5000字。本科物理学毕业论文需要将论文中的论题讲述清楚,因此是需要书写5000字的。论文是一个汉语词语,古典文学常见论文一词,谓交谈辞章或交流思想。
物理学作为研究其他自然科学不可缺少的基础,其长期发展形成的科学研究 方法 已广泛应用到各学科当中。下面是我为大家整理的物理学博士论文,供大家参考。
《 物理学在科技创新中的效用 》
摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.
关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理
1引言
物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照 教育 部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程 报告 论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.
2物理学是科技创新的源泉
且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=×10-31kg,电子荷电e=×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.
1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现 笔记本 电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.
20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.
1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.
2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].
2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.
3结语
论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.
参考文献:
〔1〕祝之光.物理学[M].北京:高等教育出版社,.
〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,.
〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.
〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)
〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.
〔6〕姚启钧,光学教程[M].北京;高等教育出版社,.
〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,.
〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,.
《 应用物理学专业光伏技术培养方案研究 》
一、开设半导体材料及光伏技术方向的必要性
由于我校已经有材料与化学工程学院,开设了高分子、化工类材料、金属材料等专业,应用物理、物理学专业的方向就只有往半导体材料及光伏技术方向靠,而半导体材料及光伏技术与物理联系十分紧密。因此,我们物理系开设半导体材料及光伏技术有得天独厚的优势。首先,半导体材料的形成原理、制备、检测手段都与物理有关;其次,光伏技术中的光伏现象本身就是一种物理现象,所以只有懂物理的人,才能将物理知识与这些材料的产生、运行机制完美地联系起来,进而有利于新材料以及新的太阳能电池的研发。从半导体材料与光伏产业的产业链条来看,硅原料的生产、硅棒和硅片生产、太阳能电池制造、组件封装、光伏发电系统的运行等,这些过程都包含物理现象和知识。如果从事这个职业的人懂得这些现象,就能够清晰地把握这些知识,将对行业的发展起到很大的推动作用。综上所述,不仅可以在我校的应用物理学专业开设半导体材料及光伏技术方向,而且应该把它发展为我校应用物理专业的特色方向。
二、专业培养方案的改革与实施
(一)应用物理学专业培养方案改革过程
我校从2004年开始招收应用物理学专业学生,当时只是粗略地分为光电子方向和传感器方向,而课程的设置大都和一般高校应用物理学专业的设置一样,只是增设了一些光电子、传感器以及控制方面的课程,完全没有自己的特色。随着对学科的深入研究,周边高校的互访调研以及自贡和乐山相继成为国家级新材料基地,我们逐步意识到半导体材料及光伏技术应该是一个应用物理学专业的可持续发展的方向。结合我校的实际情况,我们从2008年开始修订专业培养方案,用半导体材料及光伏技术方向取代传感器方向,成为应用物理学专业方向之一。在此基础上不断修改,逐步形成了我校现有的应用物理专业的培养方案。我们的培养目标:学生具有较扎实的物理学基础和相关应用领域的专业知识;并得到相关领域应用研究和技术开发的初步训练;具备较强的知识更新能力和较广泛的科学技术适应能力,使其成为具有能在应用物理学科、交叉学科以及相关科学技术领域从事应用研究、教学、新技术开发及管理工作的能力,具有时代精神及实践能力、创新意识和适应能力的高素质复合型应用人才。为了实现这一培养目标,我们在通识教育平台、学科基础教育平台、专业教育平台都分别设有这方面的课程,另外还在实践教育平台也逐步安排这方面的课程。
(二)专业培养方案的实施
为了实施新的培养方案,我们从几个方面来入手。首先,在师资队伍建设上。一方面,我们引入学过材料或凝聚态物理的博士,他们在半导体材料及光伏技术方面都有自己独到的见解;另一方面,从已有的教师队伍中选出部分教师去高校或相关的工厂、公司进行短期的进修培训,使大家对半导体材料及光伏技术有较深的认识,为这方面的教学打下基础。其次,在教学改革方面。一方面,在课程设置上,我们准备把物理类的课程进行重新整合,将关系紧密的课程合成一门。另一方面,我们将应用物理学专业的两个方向有机地结合起来,在光电子技术方向的专业课程设置中,我们有意识地开设了一些课程,让半导体材料及光伏技术方向的学生能够去选修这些课程,让他们能够对光伏产业的生产、检测、装备有更全面的认识。最后,在实践方面。依据学校资源共享的原则,在材料与化学工程学院开设材料科学实验和材料专业实验课程,使学生对材料的生产、检测手段有比较全面的认识,并开设材料科学课程设计,让学生能够把理论知识与实践联系起来,为以后在工作岗位上更好地工作打下坚实的基础。
三、 总结
半导体材料及光伏行业是我国大力发展的新兴行业,受到国家和各省市的大力扶持,符合国家节能环保的主旋律,发展前景十分看好。由于我们国家缺乏这方面的高端人才和行业指挥人,在这个行业还没有话语权。我们的产品大都是初级产品或者是行业的上游产品,没有进行深加工。目前行业正处在发展的困难时期,但也正好为行业的后续发展提供调整。只要我们能够提高技术水平和产品质量,并积极拓展国内市场,这个行业一定会有美好的前景。要提高技术水平和产品质量,就需要有这方面的技术人才,而高校作为人才培养的主要基地,有责任肩负起这个重任。由于相关人才培养还没有形成系统模式,这就更需要高校和企业紧密联系,共同努力,为半导体材料及光伏产业的人才培养探索出一条可持续发展的光明大道,也为我国的新能源产业发展做出自己的贡献。
有关物理学博士论文推荐:
1. 有关物理学论文
2. 物理学论文范文
3. 物理学论文
4. 物理学教学专业毕业论文
5. 物理学实验本科毕业论文
6. 物理学本科毕业论文
论文题目是全文给读者和编辑和第一印象,文题的好坏对论文能否利用具有举足轻重的作用。如何进行物理学 毕业 论文的选题呢?下面我给大家带来优秀物理学毕业论文题目2021,希望能帮助到大家!
物理学毕业论文题目
1、物理学史与物理教学结合的理论与实践研究
2、二氧化碳深含水层隔离的二相渗流模拟与岩石物理学研究
3、二十世纪中国原子分子物理学的建立和发展
4、普通高中物理课程内容与大学物理课程内容的适切性研究
5、从现代物理学理论发展探讨孙思邈修道养生观
6、地震岩石物理学及其应用研究
7、碎屑岩地震岩石物理学特征研究
8、信息技术支持下的物理学与教的研究
9、物理学中对称现象的语境分析及其意义
10、本质直观视域下的量子引力学困境
11、复杂金融系统的相互作用结构与大波动动力学研究
12、大小细胞视觉通路在早期开角型青光眼和双眼竞争中作用的功能磁共振成像及视觉心理物理学研究
13、经济物理学中的金融数据分析:统计与建模
14、农村高中物理学困生的差异教学研究
15、基于PD控制的拟态物理学优化算法的研究
16、多目标拟态物理学优化算法解集分布性研究
17、利用物理学史 教育 资源优化中学物理教学的研究
18、中学生与物理学家共同体概念形成过程的对比研究
19、物理学专业师范生PCK研究
20、物理学史融入高中物理教学的实践研究
21、莱布尼茨物理学哲学思想研究
22、运用高中物理教材栏目开展物理学史教育的实践
23、新课程下 高一物理 学困生转化策略
24、运用高中物理“学案教学”提高学生问题意识的实践
25、基于书目记录的《中图法》物理学类目调整 方法
26、物理学专业师范生教学技能训练现状调查与对策研究
27、高中物理学困生成因及转化策略研究
28、从物理学家的研究方法看物理学的进展
29、高中物理学困生学习动机的实证调查与影响因素分析
30、食管癌调强放疗物理学参数对放射性肺炎的评估价值
31、近代物理学史在高中物理教学中的应用
32、提升物理学困生自主学习能力的教学策略研究
33、物理学史在高中物理教学中的应用研究
34、关于培养学生物理学科素养的教学实践研究
35、高一物理学困生学习效率低下成因及转化策略
36、校本课程《生活中的物理学原理 DIY 》的开发与实践
37、高中物理教学中物理学史教育现状调查与研究
38、高中物理学困生学业情绪现状及影响因素的调查研究
39、利用物理学史促进高中生理解科学本质的实践研究
40、物理学史融入中学课堂教学的实践研究
2021中学物理论文题目
1、 中学物理教材的重难点内容表达方式的研究
2、 关于中学物理学习中学生素质培养之设想
3、 中学物理学习中互动作用的深入研究
4、 通过力学教学实现中学物理到大学物理的良好过渡
5、 一类变分问题在中学物理课外教学中的尝试
6、 在中学物理知识结构化中锻造学生核心素养
7、 浅谈中学物理探究教学的策略
8、 物理模型在中学物理教学中的作用研究
9、 浅谈中学物理学习中创造性思维的障碍与对策
10、 中学物理知识在甜樱桃保鲜中的应用
11、 浅谈中学物理教学中的“骆驼教学法”
12、 中学物理良性学习习惯的现状调查及分析
13、 函数图像法在中学物理中的应用
14、 中学物理异课同构教研活动设计研究
15、 中学物理教学中缄默知识的应用研究
16、 中学物理教学对大学物理教学的影响——以安阳师范学院为例
17、 物理实验在中学物理教学中的地位和作用
18、 中学物理活动教学的设计研究
19、 中学物理课堂环境评价量表的实证检测
20、 中学物理教学中概念的教学策略研究
21、 几何画板在中学物理教学中的应用
22、 引导式 反思 :将HPS教育融入中学物理教学的方式
23、 中学物理实验课堂环境的测评研究——以北京地区为例
24、 我国中学物理教育研究的进展与趋势——基于中国知网的文献计量学研究
25、 国际科学教育坐标中的我国中学物理教育研究:基于文献计量学的国际比较研究
26、 中学物理实验技能的评价研究
27、 中学物理教学中激发学生学习动机的策略研究
28、 突破中学物理教学难点的策略
29、 探究中学物理课堂的实际案例中如何引入新的教学模式
30、 中学物理“微实验”创设的价值思考
31、 中学物理实验教学的新思考
32、 提高中学物理教师信息技术应用技能的策略
33、 高师本科物理专业中学物理教学能力培养目标体系的研究
34、 刍议中学物理教科书中的举例说明题
35、 中学物理教学的问题情境创设
36、 3D虚拟增强现实技术在中学物理教学中的应用研究
37、 以藏族 文化 生活为例,开发藏区中学物理课程实验资源
38、 贯通大中学物理综合能力培养的物理学术竞赛教学模式
39、 中学物理在教学内容上的改革思考
40、 我国中学物理“时间观”课程教学的现实与改进
41、 中学物理教学中演示实验的应用策略
42、 中学物理教学中学生动手能力的培养
43、 新课程背景下农村中学物理实验教学的探索
44、 浅谈提高中学物理低成本实验教学的有效性
45、 浅谈中学物理“生活化”教学的策略
物理教学论文题目
1、 高中物理教学中常见电学实验问题分析
2、 以生活化教学模式提高初中物理教学的有效性
3、 工科专业大学物理教学现状与改革方向研究
4、 大学物理教学中创新型人才的培养与实践
5、 教学新范式下大学物理教学的几点思考
6、 基于翻转课堂理念的独立学院大学物理教学模式研究
7、 基于CDIO理念的大学物理教学改革探索
8、 统计物理教学中引入Jarzynski等式的必要性
9、 物理教学融入工匠精神的思考与实践
10、 让“陶花”在物理教学实践中绽放——浅议过程性评价和物理教学实践
11、 高中物理教学中培养学生的思维
12、 “蜂窝视频元”在高中物理教学中的应用实践研究
13、 中学物理教学中缄默知识的应用研究
14、 提高大学物理教学质量的 措施 与对策
15、 高分子物理教学中关于链段概念的讲解
16、 以提高人才培养质量为目标,探索新形势下大学物理教学策略
17、 基于翻转式课堂模式的大学物理教学研究
18、 中学物理教学对大学物理教学的影响——以安阳师范学院为例
19、 高分子物理教学中“结晶”概念的讲解
20、 引导式反思:将HPS教育融入中学物理教学的方式
21、 高中物理教学核心素养:演示实验创新
22、 数形结合思想在高中数学与物理教学中的应用研究
23、 浅析信息技术在初中物理教学中的应用——以欧姆定律学习为例
24、 新工科背景下大学物理教学研究
25、 地方本科院校大学物理教学改革模式探究
26、 高师本科物理专业中学物理教学能力培养目标体系的研究
27、 高中物理教学使用 思维导图 的几个误区
28、 中学物理教学的问题情境创设
29、 3D虚拟增强现实技术在中学物理教学中的应用研究
30、 MATLAB的可视化在物理教学中的应用
31、 案例教学法在“半导体器件物理”教学中的尝试与反思
32、 新工科背景下“类像思维”在半导体物理教学中的应用
33、 核心素养下的高校半导体物理教学改革路径研究
34、 材料专业大学物理教学内容的改革与实践
35、 为提高大学物理教学的学术水平而努力
36、 材料学专业固体物理教学中的抽象与形象思维转化
37、 大学物理教学研究现状与展望——基于10年核心期刊论文分析
38、 高考3+3新模式下中学与大学物理教学的衔接性校本研究:热学部分
39、 浅析STS教育在职业学校物理教学中的有效渗透
40、 智慧教育理念在大学物理教学改革中的应用研究
41、 混合教学模式在固体物理教学中的应用
42、 物理学思维方法在大学物理教学中的应用
43、 多媒体在应用型本科院校大学物理教学中的应用
44、 在物理教学中渗透生涯教育的探索——由新高考选考物理遇冷说开去
45、 浅谈初中物理教学中“弱势学生”激励策略
46、 “物理教学论实验”课程的“课例化”教学模式研究
47、 提高大学物理教学效果的策略
48、 利用虚拟实验改进物理教学
49、 基于建筑学学生思维特点的实践性建筑物理教学初探
50、 核心素养视角下初中物理教学的方法
优秀物理学毕业论文题目相关 文章 :
★ 物理学毕业论文题目
★ 物理学毕业论文选题
★ 物理学院毕业论文题目
★ 物理学毕业论文4000字
★ 物理学本科毕业论文
★ 物理学毕业论文
★ 有关物理学毕业论文
★ 物理学本科生毕业论文
★ 物理学毕业论文范文
★ 物理学理论研究论文
高等数学在我们生活中的具体应用论文
从小学、初中、高中到大学乃至工作,大家都尝试过写论文吧,论文是探讨问题进行学术研究的一种手段。你写论文时总是无从下笔?以下是我收集整理的高等数学在我们生活中的具体应用论文,希望对大家有所帮助。
摘要:
进入21世纪,随着经济的不断发展,社会竞争越来越大,对于人才的要求也越来越高。在这种情况下,高等数学的重要作用就凸显了出来,高等数学能够培养人们的思维能力,培养人们发现问题、解决问题的思维方式。高等数学在我们生活中的应用越来越广泛,并且渗透到了各行各业中,许多问题的解决都离不开数学模型的构建。针对高等数学的特点,分析其在我们生活中的具体应用。
关键词 :
高等数学;经济社会;应用;
引言:
数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识。
一、高等数学在学术中的应用
高等数学在众多的学科中扮演着重要的角色,在物理学科中,高等数学与其关系极为紧密,高等数学中最为重要的一部分便是微积分,众所周知,微积分是其创始人,著名的物理学家、数学家牛顿先生在解决经典力学问题的过程中所创立的,力学作为物理学中重要的知识,几乎贯穿于整个物理知识体系中,而微积分就是解决物理知识的关键工具,构建了地球和天体主要运动现象的完整力学体系。
在生物学中,高等数学同样扮演着重要的角色,19世纪时,就有生物学家试图通过数学方法来研究生命现象。而在上世纪20年代中期,就有生物学家利用高等数学的一些知识来解决著名的地中海鳖鱼问题,经历了几十年的发展,生物数学已经成为了生物学中重要的部分,无论是心脏的跳动还是血液的循环、脉搏的周期,都可以用高等数学的知识通过方程组的形式进行表示,并且通过求解的方法来掌握一定的规律,描述生物界的一些现象。
二、高等数学在经济社会的应用
随着社会经济的不断进步以及高等数学的不断发展,数学的手段越来越多样化,经济问题也越来越多样化,利用数学问题对经济环节进行定量分析是十分重要的,最简单的例子就是我们平时生活中的存取款问题以及利率问题。高等数学在经济生活中的应用不止如此,除此之外,高等数学还可以为经营者提供科学合理的数据,以高等数学作为工具来得到最佳的决策。在经济学当中,许多的量如边际成本、边际收益、边际利润都需要用导数来进行计算。而通过这些量可以计算企业生产过程中的一些数据,来对企业的正常运转进行调控,从而达到最优的生产效果。每个经营者都希望用最少的钱创造更多的`价值,在实际经营过程中,难免会出现资金的浪费,利用高等数学知识,能够使资金得到最合理的应用,使成本降低,创造更加大的利润,这种问题,其实就是高等数学中最大值最小值的问题,将其转化为数学模型,能够更好地配置相关资源,合理安排生产,实现最大利润。
三、高等数学在军事中的应用
纵观两次世界大战,无论哪一次都少不了高等数学的身影。射击火力表一直都是数学家需要计算的重要任务。除此之外,各种新型武器装备的研发以及投产,都离不开高等数学的研究。不仅仅是空气动力学、流体动力学还是弹道学,等等,其中都包含着高等数学的知识,这充分说明了高等数学的重要地位。除此之外,高等数学还在原子弹、声呐等新型装备的研发过程中扮演着重要的角色,可能直接影响战争的格局和走向。未来,随着科学技术的不断发展,军事技术也一定会作用于各种新的高科技,而一切高科技领域都少不了高等数学的"加持"。
四、高等数学中概率和数理统计的应用
高等数学中涵盖的知识点较多,概率作为其中的一个知识点,在多种领域尤其是自然科学方面以及社会科学方面的应用十分广泛,而且,还与我们的日常生活息息相关。举例子来说,几年前,我国全面开放了二孩政策,在这项政策开放的背后,是相关专家针对我国人口发展的问题,根据众多的资料数据进行统计分析,判断后做出的决定。近几年,随着我国科学技术的不断进步,以高等数学为核心的生活方式迅速地辐射到了人们日常生活中的各个领域,从移动支付以及购物到智能机器人的应用,办公的自动化,这些都需要我们具有高等数学知识以及素养。
五、高等数学在学生思维构建方面的应用
高等数学通过建立模型,能够有效地培养学生的综合素质,开拓学生的思维。在教学过程中,教师通过给学生树立建模的思想,使学生能够得到全面的发展,能够最大程度地提高学生的学习热情。高等数学可以通过构建数学模型,以此来对现实中的一些事物进行有规律的描述。而高等数学进行数学模型的构建需要人类的思维活动,也就是说,高等数学能够提高学生对于数学理论以及思维方法应用的意识,使学生培养数学思维,利用数学知识解决生活实际问题。
六、结语
当代大学生学习数学的重要性显而易见,我们要想在21世纪的社会有一个立足之地就需要全面地发展自己,而我们学习的高等数学又是其中的重中之重。我们要认清当今社会的人才培养目标,深入地学习高等数学,为中国的经济建设献出自己的力量,为早日实现中华民族的伟大复兴而奋斗。
参考文献
[1]苏丽论高等数学在经济分析中的应用[J].信息记录材料,2016,(06)
[2]卢明宇浅析微积分在金融领域的作用[J].经贸实践,2017,(05)
[3]马源谈谈数学学习在经济金融学中的作用[J].经贸实践,2017,(15)
拓展:
专业论文格式模板
一、毕业论文(设计)资料按以下顺序排列:
(一)封面。包括论文题目、指导教师、学生姓名、学号、院(系)、专业、毕业时间等内容。论文封面由学校统一印制。
(二)中、外文摘要(包括关键词)。外文论文(设计)的中文摘要放在英文摘要后面编排。
(三)正文。
(四)注释。
(五)附录。
(六)参考文献。
(七)致谢。
二、毕业论文的打印与装订
除要检验学生书写规范的专业外,毕业论文(设计)须用计算机打印,一律采用A4纸。
(一)页面设置
毕业论文(设计)要求纵向打印,页边距的要求为:
上(T):
下(B):
左(L):2cm
右(R):2cm
装订线(T):
装订线位置(T):左
其余采取系统默认设置。
(二)排式与用字
文字图形一律从左至右横写横排。
文字一律通栏编辑。
论文采用宋体,字迹清楚整齐,除特殊需要,一般不使用繁体字。
(三)段落设置
采用多倍行距,行距设置值为。
其余采取系统默认设置。
(四)页眉、页脚设置
论文题目(不包括副题目)居中,采用五号宋体字。
页脚需设置页码,页码采用五号黑体字,加粗,居中放置,格式如:1,2,3……页。
三、毕业论文(设计)撰写的内容与要求
(一)封面
1、封面。
纸质封面由学校统一印制。不编排页码。
2、封一(中文摘要)
中文摘要:“中文摘要”四字在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。中文摘要一般不超过250—300字。
关键词:接中文摘要打印,“关键词”三字空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。关键词一般在3—8个之间。
3、封二(外文摘要)
外文摘要:“外文摘要”英文单词在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。外文摘要一般不超过250个实词。
关键词:接外文摘要打印,“关键词”英文单词空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。外文关键词应与中文关键词相对应。
(二)正文
正文一般使用小四号宋体字,重点文句加粗。
1、标题层次。
毕业论文的全部标题层次应整齐清晰,相同的层次应采用统一的表示体例,正文中各级标题下的内容应同各自的标题对应,不应有与标题无关的内容。
各层标题均单独占行。第一级标题居中放置;第二、三、四等级标题序数顶格放置,后空一格接标题内容,末尾不加标点。
标题序数采用1.、2.……、……、…………的层次。正文中对总项包括的分项采用一、二、……(一)、(二)……1、2……(1)、(2)……①②……的层次,括号后不再加其他标点。
2、量和单位。各种计量单位一律采用国家标准GB3100—GB3102-93。非物理量的单位可用汉字与符号构成组合形式的单位。
3、标点符号。标点符号应按照国家新闻出版署公布的“标点符号使用方法”的统一规定正确使用,忌误用和含糊混乱。
4、外文字母。外文字母采用我国规定和国际通用的有关标准写法。要分清正斜体、大小写和上下脚码。
5、名词、名称。科学技术名词术语采用全国自然科学技术名词审定委员会公布的规范词或国家标准、部标准中规定的名称,尚未统一规定或叫法有争议的名称术语,可采用惯用的名称。
6、数字。文中的数字,除部分结构层次序数和词、词组、惯用语、缩略语、具有修辞色彩语句中作为词素的数字必须使用汉字外,应当使用阿拉伯数码,同一文中,数字表示方法应前后一致。
7、公式。公式一般居中放置;有编号的公式顶格放置,编号需加圆括号标在公式右边,公式与编号之间不加虚线。
公式下有说明时,应在顶格处标明“注: ”。
较长公式的转行应在加、减、乘、除等符号处。
8、表格和插图。
(1)表格。每个表格应有自己的表序和表题。表内内容应对齐,表内数字、文字连续重复时不可使用“同上”等字样或符号代替。表内有整段文字时,起行处空一格,回行顶格,最后不用标点符号。
(2)插图。每幅图应有自己的图序和图题。一般要求采用计算机制图。
文中图表需在表的上方、图的下方排印表号、表名、表注或图号、图名、图注。
(三)注释
注释采用页末注(将注文放在加注页的页脚)或篇末注(将全部注文集中在文章末尾),不可行中加注。注释编号选用带圈阿拉伯数字,注文使用小五号宋体字。
以下为引用各类文献注释格式:
专著:注释编号.作者.专著.书名[m].出版社,出版年.起止页码
期刊:注释编号.作者.期刊.题名[J].刊名,出版年(卷、期):起止页码
论文集:注释编号.作者.论文名称:论文集名[C].出版地:出版社,出版年度.起止页码
学位论文:注释编号.作者.题名[D].保存地点:保存单位,写作年度.
专利文献:注释编号.专利所有者.题名[P].专利国别:专利号,出版日期
光盘:注释编号.责任者.电子文献题名[电子文献及载体类型标识],出版年(光盘序号)
互联网:注释编号.责任者.文献题名.电子文献网址.访问时间(年-月-日)
文献作者3名以内的全部列出;3名以上则列出前3名,后加“等”(英文加“etc"”)
(四)附录
“附录”两字在第一行居中位置,使用小二号黑体字,加粗。
附录项目名称使用四号黑体字,加粗,居左顶格放置。另起一行空两格,使用小四号宋体字标注附录序号和题名,编排样式可参照正文。
(五)参考文献
参考文献一律放在文后,其书写格式应根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:M专著,C论文集,N报纸文章,J期刊文章,D学位论文,R研究报告,S标准,P专利;对于专著、论文集中的析出文献采用单字母“A”标识,其他未说明的文献类型,采用单字母“Z”标识。
“参考文献”四字居中放置,使用小二号黑体字,加粗。
内容使用小四号宋体字,居左,空两格放置。具体结构格式与标注方法同注释中交代引文出处的注文格式。
我赛!来膜拜一下,论文竟然选数学微积分,太牛了,当初我写个广义预测控制的都给我搞的死去活来的,全靠ps,唉!
微积分在经济学中的应用是我为大家带来的论文范文,欢迎阅读。
【摘要】微积分是高等数学伟大的成就之一,在日常生活的各个领域都有着广泛的应用。利用高等数学微积分的数学定量来分析和解决各领域方面的理由己成为经济学中的一个重要部分,它使经济学由定性走向定量化,这使得微积分在经济领域中的作用越来越明显。
【关键词】微积分;经济学;边际分析
微积分是高等数学的伟大成就。微积分产生于生产技术和理论科学,同时又影响着科技的发展。
在经济学的领域内,将一些经济理由利用相关模型转化为数学理由,用数学的策略对经济学理由进行研究和分析,把经济活动中的实际理由利用微积分的策略进行量化,在此基础上得到的结果具有科学的量化依据。
1.微积分在经济学中的应用
边际分析
经济学中的边际理由,是指每一个自变量的变动导致因变量变动多少的理由,所以边际函数就是对一个经济函数 的因变量求导,得出 ,其中在某一点的值就是该点的边际值。
例1:已知某工厂某种产品的收益 (元)与销售量 (吨)的函数关系是 ,求销售60吨该产品时的边际收益,并说明其经济含义。
解:根据题意得,销售这种产品 吨的总收益函数为 。因而,销售60吨该产品的边际收益是 元。其经济学含义是:当该产品的销售量为60吨时,销售量再增加一吨(即 =1)所增加的总收益是188元。这个理由看起来很简单,但是在实际生活中的应用作用很大。又如:
例2:某工厂生产某种机械产品,每月的总成本C(千元)与产量x(件)之间的函数关系为 ,若每件产品的销售价为2万元,求每月生产6件、9件、156件、24件时的边际利润,并说明其经济含义。
解:根据题意得,该厂每月生产x件机械产品的总收入函数为 。因此,该厂生产的x件产品的利润函数为: ,由此可得边际利润函数为 ,那么每月该厂生产6件、9件、15件、24件时的边际利润分别是: (千元/件), (千元/件), (千元/件), (千元/件)。
这个经济学的含义是:当该厂月产量为6件时,若再增产1件,此时的利润将会增加18000元;当该厂的月产量为9件时,若再增产1件,利润将增加12000元,有所降低;当月产量增加到15件时,再增产1件,利润反而不会增加;当月产量为24件时,若再增产1件,此时的利润反而会相应的减少18000元。
由此我们可以得出结论,产品的利润最大,并不是出现在最大量的时候,也就是说多增加产量必定能够增加利润,只有合理统筹安排工厂的生产量,这样才能取得最大的利润。
由此可得结论,当产品的边际收益等于产品的边际成本时,此时就已经达到了最大利润,如果再进行扩大生产了,产品反而会亏本。
弹性分析
在经济学中,某变量对另一个变量变化的反映程度称为弹性或弹性系数[2]。
在经济工作中有很多种的弹性,研究的理由不同,弹性的种类也不同。如果是价格的变化与需求之间的反映,这个反映我们称为需求弹性。由于消费需求的不同以及商品自身属性的差异,同样的价格变化给不同的商品的需求带来不同的影响。有些商品反应很灵敏,弹性大,价格的变动会造成很大的销售变动;有的商品反应较缓慢,弹性小,价格的变动对其没什么影响。
①需求弹性。对于需求函数 ,由于价格上涨时,商品的需求函数 为具有一定单调性,是一个单调减函数, 与 异号,所以定义需求对价格的弹性函数为 。
例3:设某种商品的需求函数为 ,求需求的弹性函数; , , 的需求弹性。
解: , ,说明当 时,价格上涨1%,需求减少,需求变动的幅度小于价格变动的幅度; ,说明当 时,价格上涨1%,需求也减少1%,需求变动的幅度与价格变动的幅度是相同的; ,说明当 时,价格上涨1%,需求减少,需求变动的幅度大于价格变动的幅度。
②收益弹性。收益R是商品的价格 与其销售量Q的乘积。在任何的价格水平条件下,收益弹性与需求弹性之和总是等于1。若 时,商品的价格上涨(或下降)1%,收益增加(或减少) ;若 时,价格变动1%,收益不变;若 时,价格上涨(或下降)1%,收益减少(或增加) 。
最值分析
在生产理论中,研究长期生产理由通常主要是以两种可变生产要素的生产函数来表示[3]。假如企业利用劳动和资本这两种可变的生产要求来生产一种产品,那么可变生产要求的生产函数是:
公式中L为可变要求劳动的投入量多少,K为可变要求资本的投入量的多少,Q为产品的产量。生产的产品厂商可以通过对两个投入的可变生产要素的'不断调整来实现一定成本条件下的最大产量的最佳生产要素组合。
假定生产要素市场上核定的劳动的价格即工资率为ω,核定的资本的价格即利息率为r,产品厂商核定的成本支出为C,则依据相关函数可得成本方程为: ,C 在一定的条件限制下,即: ,由此建立的拉格朗日方程:
产品产量最大化的一阶条件为: ,
由以上两式可得: ,由此得出核定条件下要想实现最大产量的要素组合原则是:即产品的厂商不断通过对劳动和资本这两种可变要素投入量的调整,使得最后一单位的成本支出不管用来购买哪种生产要素所获得的边际产量都是最高的,从而实现核定成本条件下的产量最大化。
最优化分析
边际分析研究的是函数边际点上的极值[4]。也就是来研究变量在边际点是递增变为递减,还是由递减变为递增,像这种边际点的函数值就是函数的极大值或极小值。经济研究的重点就是研究边际点是的最佳点,因为这是做出最优决策的最合理的边际点。因此,微积分法是研究最优化理由是必不可少的策略。
最优化理论是经济学中经济分析的基础,也是进行经济决策的依据。实现经济学的最优化,就是要求经济学中的一切经济活动都处于最佳的顶峰位置,任何一点偏离都要从顶峰向下倾斜,这个必定会用到微分的思想。
例4:设生产 个产品的边际成本 ,其固定成本为 元,产品的单价规定为500元.假设产销平衡,问生产量为多少时利润最大,并求出最大利润。
解:总成本函数为,总收益函数为 ,总利润 , ,令 ,得 。因为 ,所以当生产量为200个时,利润最大,最大利润为L(200)=400 200-=39000(元)。
2.总结
微积分在经济学中的地位是非常重要的。现如今在经济学领域,很多经济学研究均需要量化研究,所以越来越多地运用到了微积分的知识,这不但有利于微积分的发展,还能够帮助经济学更加的定量化、精密化和准确化。
微积分在经济学中的应用使得经济学得到重大发展,并最终导致了微观经济学的形成。
参考文献:
[1]陈朝斌.微积分在经济学最优化理由中的应用[J].保山师专学报,2009(5):34-36.
[2]张丽玲.微积分在经济学中的应用[J].百色学院学,2009(5):49-52.
[3]蔡洪新.微积分在经济学中的应用分析[J].数学学习与研究,2010(9):99-100.
[4]向菊敏.微积分在经济分析活动中的应用[J].科技信息,2011(26):57-82.
高等数学在我们生活中的具体应用论文
从小学、初中、高中到大学乃至工作,大家都尝试过写论文吧,论文是探讨问题进行学术研究的一种手段。你写论文时总是无从下笔?以下是我收集整理的高等数学在我们生活中的具体应用论文,希望对大家有所帮助。
摘要:
进入21世纪,随着经济的不断发展,社会竞争越来越大,对于人才的要求也越来越高。在这种情况下,高等数学的重要作用就凸显了出来,高等数学能够培养人们的思维能力,培养人们发现问题、解决问题的思维方式。高等数学在我们生活中的应用越来越广泛,并且渗透到了各行各业中,许多问题的解决都离不开数学模型的构建。针对高等数学的特点,分析其在我们生活中的具体应用。
关键词 :
高等数学;经济社会;应用;
引言:
数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识。
一、高等数学在学术中的应用
高等数学在众多的学科中扮演着重要的角色,在物理学科中,高等数学与其关系极为紧密,高等数学中最为重要的一部分便是微积分,众所周知,微积分是其创始人,著名的物理学家、数学家牛顿先生在解决经典力学问题的过程中所创立的,力学作为物理学中重要的知识,几乎贯穿于整个物理知识体系中,而微积分就是解决物理知识的关键工具,构建了地球和天体主要运动现象的完整力学体系。
在生物学中,高等数学同样扮演着重要的角色,19世纪时,就有生物学家试图通过数学方法来研究生命现象。而在上世纪20年代中期,就有生物学家利用高等数学的一些知识来解决著名的地中海鳖鱼问题,经历了几十年的发展,生物数学已经成为了生物学中重要的部分,无论是心脏的跳动还是血液的循环、脉搏的周期,都可以用高等数学的知识通过方程组的形式进行表示,并且通过求解的方法来掌握一定的规律,描述生物界的一些现象。
二、高等数学在经济社会的应用
随着社会经济的不断进步以及高等数学的不断发展,数学的手段越来越多样化,经济问题也越来越多样化,利用数学问题对经济环节进行定量分析是十分重要的,最简单的例子就是我们平时生活中的存取款问题以及利率问题。高等数学在经济生活中的应用不止如此,除此之外,高等数学还可以为经营者提供科学合理的数据,以高等数学作为工具来得到最佳的决策。在经济学当中,许多的量如边际成本、边际收益、边际利润都需要用导数来进行计算。而通过这些量可以计算企业生产过程中的一些数据,来对企业的正常运转进行调控,从而达到最优的生产效果。每个经营者都希望用最少的钱创造更多的`价值,在实际经营过程中,难免会出现资金的浪费,利用高等数学知识,能够使资金得到最合理的应用,使成本降低,创造更加大的利润,这种问题,其实就是高等数学中最大值最小值的问题,将其转化为数学模型,能够更好地配置相关资源,合理安排生产,实现最大利润。
三、高等数学在军事中的应用
纵观两次世界大战,无论哪一次都少不了高等数学的身影。射击火力表一直都是数学家需要计算的重要任务。除此之外,各种新型武器装备的研发以及投产,都离不开高等数学的研究。不仅仅是空气动力学、流体动力学还是弹道学,等等,其中都包含着高等数学的知识,这充分说明了高等数学的重要地位。除此之外,高等数学还在原子弹、声呐等新型装备的研发过程中扮演着重要的角色,可能直接影响战争的格局和走向。未来,随着科学技术的不断发展,军事技术也一定会作用于各种新的高科技,而一切高科技领域都少不了高等数学的"加持"。
四、高等数学中概率和数理统计的应用
高等数学中涵盖的知识点较多,概率作为其中的一个知识点,在多种领域尤其是自然科学方面以及社会科学方面的应用十分广泛,而且,还与我们的日常生活息息相关。举例子来说,几年前,我国全面开放了二孩政策,在这项政策开放的背后,是相关专家针对我国人口发展的问题,根据众多的资料数据进行统计分析,判断后做出的决定。近几年,随着我国科学技术的不断进步,以高等数学为核心的生活方式迅速地辐射到了人们日常生活中的各个领域,从移动支付以及购物到智能机器人的应用,办公的自动化,这些都需要我们具有高等数学知识以及素养。
五、高等数学在学生思维构建方面的应用
高等数学通过建立模型,能够有效地培养学生的综合素质,开拓学生的思维。在教学过程中,教师通过给学生树立建模的思想,使学生能够得到全面的发展,能够最大程度地提高学生的学习热情。高等数学可以通过构建数学模型,以此来对现实中的一些事物进行有规律的描述。而高等数学进行数学模型的构建需要人类的思维活动,也就是说,高等数学能够提高学生对于数学理论以及思维方法应用的意识,使学生培养数学思维,利用数学知识解决生活实际问题。
六、结语
当代大学生学习数学的重要性显而易见,我们要想在21世纪的社会有一个立足之地就需要全面地发展自己,而我们学习的高等数学又是其中的重中之重。我们要认清当今社会的人才培养目标,深入地学习高等数学,为中国的经济建设献出自己的力量,为早日实现中华民族的伟大复兴而奋斗。
参考文献
[1]苏丽论高等数学在经济分析中的应用[J].信息记录材料,2016,(06)
[2]卢明宇浅析微积分在金融领域的作用[J].经贸实践,2017,(05)
[3]马源谈谈数学学习在经济金融学中的作用[J].经贸实践,2017,(15)
拓展:
专业论文格式模板
一、毕业论文(设计)资料按以下顺序排列:
(一)封面。包括论文题目、指导教师、学生姓名、学号、院(系)、专业、毕业时间等内容。论文封面由学校统一印制。
(二)中、外文摘要(包括关键词)。外文论文(设计)的中文摘要放在英文摘要后面编排。
(三)正文。
(四)注释。
(五)附录。
(六)参考文献。
(七)致谢。
二、毕业论文的打印与装订
除要检验学生书写规范的专业外,毕业论文(设计)须用计算机打印,一律采用A4纸。
(一)页面设置
毕业论文(设计)要求纵向打印,页边距的要求为:
上(T):
下(B):
左(L):2cm
右(R):2cm
装订线(T):
装订线位置(T):左
其余采取系统默认设置。
(二)排式与用字
文字图形一律从左至右横写横排。
文字一律通栏编辑。
论文采用宋体,字迹清楚整齐,除特殊需要,一般不使用繁体字。
(三)段落设置
采用多倍行距,行距设置值为。
其余采取系统默认设置。
(四)页眉、页脚设置
论文题目(不包括副题目)居中,采用五号宋体字。
页脚需设置页码,页码采用五号黑体字,加粗,居中放置,格式如:1,2,3……页。
三、毕业论文(设计)撰写的内容与要求
(一)封面
1、封面。
纸质封面由学校统一印制。不编排页码。
2、封一(中文摘要)
中文摘要:“中文摘要”四字在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。中文摘要一般不超过250—300字。
关键词:接中文摘要打印,“关键词”三字空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。关键词一般在3—8个之间。
3、封二(外文摘要)
外文摘要:“外文摘要”英文单词在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。外文摘要一般不超过250个实词。
关键词:接外文摘要打印,“关键词”英文单词空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。外文关键词应与中文关键词相对应。
(二)正文
正文一般使用小四号宋体字,重点文句加粗。
1、标题层次。
毕业论文的全部标题层次应整齐清晰,相同的层次应采用统一的表示体例,正文中各级标题下的内容应同各自的标题对应,不应有与标题无关的内容。
各层标题均单独占行。第一级标题居中放置;第二、三、四等级标题序数顶格放置,后空一格接标题内容,末尾不加标点。
标题序数采用1.、2.……、……、…………的层次。正文中对总项包括的分项采用一、二、……(一)、(二)……1、2……(1)、(2)……①②……的层次,括号后不再加其他标点。
2、量和单位。各种计量单位一律采用国家标准GB3100—GB3102-93。非物理量的单位可用汉字与符号构成组合形式的单位。
3、标点符号。标点符号应按照国家新闻出版署公布的“标点符号使用方法”的统一规定正确使用,忌误用和含糊混乱。
4、外文字母。外文字母采用我国规定和国际通用的有关标准写法。要分清正斜体、大小写和上下脚码。
5、名词、名称。科学技术名词术语采用全国自然科学技术名词审定委员会公布的规范词或国家标准、部标准中规定的名称,尚未统一规定或叫法有争议的名称术语,可采用惯用的名称。
6、数字。文中的数字,除部分结构层次序数和词、词组、惯用语、缩略语、具有修辞色彩语句中作为词素的数字必须使用汉字外,应当使用阿拉伯数码,同一文中,数字表示方法应前后一致。
7、公式。公式一般居中放置;有编号的公式顶格放置,编号需加圆括号标在公式右边,公式与编号之间不加虚线。
公式下有说明时,应在顶格处标明“注: ”。
较长公式的转行应在加、减、乘、除等符号处。
8、表格和插图。
(1)表格。每个表格应有自己的表序和表题。表内内容应对齐,表内数字、文字连续重复时不可使用“同上”等字样或符号代替。表内有整段文字时,起行处空一格,回行顶格,最后不用标点符号。
(2)插图。每幅图应有自己的图序和图题。一般要求采用计算机制图。
文中图表需在表的上方、图的下方排印表号、表名、表注或图号、图名、图注。
(三)注释
注释采用页末注(将注文放在加注页的页脚)或篇末注(将全部注文集中在文章末尾),不可行中加注。注释编号选用带圈阿拉伯数字,注文使用小五号宋体字。
以下为引用各类文献注释格式:
专著:注释编号.作者.专著.书名[m].出版社,出版年.起止页码
期刊:注释编号.作者.期刊.题名[J].刊名,出版年(卷、期):起止页码
论文集:注释编号.作者.论文名称:论文集名[C].出版地:出版社,出版年度.起止页码
学位论文:注释编号.作者.题名[D].保存地点:保存单位,写作年度.
专利文献:注释编号.专利所有者.题名[P].专利国别:专利号,出版日期
光盘:注释编号.责任者.电子文献题名[电子文献及载体类型标识],出版年(光盘序号)
互联网:注释编号.责任者.文献题名.电子文献网址.访问时间(年-月-日)
文献作者3名以内的全部列出;3名以上则列出前3名,后加“等”(英文加“etc"”)
(四)附录
“附录”两字在第一行居中位置,使用小二号黑体字,加粗。
附录项目名称使用四号黑体字,加粗,居左顶格放置。另起一行空两格,使用小四号宋体字标注附录序号和题名,编排样式可参照正文。
(五)参考文献
参考文献一律放在文后,其书写格式应根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:M专著,C论文集,N报纸文章,J期刊文章,D学位论文,R研究报告,S标准,P专利;对于专著、论文集中的析出文献采用单字母“A”标识,其他未说明的文献类型,采用单字母“Z”标识。
“参考文献”四字居中放置,使用小二号黑体字,加粗。
内容使用小四号宋体字,居左,空两格放置。具体结构格式与标注方法同注释中交代引文出处的注文格式。
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
就是你准备怎么样来完成毕业论文。 写出你打算采用的方法就可以了。 如:某方面的研究“课题拟采用的研究方法和手段”是:采用高等数学和微积分的方法计算,采用矩阵理论的方法计算,采用概率论的方法进行模拟,进而比较得出更合理确切的结论。希望对你有帮助!!!
就是你准备怎么样来完成毕业论文。
写出你打算采用的方法就可以了。如:方面的研究"课题拟采用的研究方法和手段"是:采用高等数学和微积分的方法计算,采用矩阵理论的方法计算,采用概率论的方法进行模拟,进而比较得出更合理确切的结论。
论文拟采用的研究方法:
1、实验; 2、试验; 3、理论解析、计算; 4、工业性实验及生产实践等等。
毕业论文的撰写及答辩考核是顺利毕业的重要环节之一,也是衡量毕业生是否达到要求重要依据之一。
但是,由于许多应考者缺少系统的课堂授课和平时训练,往往对毕业论文的独立写作感到压力很大,心中无数,难以下笔。因此,就毕业论文的撰写进行必要指导,具有重要的意义。
(一)、毕业论文是应考者的总结性独立作业,目的在于总结学习专业的成果,培养综合运用所学知识解决实际问题的能力。从文体而言,它也是对某一专业领域的现实问题或理论问题进行科学研究探索的具有一定意义的论说文。完成毕业论文的撰写可以分两个步骤,即选择课题和研究课题。
(二)、选好课题后,接下来的工作就是研究课题,研究课题一般程序是:搜集资料、研究资料,明确论点和选定材料,最后是执笔撰写、修改定稿。
第一、研究课题的基础工作——搜集资料。考生可以从查阅图书馆、资料室的资料,做实地调查研究、实验与观察等三个方面来搜集资料。搜集资料越具体、细致越好,最好把想要搜集资料的文献目录、详细计划都列出来。
首先,查阅资料时要熟悉、掌握图书分类法,要善于利用书目、索引,要熟练地使用其他工具书,如年鉴、文摘、表册、数字等。其次,做实地调查研究,调查研究能获得最真实可靠、最丰富的第一手资料,调查研究时要做到目的明确、对象明确、内容明确。
调查的方法有:普遍调查、重点调查、典型调查、抽样调查。调查的方式有:开会、访问、问卷。最后,关于实验与观察。
实验与观察是搜集科学资料数据、获得感性知识的基本途径,是形成、产生、发展和检验科学理论的实践基础,本方法在理工科、医类等专业研究中较为常用,运用本方法时要认真全面记录。
第二、研究课题的重点工作——研究资料。考生要对所搜集到手的资料进行全面浏览,并对不同资料采用不同的阅读方法,如阅读、选读、研读。
第三、研究课题的核心工作――明确论点和选定材料。在研究资料的基础上,考生提出自己的观点和见解,根据选题,确立基本论点和分论点。
提出自己的观点要突出新创见,创新是灵魂,不能只是重复前人或人云亦云。同时,还要防止贪大求全的倾向,生怕不完整,大段地复述已有的知识,那就体现不出自己研究的特色和成果了。
第四、研究课题的关键工作――执笔撰写。下笔时要对以下两个方面加以注意:拟定提纲和基本格式。
第五、研究课题的保障工作――修改定稿。通过这一环节,可以看出写作意图是否表达清楚,基本论点和分论点是否准确、明确,材料用得是否恰当、有说服力,材料的安排与论证是否有逻辑效果,大小段落的结构是否完整、衔接自然,句子词语是否正确妥当,文章是否合乎规范。
微积分在不等式中的应用[摘要]本文应用微积分讨论了一些不等式的解法和证明,进一步揭示了微积分作为一种实用性很强的数学方法和工具,在求解不等式中的作用。[关键词]微积分高等数学不等式不等式是数学研究的一个基本问题,是属于初等数学的重要内容。不等式的证明方法多种多样,初等数学中常用的方法有恒等变形,使用重要不等式,用数学归纳法等,这些方法往往需要极高的技巧和超强的变形能力。微积分是高等数学的核心,微积分思想方法是高等数学乃至整个数学的典型方法,微积分思想方法的引入为解决不等式证明的难题找到了突破口,用这来解不等式可使解题思路变得简单。下面就通过实例分析微积分在证明不等式中的应用。1、用导数的定义证明不等式例1.设f(x)=a1sinx+a2sin2x+…+ansinnx,已知f(x)≤sinx,求证:a1+2a2+…+nan≤1。证明:方法1:因为f(0)=0,由已知f(x)-f(0)x-0≤sinxx(x≠0)∴limx→0f(x)-f(0)x-0≤1圯f'(0)≤1即a1+2a2+…+nan≤1。导数的定义是微积分的基础,此题还可运用两个重要极限及变形进行证明。方法2:由f(x)≤sinx,得f(x)x≤sinxx(x≠0),即a1sinxx+a2sin2xx+…+ansinnxx≤sinxx两端同时取x→0时的极限得limx→0a1sinxx+a2sin2xx+…+ansinnxx≤limx→0sinxx由重要极限及其变形知:limx→0sinkxx=k∴a1+2a2+…+nan≤1,证毕。2、利用函数的单调增减性定理1:设函数y=f(x)在[a,b]上连续,在(a,b)内可导(1)若在(a,b)内,f'(x)>0,那么函数y=f(x)在[a,b]上单调增加;(2)若在(a,b)内,f'(x)<0,那么函数y=f(x)在[a,b]上单调减少。由定理1我们总结出运用单调性证明不等式的一般方法与步骤:(1)移项,使不等式一端为“0”,另一端即为所作的辅助函数f(x);(2)求出f'(x),并判断f(x)在指定区间的增减性;(3)求出区间端点的函数值,作出比较即得所证。例2.设b>a>0,证明:lnba>2(b-a)a+b。分析:当b>a>0时,lnba>2(b-a)a+b圳(lnb-lna)(a+b)>2(b-a)证明:令f(x)=(lnx-lna)(a+x)-2(x-a)(x≥a)∵f'(x)=1x(a+x)+(lnx-lna)-2f''(x)=-ax2+1x=x-ax2≥0(x≥a)所以f'(x)单调增加,又f'(a)=0,于是f'(x)≥0(x≥a)因而f(x)单调增加,又f(a)=0,故当b>a>0时,有f(b)>f(a)=0即(lnb-lna)(a+b)-2(b-a)>0,亦即lnba>2(b-a)a+b。3、用微分中值定理证明不等式定理2(罗尔定理):设函数f(x)满足条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)f(a)=f(b);则在(a,b)内至少存在一个点ξ,使得f'(ξ)=0。定理3(拉格朗日中值定理):设函数f(x)满足条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;则在(a,b)内至少存在一个点ξ,使得f'(ξ)=f(b)-f(a)b-a。
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
中值定理已经被研究的透彻的不能再透彻了,我真不懂你写什么》?没有质量的论文写了也只是在浪费时间。就整个数学分析而言,已经研究的很透彻了,唯一可以入手的地方我想也只有Fourier级数的吉布斯化的现象的研究。其次就是关于p级数和的问题的研究,这个和Riemann猜想有联系。其他方面根本没有科研究之处,前人做的已经非常完备,即使你写了,也只能说是copy,这也正是当前中国只追求论文数量而不追求质量的恶果,不如不写。 至于数学分析学习倒是可以推荐给你几本书:张筑生《数学分析新讲》,卓里奇《数学分析》,菲赫金哥尔兹《微积分教程》习题:周民强《数学分析习题演练》,谢惠民《习题课讲义》 ,至于裴礼文亦可一看
确实没啥可写的,应用的话可以想点办法
微积分的内容是很多的,要写的话首先要确定一个小的方向。比如说极限,微分,积分,级数都是可以拿来研究的,找一个自己感兴趣的翻书来看看,最好是能在读书中发现自己的东西,错与对不要紧,重要的是能去发现。然后把这些过程与结果写出来就可以算是一篇论文。如果太笼统的去写,没有重点,是写不出好论文的。要是还有什么不懂的留言嘛
既然是发展史的话,就应该把微积分的来龙去脉说清楚首先是微积分的启蒙,比如巴罗三角形等等然后是牛顿的流数以及莱布尼茨建立的现代微积分符号接下来可以讲一讲微积分的野蛮发展的时代,因为理论基础不扎实,微积分在整个18世纪引发了第二次数学危机再接下来是柯西和威尔斯特拉斯建立了严谨的数学分析最后可以讲讲微积分的现代发展,微分流形,微分拓扑等等
微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。
摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.
关键词:微积分;背景;作用;函数
一、微积分进入高中课本的背景及必要性
在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。
柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。
从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!
二、微积分在中学数学中的作用
1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.
2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。
3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。
三、国际上一些教材对微积分知识的处理
以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。
当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!
摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。
关键词:微积分;起源;内容;方法
微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:
一、微积分起源的介绍
微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。
介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。
二、介绍微积分内容及方法
微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。
三、为什么要学习高等数学
微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:
微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。
前言
21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。
一、我国微积分教学改革的现状
目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。
首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。
其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。
再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。
二、微积分课改的必要性
随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。
(1)社会高度发展提出的要求
微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。
(2)科技的发展提出的需要
当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。
(3)人类思维发展的需要
微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。
三、微积分课改的内容
根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。
1、课程基本理念的改革
微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。
2、课程内容的改革
根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。
3、课程设计的改革
原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。
4、教学方法的革新
(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。
(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。
5、教学工具的革新。
现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。
四、小结