首页 > 学术论文知识库 > 微积分发展史论文范文大全

微积分发展史论文范文大全

发布时间:

微积分发展史论文范文大全

1、微分早期

早在公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。古希腊数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽。

2、极限思想

早在公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。

3、微积分思想

微积分思想虽然可追溯到古希腊,但它的概念和法则却是16世纪下半叶,开普勒、卡瓦列利等求积的不可分量思想和方法基础上产生和发展起来的。而这些思想和方法从刘徽对圆锥、圆台、圆柱的体积公式的证明到公元5世纪祖恒求球体积的方法中都可找到。

扩展资料:

关于微积分发明权的最初争议:

牛顿早在1676年就知道莱布尼兹的工作,但此时的他并没有表现出任何对优先权问题的担心或竞争心理。直到1687年以前,他都没有公开发表任何关于流数术的论文或专著,哪怕是在1684年莱布尼兹抢先发表了论文以后。

反倒是在1687年,他首次在《自然哲学之数学原理》第一版中透露出关于流数术的一鳞半爪时,特意在下方注释道:

十年前在我与最权威的几何学家.莱布尼兹进行的后来被中断的系列通信中,我展示了我提出的定义最大和最小的方法……阁下回信说他也在研究这样一种方法,他的方法除了用词及其众所周知的形式以外,和我的几乎没有什么不同。

牛顿在这段话中用 “最权威的”来形容莱布尼兹,并尊称其为“阁下”,对与莱布尼兹英雄所见略同的得意之情跃然纸上。

不过牛顿本人的态度并不能代表他的全部英国同胞。曾作为牛顿微积分思想启发者之一的老一代数学家沃利斯就对此很不以为然。作为一位狂热的不列颠沙文主义者,沃利斯一生热衷于证明不列颠民族相对于其他民族在智力上的优越性。

随着“莱布尼兹微积分”在欧洲大陆声望日隆,而牛顿更早的工作却迟迟不见发表,本应属于英国数学家的学术荣誉眼见着正被德国人 “窃取”殆尽,为此,沃利斯不但多次以师长和朋友的身份致信牛顿,措辞颇有些严厉地敦促牛顿尽快发表关于流数术的论文;

而且身体力行,在自己的著作中不断为牛顿及其流数术摇旗呐喊。特别是在1695年出版的著作中,在谈到牛顿流数术与莱布尼兹微积分的内在一致性时,老数学家意味深长地提及:

1676年牛顿发给包括他在内的几位英国数学家介绍流数术的两封最初的信件,“也被 (几乎一字不易地)传递给了莱布尼兹,他(牛顿)在信中向莱布尼兹讲解了他在十多年前就已经发明的方法”——这是关于莱布尼兹剽窃牛顿成果的第一次暗示。

参考资料来源:中国社会科学网-关于微积分的恩恩怨怨(下)

参考资料来源:百度百科-微积分学

微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微分的互逆关系 。最后一步是由牛顿、莱布尼兹完成的。前两阶段的工作,欧洲的大批数学家一直追朔到古希腊的阿基米德都作出了各自的贡献。对于这方面的工作,古代中国毫不逊色于西方,微积分思想在古代中国早有萌芽,甚至是古希腊数学不能比拟的。公元前7世纪老庄哲学中就有无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。刘徽公元263年首创的割圆术求圆面积和方锥体积,求得 圆周率约等于3 .1416,他的极限思想和无穷小方法,是世界古代极限思想的深刻体现。 微积分思想虽然可追朔古希腊,但它的概念和法则却是16世纪下半叶,开普勒、卡瓦列利等求积的不可分量思想和方法基础上产生和发展起来的。而这些思想和方法从刘徽对圆锥、圆台、圆柱的体积公式的证明到公元5世纪祖恒求球体积的方法中都可找到。北宋大科学家沈括的《梦溪笔谈》独创了“隙积术”、“会圆术”和“棋局都数术”开创了对高阶等差级数求和的研究。 南宋大数学家秦九韶于1274年撰写了划时代巨著《数书九章》十八卷,创举世闻名的“大衍求一术”——增乘开方法解任意次数字(高次)方程近似解,比西方早500多年。 特别是13世纪40年代到14世纪初,在主要领域都达到了中国古代数学的高峰,出现了现通称贾宪三角形的“开方作法本源图”和增乘开方法、“正负开方术”、“大衍求一术”、“大衍总数术”(一次同余式组解法)、“垛积术”(高阶等差级数求和)、“招差术”(高次差内差法)、“天元术”(数字高次方程一般解法)、“四元术”(四元高次方程组解法)、勾股数学、弧矢割圆术、组合数学、计算技术改革和珠算等都是在世界数学史上有重要地位的杰出成果,中国古代数学有了微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键。 中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近了微积分的大门。可惜中国元朝以后,八股取士制造成了学术上的大倒退,封建统治的文化专制和盲目排外致使包括数学在内的科学日渐衰落,在微积分创立的最关键一步落伍了。 微积分的诞生 微积分的产生是数学上的伟大创造。它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作 者以及技术人员不可缺少的工具。微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。早在古希腊时期,欧多克斯提出了穷竭法。这是微积分的先驱,而我国庄子的《天下篇》中也有 “ 一尺之锤,日取其半,万世不竭 ” 的极限思想,公元 263 年,刘徽为《九间算术》作注时提出了 “ 割圆术 ” ,用正多边形来逼近圆周。这是极限论思想的成功运用。 积分概念是由求某些面积、体积和弧长引起的,古希腊数学家要基米德在《抛物线求积法》中用究竭法求出抛物线弓形的面积,人没有用极限,是 “ 有限 ” 开工的穷竭法。但阿基米德的贡献真正成为积分学的萌芽。 微分是联系到对曲线作切线的问题和函数的极大值、极小值问题而产生的。微分方法的第一个真正值得注意的先驱工作起源于 1629 年费尔玛陈述的概念,他给同了如何确定极大值和极小值的方法。其后英国剑桥大学三一学院的教授巴罗又给出了求切线的方法,进一步推动了微分学概念的产生。前人工作终于使牛顿和莱布尼茨在 17 世纪下半叶各自独立创立了微积分。 1605 年 5 月 20 日,在牛顿手写的一面文件中开始有 “ 流数术 ” 的记载,微积分的诞生不妨以这一天为标志。牛顿关于微积分的著作很多写于 1665 - 1676 年间,但这些著作发表很迟。他完整地提出微积分是一对互逆运算,并且给出换算的公式,就是后来著名的牛顿-莱而尼茨公式。 牛顿是那个时代的科学巨人。在他之前,已有了许多积累:哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,微积分在这样的条件下诞生是必然的。 牛顿于 1642 年出生于一个贫穷的农民家庭,艰苦的成长环境造就了人类历史上的一位伟大的科学天才,他对物理问题的洞察力和他用数学方法处理物理问题的能力,都是空前卓越的。尽管取得无数成就,他仍保持谦逊的美德。 如果说牛顿从力学导致 “ 流数术 ” ,那莱布尼茨则是从几何学上考察切线问题得出微分法。他的第一篇论文刊登于 1684 年的《都市期刊》上,这比牛顿公开发表微积分著作早 3 年,这篇文章给一阶微分以明确的定义。 莱布尼茨 1646 年生于莱比锡。 15 岁进入莱比锡大学攻读法律,勤奋地学习各门科学,不到 20 岁就熟练地掌握了一般课本上的数学、哲学、神学和法学知识。莱布尼茨对数学

根据记载,牛顿对微积分问题的研究开始于1664年,此时他十分认真地研读了笛卡尔的巨著《几何学》,并且对书中求曲线切线的方法十分着迷,求知欲旺盛的牛顿迫切寻求一种更有效更一般的方法来解决这一问题。思索了两年之后,在1666年10月,牛顿撰写了数学史上第一遍微积分论文《流数短论》,历史性地提出了“流数”这一概念。牛顿将“流数”对应与速度,即位移函数对时间的微商,然后又以速度对时间的微商来作为加速度。深思熟虑三年之后,牛顿又完成了第二篇论文《运用无穷多项方程的分析学》,此文给出了因变量对自变量求瞬时变化率的一般方法,而且还证明了面积可以通过求变化率的逆过程得到,这实际上已经非常接近微积分基本定理(即牛顿-莱布尼茨公式)。1671年,牛顿在第三篇论文《流数术与无穷级数》中完善了第一篇论文的内容,使得论述与方法都更加清晰。又过了5年,牛顿写出了他最成熟的微积分论文《曲线求积论》,进一步完善了对流数的理解并清晰叙述了微积分基本定理,还给出了他自己发明的一系列记号。至此,一代巨人完成了创立微积分的伟大壮举。然而由于自己保守内敛的性格,牛顿长期没有公开发表自己的论文,仅为他少数好友所知。直到1687年,在好友哈雷的鼓励与要求之下,牛顿才出版了巨著《自然哲学的数学原理》,直到这时,牛顿关于微积分的工作才公诸于世。正是牛顿的迟疑,引发了牛顿和莱布尼茨谁才是“微积分之父”的百年之争,更是造成了英国科学界和欧洲大陆科学界的长期分隔。

1、三国后期的刘徽发明了著名的“割圆术”,即把圆周用内接或外切正多边形穷竭的一种求圆周长及面积的方法。“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”不断地增加正多边形的边数,进而使多边形更加接近圆的面积,在我国数学史上算是伟大创举。

1、十七世纪上半叶,几乎所有的科学大师都致力于解决速率、极值、切线、面积问题,特别是描述运动与变化的无限小算法,并且在相当短的时间内取得了极大的发展。

2、天文学家开普勒发现行星运动三大定律,并利用无穷小求和的思想,求得曲边形的面积及旋转体的体积。意大利数学家卡瓦列利与同时期发现卡瓦列利原理(祖暅原理),利用不可分量方法幂函数定积分公式。

3、此外解析几何创始人——法国数学家笛卡尔的代数方法对于微积分的发展起了极大的推动。法国大数学家费马在求曲线的切线及函数的极值方面贡献巨大。

4、英国科学家牛顿开始关于微积分的研究,他受了沃利斯的《无穷算术》的启发,第一次把代数学扩展到分析学。1665年牛顿发明正流数术(微分),次年又发明反流数术。之后将流数术总结一起,并写出了《流数简述》,这标志着微积分的诞生。

扩展资料:

微积分成熟完善:

微积分学在牛顿与莱布尼茨的时代逐渐建立成型,但是任何新的数学理论的建立,在起初都是会引起一部分人的极力质疑,微积分学同样也是。

由于早期微积分学的建立的不严谨性,许多不安分子就找漏洞攻击微积分学,其中最著名的是英国主教贝克莱针对求导过程中的无穷小(Δx既是0,又不是0)展开对微积分学的进攻,由此第二次数学危机便拉开了序幕。

危机出现之后,许多数学家意识到了微积分学的理论严谨性,陆续的出现大批杰出的科学家。

大数学家柯西建立了接近现代形式的极限,把无穷小定义为趋近于0的变量,从而结束了百年的争论,并定义了函数的连续性、导数、连续函数的积分和级数的收敛性(与布尔查诺同期进行)。

参考资料来源:百度百科-微积分

微积分发展简史论文

1、微分早期

早在公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。古希腊数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽。

2、极限思想

早在公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。

3、微积分思想

微积分思想虽然可追溯到古希腊,但它的概念和法则却是16世纪下半叶,开普勒、卡瓦列利等求积的不可分量思想和方法基础上产生和发展起来的。而这些思想和方法从刘徽对圆锥、圆台、圆柱的体积公式的证明到公元5世纪祖恒求球体积的方法中都可找到。

扩展资料:

关于微积分发明权的最初争议:

牛顿早在1676年就知道莱布尼兹的工作,但此时的他并没有表现出任何对优先权问题的担心或竞争心理。直到1687年以前,他都没有公开发表任何关于流数术的论文或专著,哪怕是在1684年莱布尼兹抢先发表了论文以后。

反倒是在1687年,他首次在《自然哲学之数学原理》第一版中透露出关于流数术的一鳞半爪时,特意在下方注释道:

十年前在我与最权威的几何学家.莱布尼兹进行的后来被中断的系列通信中,我展示了我提出的定义最大和最小的方法……阁下回信说他也在研究这样一种方法,他的方法除了用词及其众所周知的形式以外,和我的几乎没有什么不同。

牛顿在这段话中用 “最权威的”来形容莱布尼兹,并尊称其为“阁下”,对与莱布尼兹英雄所见略同的得意之情跃然纸上。

不过牛顿本人的态度并不能代表他的全部英国同胞。曾作为牛顿微积分思想启发者之一的老一代数学家沃利斯就对此很不以为然。作为一位狂热的不列颠沙文主义者,沃利斯一生热衷于证明不列颠民族相对于其他民族在智力上的优越性。

随着“莱布尼兹微积分”在欧洲大陆声望日隆,而牛顿更早的工作却迟迟不见发表,本应属于英国数学家的学术荣誉眼见着正被德国人 “窃取”殆尽,为此,沃利斯不但多次以师长和朋友的身份致信牛顿,措辞颇有些严厉地敦促牛顿尽快发表关于流数术的论文;

而且身体力行,在自己的著作中不断为牛顿及其流数术摇旗呐喊。特别是在1695年出版的著作中,在谈到牛顿流数术与莱布尼兹微积分的内在一致性时,老数学家意味深长地提及:

1676年牛顿发给包括他在内的几位英国数学家介绍流数术的两封最初的信件,“也被 (几乎一字不易地)传递给了莱布尼兹,他(牛顿)在信中向莱布尼兹讲解了他在十多年前就已经发明的方法”——这是关于莱布尼兹剽窃牛顿成果的第一次暗示。

参考资料来源:中国社会科学网-关于微积分的恩恩怨怨(下)

参考资料来源:百度百科-微积分学

根据记载,牛顿对微积分问题的研究开始于1664年,此时他十分认真地研读了笛卡尔的巨著《几何学》,并且对书中求曲线切线的方法十分着迷,求知欲旺盛的牛顿迫切寻求一种更有效更一般的方法来解决这一问题。思索了两年之后,在1666年10月,牛顿撰写了数学史上第一遍微积分论文《流数短论》,历史性地提出了“流数”这一概念。牛顿将“流数”对应与速度,即位移函数对时间的微商,然后又以速度对时间的微商来作为加速度。深思熟虑三年之后,牛顿又完成了第二篇论文《运用无穷多项方程的分析学》,此文给出了因变量对自变量求瞬时变化率的一般方法,而且还证明了面积可以通过求变化率的逆过程得到,这实际上已经非常接近微积分基本定理(即牛顿-莱布尼茨公式)。1671年,牛顿在第三篇论文《流数术与无穷级数》中完善了第一篇论文的内容,使得论述与方法都更加清晰。又过了5年,牛顿写出了他最成熟的微积分论文《曲线求积论》,进一步完善了对流数的理解并清晰叙述了微积分基本定理,还给出了他自己发明的一系列记号。至此,一代巨人完成了创立微积分的伟大壮举。然而由于自己保守内敛的性格,牛顿长期没有公开发表自己的论文,仅为他少数好友所知。直到1687年,在好友哈雷的鼓励与要求之下,牛顿才出版了巨著《自然哲学的数学原理》,直到这时,牛顿关于微积分的工作才公诸于世。正是牛顿的迟疑,引发了牛顿和莱布尼茨谁才是“微积分之父”的百年之争,更是造成了英国科学界和欧洲大陆科学界的长期分隔。

1、三国后期的刘徽发明了著名的“割圆术”,即把圆周用内接或外切正多边形穷竭的一种求圆周长及面积的方法。“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”不断地增加正多边形的边数,进而使多边形更加接近圆的面积,在我国数学史上算是伟大创举。

1、十七世纪上半叶,几乎所有的科学大师都致力于解决速率、极值、切线、面积问题,特别是描述运动与变化的无限小算法,并且在相当短的时间内取得了极大的发展。

2、天文学家开普勒发现行星运动三大定律,并利用无穷小求和的思想,求得曲边形的面积及旋转体的体积。意大利数学家卡瓦列利与同时期发现卡瓦列利原理(祖暅原理),利用不可分量方法幂函数定积分公式。

3、此外解析几何创始人——法国数学家笛卡尔的代数方法对于微积分的发展起了极大的推动。法国大数学家费马在求曲线的切线及函数的极值方面贡献巨大。

4、英国科学家牛顿开始关于微积分的研究,他受了沃利斯的《无穷算术》的启发,第一次把代数学扩展到分析学。1665年牛顿发明正流数术(微分),次年又发明反流数术。之后将流数术总结一起,并写出了《流数简述》,这标志着微积分的诞生。

扩展资料:

微积分成熟完善:

微积分学在牛顿与莱布尼茨的时代逐渐建立成型,但是任何新的数学理论的建立,在起初都是会引起一部分人的极力质疑,微积分学同样也是。

由于早期微积分学的建立的不严谨性,许多不安分子就找漏洞攻击微积分学,其中最著名的是英国主教贝克莱针对求导过程中的无穷小(Δx既是0,又不是0)展开对微积分学的进攻,由此第二次数学危机便拉开了序幕。

危机出现之后,许多数学家意识到了微积分学的理论严谨性,陆续的出现大批杰出的科学家。

大数学家柯西建立了接近现代形式的极限,把无穷小定义为趋近于0的变量,从而结束了百年的争论,并定义了函数的连续性、导数、连续函数的积分和级数的收敛性(与布尔查诺同期进行)。

参考资料来源:百度百科-微积分

1、微分早期

早在公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。古希腊数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽。

2、极限思想

早在公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。

3、微积分思想

微积分思想虽然可追溯到古希腊,但它的概念和法则却是16世纪下半叶,开普勒、卡瓦列利等求积的不可分量思想和方法基础上产生和发展起来的。而这些思想和方法从刘徽对圆锥、圆台、圆柱的体积公式的证明到公元5世纪祖恒求球体积的方法中都可找到。

扩展资料:

关于微积分发明权的最初争议:

牛顿早在1676年就知道莱布尼兹的工作,但此时的他并没有表现出任何对优先权问题的担心或竞争心理。直到1687年以前,他都没有公开发表任何关于流数术的论文或专著,哪怕是在1684年莱布尼兹抢先发表了论文以后。

反倒是在1687年,他首次在《自然哲学之数学原理》第一版中透露出关于流数术的一鳞半爪时,特意在下方注释道:

十年前在我与最权威的几何学家.莱布尼兹进行的后来被中断的系列通信中,我展示了我提出的定义最大和最小的方法??阁下回信说他也在研究这样一种方法,他的方法除了用词及其众所周知的形式以外,和我的几乎没有什么不同。

牛顿在这段话中用“最权威的”来形容莱布尼兹,并尊称其为“阁下”,对与莱布尼兹英雄所见略同的得意之情跃然纸上。

不过牛顿本人的态度并不能代表他的全部英国同胞。曾作为牛顿微积分思想启发者之一的老一代数学家沃利斯就对此很不以为然。作为一位狂热的不列颠沙文主义者,沃利斯一生热衷于证明不列颠民族相对于其他民族在智力上的优越性。

随着“莱布尼兹微积分”在欧洲大陆声望日隆,而牛顿更早的工作却迟迟不见发表,本应属于英国数学家的学术荣誉眼见着正被德国人“窃取”殆尽,为此,沃利斯不但多次以师长和朋友的身份致信牛顿,措辞颇有些严厉地敦促牛顿尽快发表关于流数术的论文;

而且身体力行,在自己的著作中不断为牛顿及其流数术摇旗呐喊。特别是在1695年出版的著作中,在谈到牛顿流数术与莱布尼兹微积分的内在一致性时,老数学家意味深长地提及:

1676年牛顿发给包括他在内的几位英国数学家介绍流数术的两封最初的信件,“也被(几乎一字不易地)传递给了莱布尼兹,他(牛顿)在信中向莱布尼兹讲解了他在十多年前就已经发明的方法”——这是关于莱布尼兹剽窃牛顿成果的第一次暗示。

参考资料来源:中国社会科学网-关于微积分的恩恩怨怨(下)

参考资料来源:百度百科-微积分学

微积分的发展史论文1000

1、三国后期的刘徽发明了著名的“割圆术”,即把圆周用内接或外切正多边形穷竭的一种求圆周长及面积的方法。“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”不断地增加正多边形的边数,进而使多边形更加接近圆的面积,在我国数学史上算是伟大创举。

1、十七世纪上半叶,几乎所有的科学大师都致力于解决速率、极值、切线、面积问题,特别是描述运动与变化的无限小算法,并且在相当短的时间内取得了极大的发展。

2、天文学家开普勒发现行星运动三大定律,并利用无穷小求和的思想,求得曲边形的面积及旋转体的体积。意大利数学家卡瓦列利与同时期发现卡瓦列利原理(祖暅原理),利用不可分量方法幂函数定积分公式。

3、此外解析几何创始人——法国数学家笛卡尔的代数方法对于微积分的发展起了极大的推动。法国大数学家费马在求曲线的切线及函数的极值方面贡献巨大。

4、英国科学家牛顿开始关于微积分的研究,他受了沃利斯的《无穷算术》的启发,第一次把代数学扩展到分析学。1665年牛顿发明正流数术(微分),次年又发明反流数术。之后将流数术总结一起,并写出了《流数简述》,这标志着微积分的诞生。

扩展资料:

微积分成熟完善:

微积分学在牛顿与莱布尼茨的时代逐渐建立成型,但是任何新的数学理论的建立,在起初都是会引起一部分人的极力质疑,微积分学同样也是。

由于早期微积分学的建立的不严谨性,许多不安分子就找漏洞攻击微积分学,其中最著名的是英国主教贝克莱针对求导过程中的无穷小(Δx既是0,又不是0)展开对微积分学的进攻,由此第二次数学危机便拉开了序幕。

危机出现之后,许多数学家意识到了微积分学的理论严谨性,陆续的出现大批杰出的科学家。

大数学家柯西建立了接近现代形式的极限,把无穷小定义为趋近于0的变量,从而结束了百年的争论,并定义了函数的连续性、导数、连续函数的积分和级数的收敛性(与布尔查诺同期进行)。

参考资料来源:百度百科-微积分

微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微分的互逆关系 。最后一步是由牛顿、莱布尼兹完成的。前两阶段的工作,欧洲的大批数学家一直追朔到古希腊的阿基米德都作出了各自的贡献。对于这方面的工作,古代中国毫不逊色于西方,微积分思想在古代中国早有萌芽,甚至是古希腊数学不能比拟的。公元前7世纪老庄哲学中就有无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。刘徽公元263年首创的割圆术求圆面积和方锥体积,求得 圆周率约等于3 .1416,他的极限思想和无穷小方法,是世界古代极限思想的深刻体现。 微积分思想虽然可追朔古希腊,但它的概念和法则却是16世纪下半叶,开普勒、卡瓦列利等求积的不可分量思想和方法基础上产生和发展起来的。而这些思想和方法从刘徽对圆锥、圆台、圆柱的体积公式的证明到公元5世纪祖恒求球体积的方法中都可找到。北宋大科学家沈括的《梦溪笔谈》独创了“隙积术”、“会圆术”和“棋局都数术”开创了对高阶等差级数求和的研究。 南宋大数学家秦九韶于1274年撰写了划时代巨著《数书九章》十八卷,创举世闻名的“大衍求一术”——增乘开方法解任意次数字(高次)方程近似解,比西方早500多年。 特别是13世纪40年代到14世纪初,在主要领域都达到了中国古代数学的高峰,出现了现通称贾宪三角形的“开方作法本源图”和增乘开方法、“正负开方术”、“大衍求一术”、“大衍总数术”(一次同余式组解法)、“垛积术”(高阶等差级数求和)、“招差术”(高次差内差法)、“天元术”(数字高次方程一般解法)、“四元术”(四元高次方程组解法)、勾股数学、弧矢割圆术、组合数学、计算技术改革和珠算等都是在世界数学史上有重要地位的杰出成果,中国古代数学有了微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键。 中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近了微积分的大门。可惜中国元朝以后,八股取士制造成了学术上的大倒退,封建统治的文化专制和盲目排外致使包括数学在内的科学日渐衰落,在微积分创立的最关键一步落伍了。 微积分的诞生 微积分的产生是数学上的伟大创造。它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作 者以及技术人员不可缺少的工具。微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。早在古希腊时期,欧多克斯提出了穷竭法。这是微积分的先驱,而我国庄子的《天下篇》中也有 “ 一尺之锤,日取其半,万世不竭 ” 的极限思想,公元 263 年,刘徽为《九间算术》作注时提出了 “ 割圆术 ” ,用正多边形来逼近圆周。这是极限论思想的成功运用。 积分概念是由求某些面积、体积和弧长引起的,古希腊数学家要基米德在《抛物线求积法》中用究竭法求出抛物线弓形的面积,人没有用极限,是 “ 有限 ” 开工的穷竭法。但阿基米德的贡献真正成为积分学的萌芽。 微分是联系到对曲线作切线的问题和函数的极大值、极小值问题而产生的。微分方法的第一个真正值得注意的先驱工作起源于 1629 年费尔玛陈述的概念,他给同了如何确定极大值和极小值的方法。其后英国剑桥大学三一学院的教授巴罗又给出了求切线的方法,进一步推动了微分学概念的产生。前人工作终于使牛顿和莱布尼茨在 17 世纪下半叶各自独立创立了微积分。 1605 年 5 月 20 日,在牛顿手写的一面文件中开始有 “ 流数术 ” 的记载,微积分的诞生不妨以这一天为标志。牛顿关于微积分的著作很多写于 1665 - 1676 年间,但这些著作发表很迟。他完整地提出微积分是一对互逆运算,并且给出换算的公式,就是后来著名的牛顿-莱而尼茨公式。 牛顿是那个时代的科学巨人。在他之前,已有了许多积累:哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,微积分在这样的条件下诞生是必然的。 牛顿于 1642 年出生于一个贫穷的农民家庭,艰苦的成长环境造就了人类历史上的一位伟大的科学天才,他对物理问题的洞察力和他用数学方法处理物理问题的能力,都是空前卓越的。尽管取得无数成就,他仍保持谦逊的美德。 如果说牛顿从力学导致 “ 流数术 ” ,那莱布尼茨则是从几何学上考察切线问题得出微分法。他的第一篇论文刊登于 1684 年的《都市期刊》上,这比牛顿公开发表微积分著作早 3 年,这篇文章给一阶微分以明确的定义。 莱布尼茨 1646 年生于莱比锡。 15 岁进入莱比锡大学攻读法律,勤奋地学习各门科学,不到 20 岁就熟练地掌握了一般课本上的数学、哲学、神学和法学知识。莱布尼茨对数学

根据记载,牛顿对微积分问题的研究开始于1664年,此时他十分认真地研读了笛卡尔的巨著《几何学》,并且对书中求曲线切线的方法十分着迷,求知欲旺盛的牛顿迫切寻求一种更有效更一般的方法来解决这一问题。思索了两年之后,在1666年10月,牛顿撰写了数学史上第一遍微积分论文《流数短论》,历史性地提出了“流数”这一概念。牛顿将“流数”对应与速度,即位移函数对时间的微商,然后又以速度对时间的微商来作为加速度。深思熟虑三年之后,牛顿又完成了第二篇论文《运用无穷多项方程的分析学》,此文给出了因变量对自变量求瞬时变化率的一般方法,而且还证明了面积可以通过求变化率的逆过程得到,这实际上已经非常接近微积分基本定理(即牛顿-莱布尼茨公式)。1671年,牛顿在第三篇论文《流数术与无穷级数》中完善了第一篇论文的内容,使得论述与方法都更加清晰。又过了5年,牛顿写出了他最成熟的微积分论文《曲线求积论》,进一步完善了对流数的理解并清晰叙述了微积分基本定理,还给出了他自己发明的一系列记号。至此,一代巨人完成了创立微积分的伟大壮举。然而由于自己保守内敛的性格,牛顿长期没有公开发表自己的论文,仅为他少数好友所知。直到1687年,在好友哈雷的鼓励与要求之下,牛顿才出版了巨著《自然哲学的数学原理》,直到这时,牛顿关于微积分的工作才公诸于世。正是牛顿的迟疑,引发了牛顿和莱布尼茨谁才是“微积分之父”的百年之争,更是造成了英国科学界和欧洲大陆科学界的长期分隔。

微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。 它是数学的一个基础学科。 内容主要包括极限、微分学、积分学及其应用。 微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。 积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 微积分学基本定理指出,微分和积分互为逆运算,这也是两种理论被统一成微积分学的原因。 我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。 微积分学是微分学和积分学的总称。 它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。 无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。 比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念。 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。 微积分堪称是人类智慧最伟大的成就之一。 极限和微积分的概念可以追溯到古代。 到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。 他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。 直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。 微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。 特别是计算机的发明更有助于这些应用的不断发展。 客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。 因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。 微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。 微积分学的建立 从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。 作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。 比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。 三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。 ”这些都是朴素的、也是很典型的极限概念。 到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。 归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。 第二类问题是求曲线的切线的问题。 第三类问题是求函数的最大值和最小值问题。 第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。 为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。 他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。 牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。 牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。 牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止 *** 。 他把连续变量叫做流动量,把这些流动量的导数叫做流数。 牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。 德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。 就是这样一片说理也颇含糊的文章,却有划时代的意义。 他以含有现代的微分符号和基本微分法则。 1686年,莱布尼茨发表了第一篇积分学的文献。 他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。 现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。 微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。 前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。 微积分也是这样。 不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然 *** ,造成了欧洲大陆的数学家和英国数学家的长期对立。 英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。 其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。 比较特殊的是牛顿创立微积分要比莱布尼茨早10年左右,但是正式公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。 他们的研究各有长处,也都各有短处。 那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。 应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。 他们在无穷和无穷小量这个问题上,其说不一,十分含糊。 牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。 这些基础方面的缺陷,最终导致了第二次数学危机的产生。 直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。 才使微积分进一步的发展开来。 任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。 在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、科西…… 欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。 微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。 微积分的基本内容 研究函数,从量的方面研究事物运动变化是微积分的基本方法。 这种方法叫做数学分析。 本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。 微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。 微积分是与科学应用联系着发展起来的。 最初,牛顿应用微积分学及微分方程对第谷浩瀚的天文观测数据进行了分析运算,得到了万有引力定律,并进一步导出了开普勒行星运动三定律。 此后,微积分学成了推动近代数学发展强大的引擎,同时也极大的推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。 并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。 一元微分 定义: 设函数y = f(x)在某区间内有定义,x0及x0 + Δx在此区间内。 如果函数的增量Δy = f(x0 + Δx) − f(x0)可表示为 Δy = AΔx0 + o(Δx0)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。 通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。 于是函数y = f(x)的微分又可记作dy = f'(x)dx。 函数的微分与自变量的微分之商等于该函数的导数。 因此,导数也叫做微商。 几何意义 设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。 当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。 [编辑本段]多元微分 同理,当自变量为多个时,可得出多元微分的定义。 积分是微分的逆运算,即知道了函数的导函数,反求原函数。 在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。 一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。 其中:[F(x) + C]' = f(x) 一个实变函数在区间[a,b]上的定积分,是一个实数。 它等于该函数的一个原函数在b的值减去在a的值。 一阶微分与高阶微分 函数一阶导数对应的微分称为一阶微分; 一阶微分的微分称为二阶微分; ....... n阶微分的微分称为(n+1)阶微分 即:d(n)y=f(n)(x)*dx^n (f(n)(x)指n阶导数,d(n)y指n阶微分,dx^n指dx的n次方) 一起来学微积分 国内最早探讨微积分知识的网站,也是人气最旺的微积分fans的交流网站。

微积分的发展史3000字论文

微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微分的互逆关系 。最后一步是由牛顿、莱布尼兹完成的。前两阶段的工作,欧洲的大批数学家一直追朔到古希腊的阿基米德都作出了各自的贡献。对于这方面的工作,古代中国毫不逊色于西方,微积分思想在古代中国早有萌芽,甚至是古希腊数学不能比拟的。公元前7世纪老庄哲学中就有无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。刘徽公元263年首创的割圆术求圆面积和方锥体积,求得 圆周率约等于3 .1416,他的极限思想和无穷小方法,是世界古代极限思想的深刻体现。 微积分思想虽然可追朔古希腊,但它的概念和法则却是16世纪下半叶,开普勒、卡瓦列利等求积的不可分量思想和方法基础上产生和发展起来的。而这些思想和方法从刘徽对圆锥、圆台、圆柱的体积公式的证明到公元5世纪祖恒求球体积的方法中都可找到。北宋大科学家沈括的《梦溪笔谈》独创了“隙积术”、“会圆术”和“棋局都数术”开创了对高阶等差级数求和的研究。 南宋大数学家秦九韶于1274年撰写了划时代巨著《数书九章》十八卷,创举世闻名的“大衍求一术”——增乘开方法解任意次数字(高次)方程近似解,比西方早500多年。 特别是13世纪40年代到14世纪初,在主要领域都达到了中国古代数学的高峰,出现了现通称贾宪三角形的“开方作法本源图”和增乘开方法、“正负开方术”、“大衍求一术”、“大衍总数术”(一次同余式组解法)、“垛积术”(高阶等差级数求和)、“招差术”(高次差内差法)、“天元术”(数字高次方程一般解法)、“四元术”(四元高次方程组解法)、勾股数学、弧矢割圆术、组合数学、计算技术改革和珠算等都是在世界数学史上有重要地位的杰出成果,中国古代数学有了微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键。 中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近了微积分的大门。可惜中国元朝以后,八股取士制造成了学术上的大倒退,封建统治的文化专制和盲目排外致使包括数学在内的科学日渐衰落,在微积分创立的最关键一步落伍了。 微积分的诞生 微积分的产生是数学上的伟大创造。它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作 者以及技术人员不可缺少的工具。微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。早在古希腊时期,欧多克斯提出了穷竭法。这是微积分的先驱,而我国庄子的《天下篇》中也有 “ 一尺之锤,日取其半,万世不竭 ” 的极限思想,公元 263 年,刘徽为《九间算术》作注时提出了 “ 割圆术 ” ,用正多边形来逼近圆周。这是极限论思想的成功运用。 积分概念是由求某些面积、体积和弧长引起的,古希腊数学家要基米德在《抛物线求积法》中用究竭法求出抛物线弓形的面积,人没有用极限,是 “ 有限 ” 开工的穷竭法。但阿基米德的贡献真正成为积分学的萌芽。 微分是联系到对曲线作切线的问题和函数的极大值、极小值问题而产生的。微分方法的第一个真正值得注意的先驱工作起源于 1629 年费尔玛陈述的概念,他给同了如何确定极大值和极小值的方法。其后英国剑桥大学三一学院的教授巴罗又给出了求切线的方法,进一步推动了微分学概念的产生。前人工作终于使牛顿和莱布尼茨在 17 世纪下半叶各自独立创立了微积分。 1605 年 5 月 20 日,在牛顿手写的一面文件中开始有 “ 流数术 ” 的记载,微积分的诞生不妨以这一天为标志。牛顿关于微积分的著作很多写于 1665 - 1676 年间,但这些著作发表很迟。他完整地提出微积分是一对互逆运算,并且给出换算的公式,就是后来著名的牛顿-莱而尼茨公式。 牛顿是那个时代的科学巨人。在他之前,已有了许多积累:哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,微积分在这样的条件下诞生是必然的。 牛顿于 1642 年出生于一个贫穷的农民家庭,艰苦的成长环境造就了人类历史上的一位伟大的科学天才,他对物理问题的洞察力和他用数学方法处理物理问题的能力,都是空前卓越的。尽管取得无数成就,他仍保持谦逊的美德。 如果说牛顿从力学导致 “ 流数术 ” ,那莱布尼茨则是从几何学上考察切线问题得出微分法。他的第一篇论文刊登于 1684 年的《都市期刊》上,这比牛顿公开发表微积分著作早 3 年,这篇文章给一阶微分以明确的定义。 莱布尼茨 1646 年生于莱比锡。 15 岁进入莱比锡大学攻读法律,勤奋地学习各门科学,不到 20 岁就熟练地掌握了一般课本上的数学、哲学、神学和法学知识。莱布尼茨对数学

微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。

摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.

关键词:微积分;背景;作用;函数

一、微积分进入高中课本的背景及必要性

在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。

柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。

从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!

二、微积分在中学数学中的作用

1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.

2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。

3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。

三、国际上一些教材对微积分知识的处理

以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。

当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!

摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。

关键词:微积分;起源;内容;方法

微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:

一、微积分起源的介绍

微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。

介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。

二、介绍微积分内容及方法

微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。

三、为什么要学习高等数学

微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:

微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。

前言

21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。

一、我国微积分教学改革的现状

目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。

首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。

其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。

再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。

二、微积分课改的必要性

随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。

(1)社会高度发展提出的要求

微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。

(2)科技的发展提出的需要

当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。

(3)人类思维发展的需要

微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。

三、微积分课改的内容

根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。

1、课程基本理念的改革

微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。

2、课程内容的改革

根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。

3、课程设计的改革

原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。

4、教学方法的革新

(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。

(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。

5、教学工具的革新。

现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。

四、小结

既然是发展史的话,就应该把微积分的来龙去脉说清楚首先是微积分的启蒙,比如巴罗三角形等等然后是牛顿的流数以及莱布尼茨建立的现代微积分符号接下来可以讲一讲微积分的野蛮发展的时代,因为理论基础不扎实,微积分在整个18世纪引发了第二次数学危机再接下来是柯西和威尔斯特拉斯建立了严谨的数学分析最后可以讲讲微积分的现代发展,微分流形,微分拓扑等等

微积分的发展史论文题目

根据记载,牛顿对微积分问题的研究开始于1664年,此时他十分认真地研读了笛卡尔的巨著《几何学》,并且对书中求曲线切线的方法十分着迷,求知欲旺盛的牛顿迫切寻求一种更有效更一般的方法来解决这一问题。思索了两年之后,在1666年10月,牛顿撰写了数学史上第一遍微积分论文《流数短论》,历史性地提出了“流数”这一概念。牛顿将“流数”对应与速度,即位移函数对时间的微商,然后又以速度对时间的微商来作为加速度。深思熟虑三年之后,牛顿又完成了第二篇论文《运用无穷多项方程的分析学》,此文给出了因变量对自变量求瞬时变化率的一般方法,而且还证明了面积可以通过求变化率的逆过程得到,这实际上已经非常接近微积分基本定理(即牛顿-莱布尼茨公式)。1671年,牛顿在第三篇论文《流数术与无穷级数》中完善了第一篇论文的内容,使得论述与方法都更加清晰。又过了5年,牛顿写出了他最成熟的微积分论文《曲线求积论》,进一步完善了对流数的理解并清晰叙述了微积分基本定理,还给出了他自己发明的一系列记号。至此,一代巨人完成了创立微积分的伟大壮举。然而由于自己保守内敛的性格,牛顿长期没有公开发表自己的论文,仅为他少数好友所知。直到1687年,在好友哈雷的鼓励与要求之下,牛顿才出版了巨著《自然哲学的数学原理》,直到这时,牛顿关于微积分的工作才公诸于世。正是牛顿的迟疑,引发了牛顿和莱布尼茨谁才是“微积分之父”的百年之争,更是造成了英国科学界和欧洲大陆科学界的长期分隔。

微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微分的互逆关系 。最后一步是由牛顿、莱布尼兹完成的。前两阶段的工作,欧洲的大批数学家一直追朔到古希腊的阿基米德都作出了各自的贡献。对于这方面的工作,古代中国毫不逊色于西方,微积分思想在古代中国早有萌芽,甚至是古希腊数学不能比拟的。公元前7世纪老庄哲学中就有无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。刘徽公元263年首创的割圆术求圆面积和方锥体积,求得 圆周率约等于3 .1416,他的极限思想和无穷小方法,是世界古代极限思想的深刻体现。 微积分思想虽然可追朔古希腊,但它的概念和法则却是16世纪下半叶,开普勒、卡瓦列利等求积的不可分量思想和方法基础上产生和发展起来的。而这些思想和方法从刘徽对圆锥、圆台、圆柱的体积公式的证明到公元5世纪祖恒求球体积的方法中都可找到。北宋大科学家沈括的《梦溪笔谈》独创了“隙积术”、“会圆术”和“棋局都数术”开创了对高阶等差级数求和的研究。 南宋大数学家秦九韶于1274年撰写了划时代巨著《数书九章》十八卷,创举世闻名的“大衍求一术”——增乘开方法解任意次数字(高次)方程近似解,比西方早500多年。 特别是13世纪40年代到14世纪初,在主要领域都达到了中国古代数学的高峰,出现了现通称贾宪三角形的“开方作法本源图”和增乘开方法、“正负开方术”、“大衍求一术”、“大衍总数术”(一次同余式组解法)、“垛积术”(高阶等差级数求和)、“招差术”(高次差内差法)、“天元术”(数字高次方程一般解法)、“四元术”(四元高次方程组解法)、勾股数学、弧矢割圆术、组合数学、计算技术改革和珠算等都是在世界数学史上有重要地位的杰出成果,中国古代数学有了微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键。 中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近了微积分的大门。可惜中国元朝以后,八股取士制造成了学术上的大倒退,封建统治的文化专制和盲目排外致使包括数学在内的科学日渐衰落,在微积分创立的最关键一步落伍了。 微积分的诞生 微积分的产生是数学上的伟大创造。它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作 者以及技术人员不可缺少的工具。微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。早在古希腊时期,欧多克斯提出了穷竭法。这是微积分的先驱,而我国庄子的《天下篇》中也有 “ 一尺之锤,日取其半,万世不竭 ” 的极限思想,公元 263 年,刘徽为《九间算术》作注时提出了 “ 割圆术 ” ,用正多边形来逼近圆周。这是极限论思想的成功运用。 积分概念是由求某些面积、体积和弧长引起的,古希腊数学家要基米德在《抛物线求积法》中用究竭法求出抛物线弓形的面积,人没有用极限,是 “ 有限 ” 开工的穷竭法。但阿基米德的贡献真正成为积分学的萌芽。 微分是联系到对曲线作切线的问题和函数的极大值、极小值问题而产生的。微分方法的第一个真正值得注意的先驱工作起源于 1629 年费尔玛陈述的概念,他给同了如何确定极大值和极小值的方法。其后英国剑桥大学三一学院的教授巴罗又给出了求切线的方法,进一步推动了微分学概念的产生。前人工作终于使牛顿和莱布尼茨在 17 世纪下半叶各自独立创立了微积分。 1605 年 5 月 20 日,在牛顿手写的一面文件中开始有 “ 流数术 ” 的记载,微积分的诞生不妨以这一天为标志。牛顿关于微积分的著作很多写于 1665 - 1676 年间,但这些著作发表很迟。他完整地提出微积分是一对互逆运算,并且给出换算的公式,就是后来著名的牛顿-莱而尼茨公式。 牛顿是那个时代的科学巨人。在他之前,已有了许多积累:哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,微积分在这样的条件下诞生是必然的。 牛顿于 1642 年出生于一个贫穷的农民家庭,艰苦的成长环境造就了人类历史上的一位伟大的科学天才,他对物理问题的洞察力和他用数学方法处理物理问题的能力,都是空前卓越的。尽管取得无数成就,他仍保持谦逊的美德。 如果说牛顿从力学导致 “ 流数术 ” ,那莱布尼茨则是从几何学上考察切线问题得出微分法。他的第一篇论文刊登于 1684 年的《都市期刊》上,这比牛顿公开发表微积分著作早 3 年,这篇文章给一阶微分以明确的定义。 莱布尼茨 1646 年生于莱比锡。 15 岁进入莱比锡大学攻读法律,勤奋地学习各门科学,不到 20 岁就熟练地掌握了一般课本上的数学、哲学、神学和法学知识。莱布尼茨对数学

小编准备了数学微积分论文选题-12月2日给2013毕业生这篇文章,希望会帮到2013年数学专业毕业生和各位老师们!例说微积分知识在数学解题中的应用微积分课堂教学与数学建模思想微积分课程教学中培养学生数学审美能力的探讨微积分MATLAB数学实验"微积分"教学中融入数学文化的教学设计微积分教学中渗透数学建模思想探讨《经济数学基础(微积分)》精品课程建设的实践与探索浅谈微积分与数学软件相结合的教学微积分MATLAB数学实验数学建模思想融入微积分课程教学初探微积分教学中渗入数学文化的实践与思考高中数学新课程微积分的课程设计分析2009年浙江省高等数学(微积分)文专组竞赛试题评析数学思想方法及其在微积分教学中的运用研究高中数学教科书中微积分内容的整体比较微积分中数学语言的时序性微积分方法在初等数学中的应用研究微积分方法在初等数学教学中的应用高等数学中微积分证明不等式的探讨转变教育教学观念培养学生的数学素质——浅议高职中《微积分》的教学逾越形式化极限概念的微积分课程--《普通高中数学课程标准(实验)》实证研究浅谈高等数学中微积分的经济应用英国A水平数学考试中的微积分简析高等数学教学中如何合理使用教材——从"微积分基本公式"一节的教材使用谈起大学数学教学中开展研究性学习的探索与实践——以《微积分》教学为例对高中数学微积分的理解及教学建议例谈微积分方法在初等数学教学中的应用关于中学数学中微积分教学的思考2008年浙江省高等数学(微积分)文专组竞赛试题评析将数学建模融入微积分教学的探索(责任编辑:论文题目网)

  • 索引序列
  • 微积分发展史论文范文大全
  • 微积分发展简史论文
  • 微积分的发展史论文1000
  • 微积分的发展史3000字论文
  • 微积分的发展史论文题目
  • 返回顶部