优势互补教学模式——“主导——主体论”。这类教学模式是以教师为主导,以学生为主体,兼取行为主义和建构主义学习理论之长并弃其之短,是对“教师中心论”和“学生中心论”的扬弃。“主导——主体论”教学模式体现了辩证唯物主义认识论,但在教学实践中还没有行之有效的可以操作的'教学方法和模式。

以教师为中心的传统小学数学教学模式可表述为“复习导入——传授新知——总结归纳——巩固知识——布置作业”。这种教学模式无疑束缚了学生学习主体作用的发挥。当今较为先进的小学数学教学模式可表述为“创设情境,提出问题——讨论问题,提出方案——交流方案,解决问题——模拟练习,运用问题——归纳总结,完善认识”。这种教学模式力求重视教师的主导作用和学生的主体作用,为广大教师所接受,并在教学实践中加以运用。但这种教学模式将学生的学习局限于课堂,学习方式是为数学而数学,没有把数学和生活结合起来,没有把学生学习数学置于广阔的生活时空中去,学生多角度多途径运用数学知识解决问题的能力受到限制,尤其是学生运用数学知识创造性地解决生活中的数学问题的能力发展受到限制,不利于培养学生的创新精神和实践能力。为此,我们提出“‘问题——探索——交流’小学数学教学模式研究”课题。

研究者对有关研究领域的情况有一个全面、系统的认识和了解,对相关文献作了批判性的分析与评论。对于正在从事某一项课题的研究者来说,查阅文献资料有助于他们从整体上把握自己研究领域的发展历史与现状、已取得的主要研究成果、存在争议的地方、研究的最新方向和趋势、被研究者忽视的领域、对进一步研究工作的建议等。

能明白的,知道了。哈

你论文选题定好了吗?开题报告选题老师同意了?开题报告格式要求准备好了没还有什么不懂的地方可以问我,希望能够帮到你?提供一个开题报告范文范例,仅供参考,希望对你开题报告写作能有帮助。开题报告的撰写方法一、开题报告的含义与作用开题报告,就是当课题方向确定之后,课题负责人在调查研究的基础上撰写的报请上级批准的选题计划。它主要说明这个课题应该进行研究,自己有条件进行研究以及准备如何开展研究等问题,也可以说是对课题的论证和设计。开题报告是提高选题质量和水平的重要环节。研究方案,就是课题确定之后,研究人员在正式开展研之前制订的整个课题研究的工作计划,它初步规定了课题研究各方面的具体内容和步骤。研究方案对整个研究工作的顺利开展起着关键的作用,尤其是对于我们科研经验较少的人来讲,一个好的方案,可以使我们避免无从下手,或者进行一段时间后不知道下一步干什么的情况,保证整个研究工作有条不紊地进行。可以说,研究方案水平的高低,是一个课题质量与水平的重要反映。二、写好研究方案应做的基础性工作写好研究方案一方面要了解它们的基本结构与写法,但“汝果欲学诗,功夫在诗外”,写好开题报告和研究方案重要还是要做好很多基础性工作。首先,我们要了解别人在这一领域研究的基本情况,研究工作最根本的特点就是要有创造性,熟悉了别人在这方面的研究情况,我们才不会在别人已经研究很多、很成熟的情况下,重复别人走过的路,而会站在别人研究的基础上,从事更高层次、更有价值的东西去研究;其次,我们要掌握与我们课题相关的基础理论知识,理论基础扎实,研究工作才能有一个坚实的基础,否则,没有理论基础,你就很难研究深入进去,很难有真正的创造。因此,我们进行科学研究,一定要多方面地收集资料,要加强理论学习,这样我们写报告和方案的时候,才能更有把握一些,制定出的报告和方案才能更科学、更完善。三、课题研究方案的结构与写法 课题研究方案主要包括以下几个方面:(一)课题名称课题名称就是课题的名字。这看起来是个小问题,但实际上很多人写课题名称时,往往写的不准确、不恰当,从而影响整个课题的形象与质量。这就是平常人们所说的“只会生孩子,不会起名字”。那么,如何给课题起名称呢?第一,名称要准确、规范。准确就是课题的名称要把课题研究的问题是什么,研究的对象是什么交待清楚,课题的名称一定要和研究的内容相一致,不能太大,也不能太小,要准确地把你研究的对象、问题概括出来。规范就是所用的词语、句型要规范、科学,似是而非的词不能用,口号式、结论式的句型不要用。因为我们是在进行科学研究,要用科学的、规范的语言去表述我们的思想和观点。课题就是我们要解决的问题,这个问题正在探讨,正开始研究,不能有结论性的口气。第二,名称要简洁,不能太长。 不管是论文或者课题,名称都不能太长,能不要的字就尽量不要,一般不要超过20个字。这次各个学校课题申报表中,我看名称都比较简洁,我就不再多说了。(二) 课题研究的目的、意义研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本课题的研究有什么实际作用,然后,再写课题的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。不要都写成是坚持党教育方针、实施素质教育、提高教育教学质量等一般性的口号。主要内容包括:⑴ 研究的有关背景(课题的提出):即根据什么、受什么启发而搞这项研究。 ⑵ 通过分析本地(校) 的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。(三)本课题国内外研究的历史和现状(文献综述)。规范些应该有,如果是小课题可以省略。一般包括:掌握其研究的广度、深度、已取得的成果;寻找有待进一步研究的问题,从而确定本课题研究的平台(起点)、研究的特色或突破点。 参考总课题报告。(四)课题研究的指导思想指导思想就是在宏观上应坚持什么方向,符合什么要求等,这个方向或要求可以是哲学、政治理论,也可以是政府的教育发展规划,也可以是有关研究问题的指导性意见等。对于范围比较大,时间又很长的课题来讲,大家在总的方面,有了一个比较明确的指导思想,就可以避免出现理论研究中的一些方向性错误。这里,我给大家介绍一下何老师在《佛山市教育现代化进程》研究方案里写的课题指导思想里的一段话:“这一课题研究要依据党中央和国家要求,依据广东省委省政府的决定,依据佛山市委市政府的决定,结合国情、市情和佛山市教育改革与发展的实际,……力求揭示佛山市教育现代化进程的规律及表现形式,为佛山市教育现代化实践服务”。另外,还有一份供大家参考一下,广东省教育科研“九五”规划重点课题《学科教学与素质教育》研究和实验方案里面,课题指导思想这样写:“坚持以马克思主义、毛泽东思想和邓小平理论为指导,从我国经济领域实现“两个转变”和我省2010年基本实现现代化对基础教育的要求出发,针对在中小学学科教学中实施素质教育的有关理论和实践问题,开展全方位的改革实验和理论研究,有效指导广大中小学教师在学科教学中深入教学改革,全面贯彻教育方针,全面提高教育质量,从而推进我省基础教育事业向前发展,为把广东建成教育强省作出贡献 ”。(五) 课题研究的目标课题研究的目标也就是课题最后要达到的具体目的,要解决哪些具体问题,也就是本课题研究要达到的预定目标:即本课题研究的目标定位,确定目标时要紧扣课题,用词要准确、精练、明了。相对于目的和指导思想而言,研究目标是比较具体的,不能笼统地讲,必须清楚地写出来。只有目标明确而具体,才能知道工作的具体方向是什么,才知道研究的重点是什么,思路就不会被各种因素所干扰。常见存在问题是:不写研究目标;目标扣题不紧;目标用词不准确;目标定得过高, 对预定的目标没有进行研究或无法进行研究。确定课题研究目标时,一方面要考虑课题本身的要求,另一方面要考虑课题组实际的工作条件与工作水平。(六)课题研究的基本内容我们有了课题的研究目标,就要根据目标来确定我们这个课题具体要研究的内容,相对研究目标来说,研究内容要更具体、明确。并且一个目标可能要通过几方面的研究内容来实现,他们不一定是一一对应的关系。大家在确定研究内容的时候,往往考虑的不是很具体,写出来的研究内容特别笼统、模糊,把研究的目的、意义当作研究内容,这对我们整个课题研究十分不利。因此,我们要学会把课题进行分解,一点一点地去做。 基本内容一般包括:⑴对课题名称的界说。应尽可能明确三点:研究的对象、研究的问题、研究的方法。⑵本课题研究有关的理论、名词、术语、概念的界说。(七)课题研究的方法1、本课题研究是否要设定子课题。 各子课题既要有一定的相对独立性,又要形成课题系统。作为省、市级课题,最好设定子课题。形成全校的课题研究系统。2、具体的研究方法可从下面选定: 观察法、调查法、实验法、经验总结法、 个案法、比较研究法、文献资料法等。如要研究学生实践能力的现状必定离不开调查法; 要研究如何优化小学生个性宜采用实验法;要研究如何对青年教师进行培养可采用经验总结法;要研究问题家庭学生的教育对策可采用个案法等等。3、确定研究方法时要叙述清楚“做些什么” 和“怎样做” 。如要用调查法,则要讲清调查的目的、任务、对象、范围、调查方法、问卷的设计或来源等。最好能把调查方案附上。4、提倡使用综合的研究方法。 一个大的课题往往需要多种方法,小的课题可能主要是一种方法,但也要利用其它方法。我们在应用各种方法时,一定要严格按照方法的要求,不能不三不四,凭经验、常识去做。比如,我们要通过调查了解情况,我们如何制订调查表,如何进行分析,不是随随便便发张表,搞一些百分数、平均数就行了。突出介绍行动研究法。(八)课题研究的步骤课题研究的步骤,也就是课题研究在时间和顺序上的安排。研究的步骤要充分考虑研究内容的相互关系和难易程度,一般情况下,都是从基础问题开始,分阶段进行,每个阶段从什么时间开始,至什么时间结束都要有规定。课题研究的主要步骤和时间安排包括:整个研究拟分为哪几个阶段;各阶段的起止时间;各阶段要完成的研究目标、任务;各阶段的主要研究步骤;本学期研究工作的日程安排等。(九)课题研究的成果形式本课题研究拟取得什么形式的阶段研究成果和终结研究成果。形式有很多,如调查报告、实验报告、研究报告、论文、经验总结、调查量表、测试量表、微机软件、教学设计、录像带等,其中调查报告、研究报告、论文是课题研究成果最主要的表现形式。 课题不同,研究成果的内容、形式也不一样,但不管形式是什么,课题研究必须有成果,否则,就是这个课题就没有完成。(十)课题研究的组织机构和人员分工在方案中,要写出课题组长、副组长、课题组成员以及分工。课题组组长就是本课题的负责人。一个课题组应该包括三方面的人,一是有权之士,二是有识之士,三是有志之士。有权了课题就可以得到更多的支持,有识了课题质量、水平就会更高,有志了可以不怕辛苦,踏踏实实踏实实去干。课题组的分工必须是要分得明确合理,争取让每个人了解自己工作和责任,不能吃大锅饭。但是在分工的基础上,也要注意全体人员的合作,大家共同研究,共同商讨,克服研究过程中的各种困难和问题。(十一)其他有关问题或保障机制如课题组活动时间; 学习什么有关理论和知识,如何学习,要进行或参加哪些培训; 如何保证研究工作的正常进行; 课题经费的来源和筹集; 如何争取有关领导的支持和专家的指导; 如何与校外同行交流等。四、注意三点:1、要学会搜集和获取信息。处处留心皆学问(积累)。2、要多学习,多借鉴。集思广益开眼界(学习与借鉴)。3、创新。登高望远多创意(创新)。

这样是找不到通过的了的   楼主什么学习阶段

  • 索引序列
  • 数学建模开题报告论文综述
  • 论文开题报告综述模板
  • 有关数学建模论文的开题报告
  • 毕业论文开题报告书数学建模
  • 综述论文开题报告模板范文
  • 返回顶部