首页 > 学术论文知识库 > 硬碳的制备及其储锂性能研究论文

硬碳的制备及其储锂性能研究论文

发布时间:

硬碳的制备及其储锂性能研究论文

1、软碳是指在2500℃以上的高温下能石墨化的无定型碳;硬碳是高分子聚合物的热解碳。这类碳在 2500℃以上的高温也难以石墨化。

2、常见品种不同:常见的软碳有石油焦、针状焦、碳纤维、碳微球等;常见的硬碳有树脂碳、有机聚合物热解碳、碳黑。

3、优点不同:软碳负极材料具有低而平稳的充放电电位平台,充放电容量大且效率高、循环性能好的优点;硬碳结构稳定且充放电循环寿命长,且碳锂电位能够高于,安全性能更好。

扩展资料

毒理性质:

1、纯碳具有极低的对人体的毒性,并可以处理,甚至可以以石墨或活性炭的形式安全地摄取。碳可以抵抗溶解或化学侵蚀,例如,即使是面对消化道内的酸性物质。因此它一旦进入人体组织后可能会无期限存留。

2、碳对地球上几乎所有生物都是低毒的,然而对某些生物是有毒的,例如碳纳米颗粒对果蝇是致命的。碳化合物种类繁多,既有致命毒素如河豚毒素、从蓖麻种子中提取的蓖麻毒素、氰化物和一氧化碳等,也有生命必需物种如葡萄糖、蛋白质。

参考资料

百度百科-软碳

百度百科-硬碳

1、定义不同

硬碳是指难以被石墨化的碳,是高分子聚合物的热分解。

软碳:经过热处理,易石墨化的炭。

2、形成条件

硬碳:将具有特殊结构的交联树脂在1000℃左右热分解可得硬碳。

软碳:达到石墨化温度后,材料具有较高的石墨化程度。热处理温度越高,其石墨化程度也就越高。目前工业生产的人造石墨,其石墨化程度通常低于90%。

扩展资料:

软碳石墨化可以得到人造石墨。一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨,如炭纤维、热解炭、泡沫石墨等。可用做电池负极材料,分类有:普通功率石墨电极抗氧化涂层石墨电极、高功率石墨电极、超高功率石墨电极。

低或非石墨化的硬碳也是动力型锂离子电池的负极材料,硬碳结构稳定且充放电循环寿命长,且碳锂电位能够高于,安全性能更好。可以克服石墨化炭充电成锂化石墨反应活性性高,一旦发生内短会引起严重放热反变,产生爆炸的风险。

参考资料来源:百度百科-人造石墨

参考资料来源:百度百科-软碳

参考资料来源:百度百科-硬碳

淀粉基硬碳是一种新型的负极材料,其首次放电效率较高。根据相关研究数据显示,淀粉基硬碳在常温下进行首次充放电时,其平均首次放电效率可以达到70%以上。这主要得益于淀粉基硬碳具有良好的导电性、储锂能力和稳定性等特点。此外,在制备过程中还采用了多种改进措施来提高其结构稳定性和循环寿命。需要注意的是,不同厂家生产的淀粉基硬碳材料可能存在差异,并且实际使用情况也会受到多种因素影响(如工作条件、充放电速率等),因此具体的首次放电效率可能会有所不同。

钢壳/铝壳系列:(1)电池上下盖(2)正极——活性物质一般为氧化锂钴(3)隔膜——一种特殊的复合膜(4)负极——活性物质为碳(5)有机电解液(6)电池壳(分为钢壳和铝壳两种)软包装系列(1)正极——活性物质一般为氧化锂钴(2)隔膜——PP或者PE复合膜(3)负极——活性物质为碳(4)有机电解液(5)电池壳——铝塑复合膜原理解构[1]锂系电池分为锂电池 和锂离子电池 。目前手机和笔记本电脑使用的都是锂离子电池,通常人们俗称其为锂电池。目前手机等使用的锂离子电池,而真正的锂电池由于危险性大,没有应用于日常电子产品。锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,而负极用插入或脱插表示)。在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌和插入/脱插,被形象地称为“摇椅电池”。锂离子电池能量密度大,平均输出电压高。自放电小,每月在10%以下。没有记忆效应。工作温度范围宽为-20℃~60℃。循环性能优越、可快速充放电、充电效率高达100%,而且输出功率大。使用寿命长。没有环境污染,被称为绿色电池。充电是电池重复使用的重要步骤,锂离子电池的充电过程分为两个阶段:恒流快充阶段(指示灯呈红色或黄色)和恒压电流递减阶段(指示灯呈绿色)。恒流快充阶段,电池电压逐步升高到电池的标准电压,随后在控制芯片下转入恒压阶段,电压不再升高以确保不会过充,电流则随着电池电量的上升逐步减弱到0,而最终完成充电。电量统计芯片通过记录放电曲线可以抽样计算出电池的电量。锂离子电池在多次使用后,放电曲线会发生改变,锂离子电池虽然不存在记忆效应,但是充电不当会严重影响电池性能。锂离子电池过度充放电会对正负极造成永久性损坏。过度放电导致负极碳片层结构出现塌陷,而塌陷会造成充电过程中锂离子无法插入;过度充电使过多的锂离子嵌入负极碳结构,而造成其中部分锂离子再也无法释放出来。充电量等于充电电流乘以充电时间,在充电控制电压一定的情况下,充电电流越大(充电速度越快),充电电量越小。电池充电速度过快和终止电压控制点不当,同样会造成电池容量不足,实际是电池的部分电极活性物质没有得到充分反应就停止充电,这种充电不足的现象随着循环次数的增加而加剧。锂离子电池-种类[2][3]不可充电的锂电池有多种,目前常用的有锂-二氧化锰电池、锂—亚硫酰氯电池及锂和其它化合物电池。1?锂-二氧化锰电池(Li?MnO2)锂-二氧化锰电池是一种以锂为阳极、以二氧化锰为阴极,并采用有机电解液的一次性电池。该电池的主要特点是电池电压高,额定电压为3V(是一般碱性电池的2倍);终止放电电压为2V;比能量大(见上面举的例子);放电电压稳定可靠;有较好的储存性能(储存时间3年以上)、自放电率低(年自放电率≤2%);工作温度范围-20℃~+60℃。该电池可以做成不同的外形以满足不同要求,它有长方形、圆柱形及纽扣形(扣式)。可充电锂离子电池可充电锂离子电池是目前手机中应用最广泛的电池,但它较为“娇气”,在使用中不可过充、过放(会损坏电池或使之报废)。因此,在电池上有保护元器件或保护电路以防止昂贵的电池损坏。 锂离子电池充电要求很高,要保证终止电压精度在1%之内,目前各大半导体器件厂已开发出多种锂离子电池充电的IC,以保证安全、可靠、快速地充电。现在手机已十分普遍,手机中一部分是镍氢电池,但灵巧型的手机则是锂离子电池。正确地使用锂离子电池对延长电池寿命是十分重要的。锂离子电池是目前应用最为广泛的锂电池,它根据不同的电子产品的要求可以做成扁平长方形、圆柱形、长方形及扣式,并且有由几个电池串联在一起组成的电池组。 锂离子电池的额定电压为(有的产品为)。充满电时的终止充电电压与电池阳极材料有关:阳极材料为石墨的;阳极材料为焦炭的。不同阳极材料的内阻也不同,焦炭阳极的内阻略大,其放电曲线也略有差别,如图1所示。一般称为锂离子电池及锂离子电池。现在使用的大部分是的,锂离子电池的终止放电电压为~(电池厂给出工作电压范围或给出终止放电电压,各参数略有不同)。低于终止放电电压继续放电称为过放,过放对电池会有损害。锂离子电池不适合用作大电流放电,过大电流放电时会降低放电时间(内部会产生较高的温度而损耗能量)。因此电池生产工厂给出最大放电电流,在使用中应小于最大放电电流。 锂离子电池对温度有一定要求,工厂给出了充电温度范围、放电温度范围及保存温度范围。 锂离子电池对充电的要求是很高的,它要求精密的充电电路以保证充电的安全。终止充电电压精度允差为额定值的±1%(例如:充的锂离子电池,其允差为±),过压充电会造成锂离子电池永久性损坏。锂离子电池充电电流应根据电池生产厂的建议,并要求有限流电路以免发生过流(过热)。一般常用的充电率为~1C(C是电池的容量,如C=800mAh,1C充电率即充电电流为800mA)。在大电流充电时往往要检测电池温度,以防止过热损坏电池或产生爆炸。锂离子电池充电分为两个阶段:先恒流充电,到接近终止电压时改为恒压充电,其充电特性如图2所示。这是一种800mAh容量的电池,其终止充电电压为。电池以800mA(充电率为1C)恒流充电,开始时电池电压以较大的斜率升压,当电池电压接近时,改成恒压充电,电流渐降,电压变化不大,到充电电流降为1/10C(约80mA)时,认为接近充满,可以终止充电(有的充电器到1/10C后启动定时器,过一定时间后结束充电)。 锂离子电池在充电或放电过程中若发生过充、过放或过流时,会造成电池的损坏或降低使用寿命。充电第一次充电,如果时间能较长,那么可以使电极尽可能多的达到最高氧化态,如此能增长电池使用寿命。[编辑本段]锂离子电池优缺点锂离子电池具有以下优点:1) 电压高,单体电池的工作电压高达,是Ni-Cd、Ni-H电池的3倍2) 比能量大,目前能达到的实际比能量为100-125Wh/kg和240-300Wh/L(2倍于Ni-Cd,倍于Ni-MH),未来随着技术发展,比能量可高达150Wh/kg和400 Wh/L3) 循环寿命长,一般均可达到500次以上,甚至1000次以上.对于小电流放电的电器,电池的使用期限 将倍增电器的竞争力.4) 安全性能好,无公害,无记忆效应.作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd电池存在的一大弊病为“记忆效应”,严重束缚电池的使用,但Li-ion根本不存在这方面的问题。5) 自放电小,室温下充满电的Li-ion储存1个月后的自放电率为10%左右,大大低于Ni-Cd的25-30%,Ni、MH的30-35%。6)可快速充放电,1C充电是容量可以达到标称容量的80%以上。7)工作温度范围高,工作温度为-25~45°C,随着电解质和正极的改进,期望能扩宽到-40~70°C。锂离子电池也存在着一定的缺点,如:1) 电池成本较高。主要表现在正极材料LiCoO2的价格高(Co的资源较少),电解质体系提纯困难。2) 不能大电流放电。由于有机电解质体系等原因,电池内阻相对其他类电池大。故要求较小的放电电流密度,一般放电电流在以下,只适合于中小电流的电器使用。3) 需要保护线路控制。A、 过充保护:电池过充将破坏正极结构而影响性能和寿命;同时过充电使电解液分解,内部压力过高而导致漏液等问题;故必须在的恒压下充电;B、 过放保护:过放会导致活性物质的恢复困难,故也需要有保护线路控制。摘要:综述了锂离子电池的发展趋势,简述了锂离子电池的充放电机理理论研究状况,总结归纳了作为核心技术的锂电池正负电极材料的现有的制备理论和近来发展动态,评述了正极材料和负极材料的各种制备方法和发展前景,重点介绍了目前该领域的问题和改进发展情况。材料电子信息时代使对移动电源的需求快速增长。由于锂离子电池具有高电压、高容量的重要优点,且循环寿命长、安全性能好,使其在便携式电子设备、电动汽车、空间技术、国防工业等多方面具有广阔的应用前景,成为近几年广为关注的研究热点。锂离子电池的机理一般性分析认为,锂离子电池作为一种化学电源,指分别用两个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。锂离子电池是物理学、材料科学和化学等学科研究的结晶。锂离子电池所涉及的物理机理,目前是以固体物理中嵌入物理来解释的,嵌入(intercalation)是指可移动的客体粒子(分子、原子、离子)可逆地嵌入到具有合适尺寸的主体晶格中的网络空格点上。电子输运锂离子电池的正极和负极材料都是离子和电子的混合导体嵌入化合物。电子只能在正极和负极材料中运动[4][5][6]。已知的嵌入化合物种类繁多,客体粒子可以是分子、原子或离子.在嵌入离子的同时,要求由主体结构作电荷补偿,以维持电中性。电荷补偿可以由主体材料能带结构的改变来实现,电导率在嵌入前后会有变化。锂离子电池电极材料可稳定存在于空气中与其这一特性息息相关。嵌入化合物只有满足结构改变可逆并能以结构弥补电荷变化才能作为锂离子电池电极材料。控制锂离子电池性能的关键材料——电池中正负极活性材料是这一技术的关键,这是国内外研究人员的共识。1 正极材料的性能和一般制备方法正极中表征离子输运性质的重要参数是化学扩散系数,通常情况下,正极活性物质中锂离子的扩散系数都比较低。锂嵌入到正极材料或从正级材料中脱嵌,伴随着晶相变化。因此,锂离子电池的电极膜都要求很薄,一般为几十微米的数量级。正极材料的嵌锂化合物是锂离子电池中锂离子的临时储存容器。为了获得较高的单体电池电压,倾向于选择高电势的嵌锂化合物。正极材料应满足:1)在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性;2)温和的电极过程动力学;3)高度可逆性;4)全锂化状态下在空气中的稳定性。研究的热点主要集中在层状LiMO2和尖晶石型LiM2O4结构的化合物及复合两种M(M为Co,Ni,Mn,V等过渡金属离子)的类似电极材料上。作为锂离子电池的正极材料,Li+离子的脱嵌与嵌入过程中结构变化的程度和可逆性决定了电池的稳定重复充放电性。正极材料制备中,其原料性能和合成工艺条件都会对最终结构产生影响。多种有前途的正极材料,都存在使用循环过程中电容量衰减的情况,这是研究中的首要问题。已商品化的正极材料有Li1-xCoO2(01000次循环寿命 (100%DOD):>200次其中DOD是放电深度的英文缩写。从表中可见,可充电次数和放电深度有关,10%DOD时的循环寿命要比100%DOD的要长很多。当然如果折合到实际充电的相对总容量:10%*1000=100,100%*200=200,后者的完全充放电还是要比较好一些,但前面网友的那个说法要做一些修正:在正常情况下,你应该有保留地按照电池剩余电量用完再充的原则充电,但假如你的电池在你预计第2天不可能坚持整个白天的时候,就应该及时开始充电,当然你如果愿意背着充电器到办公室又当别论。电池剩余电量用完再充的原则并不是要你走向极端。和长充电一样流传甚广的一个说法,就是“尽量把电池的电量用完”。这种做法其实只是镍电池上的做法,目的是避免记忆效应发生,不幸的是它也在锂电池上流传之今。曾经有人因为手机电池电量过低的警告出现后,仍然不充电继续使用一直用到自动关机的例子。结果这个例子中的手机在后来的充电及开机中均无反应,不得不送客服检修。这其实就是由于电池因过度放电而导致电压过低,以至于不具备正常的充电和开机条件造成的。个人建议手机电池的电量保持在满格的状态,当电量不满的时候就开始充电,2-3小时以内为宜。锂离子电池按电解液分可以分成液态锂离子电池和聚合物锂离子电池,聚合物锂离子电池的电解液是胶体,不会流动,所以不存在泄漏问题,更加安全。

涂层的制备及其性能研究论文

快速凝固技术一般指以大于105 K/s~106 K/s 的冷却速率进行液相凝固成固相,是一种非平衡的凝固过程,下面是我为大家精心推荐的快速凝固技术论文,希望能够对您有所帮助。

浅析金属材料快速凝固激光加工成形

【摘要】快速凝固加工技术能使微晶、非晶、准晶等非平衡新型结构及 其它 功能材料快速凝固。该技术不仅能提高传统金属的材料性能,还能挖掘现存材料的性能加以利用,并且研究其他高性能材料。如今,快速凝固非平衡材料的理论研究及其技术都已经成为了材料科学与凝聚态物理的重点研究领域之一。实现金属材料快速凝固的基本 方法 就是激光表面快速凝固,这也是在实现凝固冷却方法中速度最快的一种方法。

【关键词】金属材料;快速凝固;激光;

利用激光熔化金属材料表面,可以得到快速凝固后的表面材料,并且还能带有组织特征。例如枝晶及组织细化、低偏析或无偏析、准晶、溶质元素高度过饱和固溶等,并且还能获得具有物理性能、化学性能或力学性能的表面材料。此外,在利用激光将材料表面快速熔化的过程中,向熔池内添加合金元素,还能获得许多零件基材,并且这些零件基材的成分、组织及性能都完全不同,是特种表面冶金涂层材料,具有细小、均匀等特点。

快速凝固激光加工的过程十分迅速、灵活,且易于自动化、热影响区小,因此利用该技术将金属材料表面改性的应用基础与研究都得到了迅速发展。并且,以快速凝固理论作为研究基础,在其发展之上演变而来的激光表面合化金技术与激光表面工程技术也成为了现代表面工程的新技术之一,这两种技术都能将特征先进涂层材料与优质零件进行设计合成。近年来,随着快速原型制造技术的发展,快速凝固激光材料的加工基本原理不断发展,两者相结合之后使高性能金属零件激光添加技术也得到迅速发展。高性能金属零件激光添加技术成为了激光技术、材料学科、材料加工工程等学科的重点研究对象。该技术是将材料设计、材料合成与近净形复杂金属零件快速成形相结合的制造技术,具有先进性、知识化、数字化等特点。

一、将钛合金快速凝固的激光熔覆技术

在金属材料中,钛合金的优点十分多,例如密度低、耐蚀性高、生物相容性好、比强度高等,而航天、航空、兵器、船舶等领域又十分需要这种材料,因此钛合金得到了广泛应用。但是钛合金也有一些缺点,如耐磨性低、易粘着、摩擦系数高、高温高速摩擦易燃等。但是同时,钛合金在这些领域大多是作为摩擦磨损运动副零部件,不能让其自身的缺点影响到应用效果。而想要使钛合金的耐磨性增高、阻燃性增高、摩擦系数降低,达到完美摩擦磨损运动副零部件的效果,就必须采用先进的表面工程技术改变钛合金表面缺点。最经济灵活的方式是将钛合金零件基材与牢固的冶金结合,形成具有高温耐磨、耐腐蚀、阻燃性强的特殊材料。

利用激光表面所含的合金化与激光熔覆技术结合耐磨材料表面改性层,可以将钛合金的耐磨性能大幅提高。此外,将快速凝固激光表面合金化技术与激光熔覆技术相结合,利用难熔金属化合物能增强钛合金表面的高温耐磨涂层,并且达到快速凝固效果。此种方法还可以应用于TC4、BT9、TA15等钛合金采研制出 、 、 等高硬度且十分耐磨的金属间化合物耐磨涂层新材料。在上述的涂层组织中,都是金属间化合物,它们的硬度较高,并且温度与硬度关系反常,有金属键与共价键共存现象。经过研究,发现这些金属间化合物在室温条件或高温条件下,摩擦系数、磨料磨损率、滑动磨损率及微动磨损率都非常低,并且其耐磨性还能继续提高,甚至达到钛合金基材的100至700倍,而其摩擦系数可降低整整一半。这些研究为作为摩擦副机械零部件的钛合金应用提供了新的方法。

二、金属材料快速凝固激光制备特种涂层新材料

一般而言,高温运动副零部件应用环境都是十分恶劣的,大多应用于航空及航天发动机、石油采集设备、电力工程等方面,因此对这些高温运动副零部件组成材料的性能要求极高,不仅需要强大的耐高温性能、耐腐蚀性能、抗氧化性能、低摩擦系数,还需要较强的生物相容性。而这样的多功能材料新涂层需要非常优质的涂层制备技术。因此,近年来许多研究人员将涂层制备技术和快速凝固激光熔覆技术相结合,研究出具有强大功能的涂层新材料,不仅这些新材料的各种性能都大大提高,同时也进一步发展了凝固激光熔覆涂层制备技术。

在航空装置、航天装置、石油采集设备等先进技术装备的发动机中都需要用到许多高温高速副零部件,而具有多功能的涂层新材料都具有耐高温、耐磨损、抗氧化、低摩擦、摩擦相容等特点,因此十分适合航空发动机等先进装置的条件。此外,将快速凝固激光熔覆涂层制备技术与耐磨材料的设计原理相结合,还可以得到性能更加优异的激光熔覆涂层新材料,例如超高碳 。其工艺性能良好、碳含量在9%-12%之间,并且内部显微组织呈孤立分布的状态。此种激光熔覆涂层新材料已经应用到我国的先进航空发动机中,作为关键高温高速滑动摩擦副部件使用。

随着高温耐磨运动副零部件的应用环境越来越恶劣,对其性能要求也越来越高。此时对于过渡金属硅化物的化学性质也提出了更高要求,因为难熔金属硅化物在摩擦学、耐磨材料、表面工程等领域都能表现出其众多的优点,所以难熔金属硅化物成为了多功能涂层新材料的又一研究领域。经过研究人员坚持不懈的探索,终于成功研究出 、 、 、 等多功能涂层新材料,这些金属硅化物的高温耐磨性优异、抗热性能和抗腐蚀性能极高、低摩擦系数及其摩擦相容性更是符合标准,并且各性能之间还能相互配合,优化其涂层激光熔覆制备技术。在常温金属及高温金属干滑动试验中, 、 等金属硅化物涂层具有反常载荷、反常温度、与金属摩擦完全不粘着等特性。

三、金属材料小平 面相 液-固界面结构及其生长机制

在凝固理论研究中,小平面相的液-固界面结构、生长形态、生长规律及生长机制一直都是重点研究课题。笔者在研究增强金属及金属间化合物的复合涂层材料时,以 作为研究对象,研究在不同的凝固冷却速度下,它的小平面相的液-固界面结构、生长形态、生长规律及生长机制有何不同。

结果表明,在冷却速度为 发非平衡凝固条件下,小平面相 的生长形态十分分度,在没有达到最快速凝固条件时, 小平面相液-固界面结构为三维网络树枝状;而在达到最快速凝固条件时, 小平面相液-固界面结构为小平面花瓣状分枝团族树枝晶状。可是,不论凝固冷却速度条件是否达到标准,即使其凝固形态不同,但其生长界面始终具有小平面特征,说明类似 晶体的高因子小面晶体在较宽的凝固冷却速度范围以内,其小平面相液-固界面结构及其生长机制的基本特征都不会随着凝固冷却速度的变化而产生变化。

四、高性能金属材料激光快速成形

高性能金属材料激光快速成形技术是近年来随着材料科学不断发展形成的新技术,也属于快速凝固技术的一种,由新材料制备技术结合先进制造技术研发而来。该技术的核心是快速凝固激光材料制备加工技术,利用快速原型制造技术在没有任何模具与工装条件下即可快速成形任意形状的零件。高性能金属零件激光快速成形技术具有高度的柔性、适应性及快速响应性,应用面十分宽广。

结束语

随着高温耐磨运动副零部件的应用环境越来越恶劣,对其性能要求也越来越高。利用激光熔化金属材料表面,可以得到快速凝固后的表面材料,并且还能带有组织特征。快速凝固激光加工成形技术是利用金属快速凝固效应进行新材料制备的新型技术,也可以进行高性能金属材料的直接成形。该技术在许多先进航空材料的表面改性、发动机涂层新材料合成、优质涂层制备等方面都具有广阔的应用前景。

参考文献

[1]樊熊.金属材料加工工艺中激光技术应用分析[J].企业技术开发,2013,15:23-24.

[2]田延龙.激光技术在金属材料加工工艺中的应用探析[J].科技创新与应用,2013,(10).

点击下页还有更多>>>快速凝固技术论文

摘 要:本文为了消除宽带激光熔覆制备稀土活性梯度陶瓷涂层中产生的非晶相和杂相,分别采用了热处理法、类模拟体液中的电沉积处理、碱液环境中的电极化处理三种后处理方法对涂层进行了后续处理。结果表明热处理法能够使非晶相向晶相转化,但不能使杂相向HA转变;类模拟体液中电沉积法能在陶瓷涂层表明沉积少许的HA,但HA量较少;碱液环境下电极化处理不仅能够促使非晶相向晶相转化,还能够使α-TCP等杂相向羟基磷灰石(HA)相转换,具有最佳的处理效果。 关键词:宽带激光熔覆制备;热处理;电沉积处理;电极化处理 中图分类号:TG174; TB39;TN249 文献标识码:A 1 引言 激光熔覆技术具有加热速度快、熔覆层与基材之间结合牢固、涂层稀释率低等优点,已成为制备各种功能涂层材料的有效手段之一,在生物活性陶瓷涂层的制备方面有着广阔的应用前景。但是,激光熔覆具有快速加热快速冷却的特点,熔覆过程中可能会产生非晶相和杂相,这将影响生物活性陶瓷涂层的生物学及力学性能[1-6]。因此,对激光熔覆制备涂层进行一定的后处理以改善涂层的性能是非常必要的。本文主要通过研究热处理法、类模拟体液中的电沉积处理、碱液环境中的电极化处理对梯度生物活性陶瓷涂层相结构的影响。 2 不同后续处理法XRD图谱分析 热处理法后续处理 图2-1是未经任何处理与经500℃保温2h后随炉冷却的生物活性陶瓷涂层的XRD图谱。由图可见,处理前整个图谱中存在较多的弥散包,说明涂层中较多的非晶相。处理后,CaTiO3、TiO2的峰值变高变尖锐,先前的弥散包基本消失,这表明,经过热处理后涂层的结晶度变好,非晶相向晶相转变。但是,HA和β-TCP活性相对应的峰值并没有发生多大的变化,这说明热处理不能够使杂相向HA活性相转变。 类模拟体液中电沉积后续处理 图2-2是未经任何处理与用NaCl、K2HPO4、CaCl2按模拟体液(SBF)各离子浓度配比配制的类仿生溶液,HCl和三羟甲基氨基甲烷调节PH为的类模拟体液中电沉积生物活性陶瓷涂层的XRD图谱。由图中可知,处理前后XRD图谱的大体形貌并没有发生大的变化,较多的弥散包仍然存在,这说明电沉积处理不能够使非晶相向晶相的转变。HA对应的衍射峰有升高的趋势(图中箭头所示),但不是很明显,这是因为在电沉积过程中生成了少量的HA活性相,不过由于陶瓷涂层导电性能差等原因使电沉积很难进行[7-9]。综合来说,电沉积的效果并不理想。 碱液环境中电极化后续处理 由图2-3可知,经碱液环境电极化处理后,衍射峰都变得尖锐,一些弥散包消失,这说明非晶相得到了转变。α-TCP的峰值有下降的趋势,HA的峰值有上升的趋势(图中的箭头所示),这说明此后续处理方法使α-TCP向HA发生了转化。这是因为涂层在碱液环境中进行电极化处理过程中,产生的大量热量与碱液的共同作用下,发生了杂相向HA活性相的转变,同时HA在碱液环境是最稳定的相,这也有利于杂相向HA的转变[10]。 3 结论 (1)热处理后续处理能够使非晶相向晶相转化,但不能使杂相向HA转变。 (2)类模拟体液中电沉积能在陶瓷涂层表明沉积少许的HA,但效果不明显。 (3)碱液环境中电极化处理不仅能促使涂层中非晶相向晶相转化,还能够使α-TCP等杂相向羟基磷灰石(HA)相转换,具有最佳的处理效果。

纳米流体的制备及性能研究论文

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。下面是我整理的纳米材料科技论文,希望你能从中得到感悟!

纳米材料综述

【摘要】 本文综述了纳米材料的发展、种类、结构特性、目前应用状况和相关的应用前景,并对我国和国际目前的研究水平和投入做了对比分析。

【关键词】 纳米、纳米技术、纳米材料、纳米结构

1 引言

著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1]

1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具――扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。[2]

2 纳米技术

纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。

3 纳米材料

纳米材料的概念

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。

纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。

纳米材料的分类

纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

(1)纳米粉末

纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。

(2)纳米纤维

纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。静电纺丝法是目前制备无机物纳米纤维的一种简单易行的方法。

(3)纳米膜

纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。

(4)纳米块体

纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。

4 纳米材料的应用

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性[8]、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。

5 纳米材料的前景

纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。纳米材料的应用涉及到各个领域,21世纪将是纳米技术的时代。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。

21世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性,设计出各种新型的材料和器件。通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,目前已出现可喜的苗头,具备了形成21世纪经济新增长点的基础。纳米材料将成为材料科学领域一个大放异彩的明星展现在新材料、能源、信息等各个领域,发挥举足轻重的作用。随着其制备和改性技术的不断发展,纳米材料在精细化工和医药生产等诸多领域会得到日益广泛的应用。

6 结束语

纳米材料在21世纪高科技发展中占有重要地位。纳米材料由于其无可挑剔的优越性,已成为世界各国研究的热点。其应用已渗透到人类生活和生产的各个领域,促使许多传统产业得到改进。世界发达国家的政府都在部署未来10~15年有关纳米科技研究规划。我国对纳米材料的研究也取得了令世界瞩目的、具有前沿性的科技成果。纳米技术的开发,纳米材料的应用,推动了整个人类社会的发展,也给市场带来了巨大的商业机遇。

参考文献

[1]孙红庆.科技天地―计划与市场探索[M],2001/05

[2]肖建中.材料科学导论[M].北京:中国电力出版社,2001,43~50.

[3]吴润,谢长生.粉状纳米材料的表面研究进展与展望[J].材料导报.2000,14(10):43~46.

纳米材料与应用

摘要 :简要介绍了纳米材料的分类以及它的基本效应,讲解了纳米材料的特殊性能。分析了新型能源纳米材料中光电转换、热点转换、超级电容器及电池电极的纳米材料;环境净化纳米材料中的光催化、吸附、尾气处理等;较具体的讲述了纳米生物医药材料中纳米陶瓷材料、纳米碳材料、纳米高分子材料、纳米复合材料。

关键词 :纳米材料 性能 应用

纳米是一个长度单位,1nm=10ˉ9m。纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。

按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。

悬浮于流体的纳米颗粒可大幅度提高流体的热导率及传热效果,例如在水中添加5%的铜纳米颗粒,热导率可以增大约倍,这对提高冶金工业的热效率有重要意义。纳米颗粒可表现出同质大块物体不同的光学特性,例如宽频带、强吸收、蓝移现象及新的发光现象,从而可用于发光反射材料、光通讯、光储存、光开光、光过滤材料、光导体发光材料、光学非线性元件、吸波隐身材料和红外线传感器等领域。

纳米颗粒在电学性能方面也出现了许多独特性。例如纳米金属颗粒在低温下呈现绝缘性,纳米钛酸铅、钛酸钡等颗粒由典型得铁电体变成了顺电体。可以利用纳米颗粒制作导电浆料、绝缘浆料、电极、超导体、量子器件、静电屏蔽材料压敏和非线性电阻及热电和介电材料等。纳米粒子的粒径小,表面原子所占比例很大,表面原子拥有剩余的化学键合力,表现出很强的吸附能力和很高的表面化学反应活性。新制备的金属粒子接触空气,能进行剧烈氧化反应或发光燃烧(贵金属除外)。

纳米材料还广泛应用于环境保护中,它具有能耗低、操作简便、反应条件温和、可减少二次污染等突出特点。纳米材料在生物学性能也有广泛应用,用纳米颗粒很容易将血样中极少的胎儿细胞分离出来,方法简便,成本低廉,并能准确判断胎儿细胞是否有遗传缺陷。人工纳米材料由于其所具有的独特性质能满足人类发展中的多样化需求,近年来获得迅速的发展。目前,越来越多的人工纳米材料已被投放市场,给人们的生活带来巨大的变化和进步。

来自美国加州大学洛杉矶分校和中国天津大学的研究人员们合作,将导电性能良好的碳纳米管和高容量的氧化钒编织成多孔的纤维复合材料,并将该复合材料应用到超级电容器的电极上,获得了新型的具有高能量密度和高循环稳定性的超级电容器。这种超级电容器是非对称的,包含复合材料的阳极和传统的阴极,以及有机的电解质。其中电极薄膜的厚度要比之前的报道高很多,可以达到100微米上,从而使其可以获得更高的能量密度。由于其制备过程与传统的锂离子电池和电容器的生产过程近似,研究人员们认为这种新型电容器的可以比较容易地投入大规模生产。同时,他们也相信该项研究成果向同行们展示了纳米复合材料在高能量、高功率电子设备中的应用前景。

通过先进碳材料的应用,综合了人造石墨和天然石墨做为锂离子电池负极材料活性物质的优点,克服了它们各自存在的缺点,是满足先进锂离子电池性能要求的新一代碳贮锂材料。具有下列优点:微观结构稳定性好,适合大电流充放电;表观性状相容性好,适合形成稳定的SEI膜;粒子形貌、粒径分布适应性强,适合不同的加工工艺要求。适用于先进锂离子电池(液态、聚合物)对下列性能的要求:更高的比能量(体积比、重量比);更高的比功率;更长的循环寿命;更低的使用成本。

应用纳米TiO2泡沫镍金属滤网及甲醛、氨、TVOC吸附改性活性炭等新材料,以及采用惯流风扇取代传统的离心风扇结构,提高空气净化器的性能。光催化泡沫镍金属滤网的特性;镍金属网是用特殊的工艺方式将金属镍制作成具有三维网状结构的金属滤网。它具有:空隙加大,一般大于96%;通透性好,流体通过阻力小;其实际面积比表观面积大很多倍的特性。镍金属网是将纳米级的TiO2以特殊工艺镶嵌在泡沫状镍金属网上,从而将光催化材料的杀菌、除臭、分解有机物的功能和镍的超稳定性很好的结合在一起。它有效的解决了其他光催化材料在使用中存在的有效受光面积小、流体和光催化材料接触面积小、气阻大以及因光催化材料在光催化作用下的强氧化性致使其附着基材易老化和光催化易脱落而使其寿命短的缺陷。活性炭改性工艺及增强性能;活性炭是一种多孔性的含碳物质,它具有高度发达的空隙构造,是一种优良的空气中异味吸附剂。

纳米TiO2具有巨大的比表面积,与废水中有机物更充分地接触,可将有机物最大限度地吸附在它的表面具有更强的紫外光吸收能力,因而具有更强的光催化降解能力可快速降息夫在其表面的有机物分解。此外,在汽车尾气催化的性能方面以及在空气净化中广泛应用。

常规陶瓷由于气孔、缺陷的影响,存在着低温脆性的缺点,它的弹性模量远高于人骨,力学相容性欠佳,容易发生断裂破坏,强度和韧性都还不能满足临床上的高要求,使它的应用受到一定的限制。而纳米陶瓷由于晶粒很小,使材料中的内在气孔或缺陷尺寸大大减少,材料不易造成穿晶断裂,有利于提高材料的断裂韧性;而晶粒的细化又同时使晶界数量大大增加,有助于晶粒间的滑移,使纳米陶瓷表现出独特的超塑性。许多纳米陶瓷在室温下或较低温度下就可以发生塑性变形。纳米陶瓷的超塑性是其最引入注目的成果。传统的氧化物陶瓷是一类重要的生物医学材料,在临床上已有多方面应用,主要用于制造人工骨、人工足关节、肘关节、肩关节、骨螺钉、人工齿,以及牙种植体、耳听骨修复体等等。

由碳元素组成的碳纳米材料统称为纳米碳材料。在纳米碳材料中主要包括纳米碳纤维、碳纳米管、类金刚石碳等;纳米碳纤维除了具有微米级碳纤维的低密度、高比模量、比强度、高导电性之外,还具有缺陷数量极少、比表面积大、结构致密等特点,这些超常特性和良好的生物相容性,使它在医学领域中有广泛的应用前景,包括使人工器官、人工骨、人工齿、人工肌腱在强度、硬度、韧性等多方面的性能显著提高;此外,利用纳米碳材料的高效吸附特性,还可以将它用于血液的净化系统,清除某些特定的病毒或成份。

目前,纳米高分子材料的应用已涉及免疫分析、药物控制释放载体、及介入性诊疗等许多方面。免疫分析作为一种常规的分析方法,在蛋白质、抗原、抗体乃至整个细胞的定量分析上发挥着巨大的作用。在特定的载体上,以共价结合的方式固定对应于分析对象的免疫亲和分子标识物,将含有分析对象的溶液与载体温育,通过显微技术检测自由载体量,就可以精确地对分析对象进行定量分析。在免疫分析中,载体材料的选择十分关键。纳米聚合物粒子,尤其是某些具有亲水性表面的粒子,对非特异性蛋白的吸附量很小,因此已被广泛地作为新型的标记物载体来使用。

近年来,组织工程成为一个崭新的研究领域,吸引了众多学科研究者的关注。在工程化的方法培养组织、器官的过程中,用于细胞种植、生长的支架材料是一个关键的因素,能否使种植的细胞保持活性和增殖能力,是支架材料应用的重要条件。据报道,将甲壳素按一定的比例加入到胶原蛋白中可以制成一种纳米结构的复合材料,与以往的胶原蛋白支架相比,其力学强度得到增强,孔径尺寸增大,表明这种具有纳米结构的复合材料作为细胞生长的三维支架,在力学、生物学方面有很大的优越性和应用潜力。在硬组织修复与替换的研究中,纳米复合材料也开始逐步显示出其优异的性能。用肽分子和两亲化合物的自组装可以得到一种类似细胞外基质的纤维状支架,这种纳米纤维可以引导羟基磷灰石的矿化,形成纳米结构的复合材料,研究发现,这种纳米复合材料内部的微观结构与自然骨中胶原蛋白/羟基磷灰石晶粒的排列结构一致。

参考文献:

[1] 陈飞. 浅谈纳米材料的应用[J]. 中小企业管理与科技(下旬刊). 2009(03)

[2] 张桂芳. 纳米材料应用与发展前景概述[J]. 黑龙江科技信息. 2009(16)

研究方向一:强化传热研究研究不同的传热介质在特殊传热表面上的流动与传热性能,分析强化传热机理,建立传热模型,并将实验研究与数值模拟相结合,指导开发高效的换热器,并在化工、石化、制冷、电子冷却、燃气热水器等领域应用。该方向先后获得国家自然科学基金、科技部863计划、广东省自然科学基金、广州市科技计划项目、粤港招标项目的资助。研究方向二:复合相变储热材料的制备及性能研究采用“吸附法”、“溶胶-凝胶法”等制备有机/无机复合相变储热材料,研究复合相变储热材料的构效关系,获得储热密度大、导热系数高且具有定型特性的新型复合相变储热材料,并应用于太阳能热利用,建筑物节能等领域。该方向先后获得国家自然科学基金、973子项目、广东省科技计划项目、教育部留学回国人员基金资助。研究方向三:潜热型纳米流体的制备及传热性能研究采用微乳液聚合等方法制备微(纳)米相变胶囊粒子,并将其添加到纳米流体中,制备出潜热型纳米流体,研究潜热型纳米流体的物性参数及传热性能。本方向先后获得广州市科技计划项目、广东省自然科学基金的资助。

具有组织状柔软度的富水水凝胶,尤其是具有类似于生物领域的离子信号传输系统的离子导电水凝胶,是很有前途的软电极材料,但由于引入高浓度导致无法控制的膨胀和生物相容性问题,导致机械性能太差或不稳定。离子是实际应用中的严重障碍。

图 1 制造 ABCH 的示意图。 通过化学交联从 BC 的受控溶解过程中获得的富含纳米纤维的悬浮液,拉伸所得的 BCG 以对齐纳米纤维,然后进行石化处理。将获得的 BC 干凝胶浸泡在水中以构建 ABCH。

最近, 东华大学科研团队 首次报道了一种制备坚固、稳定、离子导电、各向异性细菌纤维素水凝胶 (ABCH) 的简单方法。 依靠细菌纤维素(BC)中具有高纵横比的纳米纤维,通过受控溶解构建定制的纳米纤维网络增强结构,然后通过拉伸下的简单石化过程将它们很好地对齐。因此,可以实现可调的高机械性能, 最大拉伸强度可以达到 MPa,含水量为 70%。值得注意的是,ABCHs在水中30天不会膨胀并保持93%的拉伸强度 。最重要的是,纳米纤维中纳米通道的独特纳米流体行为允许仅依赖体液中低浓度离子(<300 mM)在 ABCH 中进行有效离子传输,避免牺牲生物相容性来实现有用的导电性。这种简便的策略在制造高强度、不膨胀、生物离子导电纤维素水凝胶以用于下一代生物接口和柔性可植入设备方面可能具有很大的可扩展性。

相关论文以题为 Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior 发表在《 Nanoscale 》上。 通讯作者 是 东华大学 陈仕艳副研究员 ,和 王华平教授 。

参考文献:

碳纳米结构及其研究的小论文

还有好多这样的论题你可以参考下呀~看看(纳米技术)吧~自己去看下这样的期刊里面的论文

我觉得~~你还是自己去看下(纳米技术)吧~自己找下这样的论文多参考参考

纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044××1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 基纳米复合材料 Al基纳米复合材料以其超高强度(可达到)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。

tcp性能及拥塞控制研究论文

以下资料参考:为了防止网络的拥塞现象,TCP提出了一系列的拥塞控制机制。最初由V. Jacobson在1988年的论文中提出的TCP的拥塞控制由“慢启动(Slow start)”和“拥塞避免(Congestion avoidance)”组成,后来TCP Reno版本中又针对性的加入了“快速重传(Fast retransmit)”、“快速恢复(Fast Recovery)”算法,再后来在TCP NewReno中又对“快速恢复”算法进行了改进,近些年又出现了选择性应答( selective acknowledgement,SACK)算法,还有其他方面的大大小小的改进,成为网络研究的一个热点。TCP的拥塞控制主要原理依赖于一个拥塞窗口(cwnd)来控制,在之前我们还讨论过TCP还有一个对端通告的接收窗口(rwnd)用于流量控制。窗口值的大小就代表能够发送出去的但还没有收到ACK的最大数据报文段,显然窗口越大那么数据发送的速度也就越快,但是也有越可能使得网络出现拥塞,如果窗口值为1,那么就简化为一个停等协议,每发送一个数据,都要等到对方的确认才能发送第二个数据包,显然数据传输效率低下。TCP的拥塞控制算法就是要在这两者之间权衡,选取最好的cwnd值,从而使得网络吞吐量最大化且不产生拥塞。由于需要考虑拥塞控制和流量控制两个方面的内容,因此TCP的真正的发送窗口=min(rwnd, cwnd)。但是rwnd是由对端确定的,网络环境对其没有影响,所以在考虑拥塞的时候我们一般不考虑rwnd的值,我们暂时只讨论如何确定cwnd值的大小。关于cwnd的单位,在TCP中是以字节来做单位的,我们假设TCP每次传输都是按照MSS大小来发送数据的,因此你可以认为cwnd按照数据包个数来做单位也可以理解,所以有时我们说cwnd增加1也就是相当于字节数增加1个MSS大小。慢启动:最初的TCP在连接建立成功后会向网络中发送大量的数据包,这样很容易导致网络中路由器缓存空间耗尽,从而发生拥塞。因此新建立的连接不能够一开始就大量发送数据包,而只能根据网络情况逐步增加每次发送的数据量,以避免上述现象的发生。具体来说,当新建连接时,cwnd初始化为1个最大报文段(MSS)大小,发送端开始按照拥塞窗口大小发送数据,每当有一个报文段被确认,cwnd就增加1个MSS大小。这样cwnd的值就随着网络往返时间(Round Trip Time,RTT)呈指数级增长,事实上,慢启动的速度一点也不慢,只是它的起点比较低一点而已。我们可以简单计算下: 开始 ---> cwnd = 1 经过1个RTT后 ---> cwnd = 2*1 = 2 经过2个RTT后 ---> cwnd = 2*2= 4 经过3个RTT后 ---> cwnd = 4*2 = 8如果带宽为W,那么经过RTT*log2W时间就可以占满带宽。拥塞避免:从慢启动可以看到,cwnd可以很快的增长上来,从而最大程度利用网络带宽资源,但是cwnd不能一直这样无限增长下去,一定需要某个限制。TCP使用了一个叫慢启动门限(ssthresh)的变量,当cwnd超过该值后,慢启动过程结束,进入拥塞避免阶段。对于大多数TCP实现来说,ssthresh的值是65536(同样以字节计算)。拥塞避免的主要思想是加法增大,也就是cwnd的值不再指数级往上升,开始加法增加。此时当窗口中所有的报文段都被确认时,cwnd的大小加1,cwnd的值就随着RTT开始线性增加,这样就可以避免增长过快导致网络拥塞,慢慢的增加调整到网络的最佳值。上面讨论的两个机制都是没有检测到拥塞的情况下的行为,那么当发现拥塞了cwnd又该怎样去调整呢?首先来看TCP是如何确定网络进入了拥塞状态的,TCP认为网络拥塞的主要依据是它重传了一个报文段。上面提到过,TCP对每一个报文段都有一个定时器,称为重传定时器(RTO),当RTO超时且还没有得到数据确认,那么TCP就会对该报文段进行重传,当发生超时时,那么出现拥塞的可能性就很大,某个报文段可能在网络中某处丢失,并且后续的报文段也没有了消息,在这种情况下,TCP反应比较“强烈”:1.把ssthresh降低为cwnd值的一半2.把cwnd重新设置为13.重新进入慢启动过程。从整体上来讲,TCP拥塞控制窗口变化的原则是AIMD原则,即加法增大、乘法减小。可以看出TCP的该原则可以较好地保证流之间的公平性,因为一旦出现丢包,那么立即减半退避,可以给其他新建的流留有足够的空间,从而保证整个的公平性。其实TCP还有一种情况会进行重传:那就是收到3个相同的ACK。TCP在收到乱序到达包时就会立即发送ACK,TCP利用3个相同的ACK来判定数据包的丢失,此时进行快速重传,快速重传做的事情有:1.把ssthresh设置为cwnd的一半2.把cwnd再设置为ssthresh的值(具体实现有些为ssthresh+3)3.重新进入拥塞避免阶段。后来的“快速恢复”算法是在上述的“快速重传”算法后添加的,当收到3个重复ACK时,TCP最后进入的不是拥塞避免阶段,而是快速恢复阶段。快速重传和快速恢复算法一般同时使用。快速恢复的思想是“数据包守恒”原则,即同一个时刻在网络中的数据包数量是恒定的,只有当“老”数据包离开了网络后,才能向网络中发送一个“新”的数据包,如果发送方收到一个重复的ACK,那么根据TCP的ACK机制就表明有一个数据包离开了网络,于是cwnd加1。如果能够严格按照该原则那么网络中很少会发生拥塞,事实上拥塞控制的目的也就在修正违反该原则的地方。具体来说快速恢复的主要步骤是:1.当收到3个重复ACK时,把ssthresh设置为cwnd的一半,把cwnd设置为ssthresh的值加3,然后重传丢失的报文段,加3的原因是因为收到3个重复的ACK,表明有3个“老”的数据包离开了网络。 2.再收到重复的ACK时,拥塞窗口增加1。3.当收到新的数据包的ACK时,把cwnd设置为第一步中的ssthresh的值。原因是因为该ACK确认了新的数据,说明从重复ACK时的数据都已收到,该恢复过程已经结束,可以回到恢复之前的状态了,也即再次进入拥塞避免状态。快速重传算法首次出现在的Tahoe版本,快速恢复首次出现在的Reno版本,也称之为Reno版的TCP拥塞控制算法。可以看出Reno的快速重传算法是针对一个包的重传情况的,然而在实际中,一个重传超时可能导致许多的数据包的重传,因此当多个数据包从一个数据窗口中丢失时并且触发快速重传和快速恢复算法时,问题就产生了。因此NewReno出现了,它在Reno快速恢复的基础上稍加了修改,可以恢复一个窗口内多个包丢失的情况。具体来讲就是:Reno在收到一个新的数据的ACK时就退出了快速恢复状态了,而NewReno需要收到该窗口内所有数据包的确认后才会退出快速恢复状态,从而更一步提高吞吐量。SACK就是改变TCP的确认机制,最初的TCP只确认当前已连续收到的数据,SACK则把乱序等信息会全部告诉对方,从而减少数据发送方重传的盲目性。比如说序号1,2,3,5,7的数据收到了,那么普通的ACK只会确认序列号4,而SACK会把当前的5,7已经收到的信息在SACK选项里面告知对端,从而提高性能,当使用SACK的时候,NewReno算法可以不使用,因为SACK本身携带的信息就可以使得发送方有足够的信息来知道需要重传哪些包,而不需要重传哪些包。

在计算机网络中的链路容量(即带宽)、交换节点(如路由器)中的缓存和处理机等,都是网络的资源。在某段时间内,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏,从而导致吞吐量将随着输入负荷增大而降低。这种情况就叫做 拥塞 。通俗来说,就跟交通拥堵性质一样。

网络拥塞的原因有很多,如交换节点的 缓存容量太小、输出链路的容量和处理机的速度 。

拥塞控制就是防止过多的数据注入网络中,这样可以使网络中的路由器或链路不致于过载 。拥塞控制是一个 全局性的过程 。涉及网络中所有的主机、所有的路由器,以及与降低网络传输性能有关的所有因素。

拥塞控制和流量控制的关系密切,但是 流量控制往往是指点对点的通信量控制 ,是个 端对端 的问题。流量控制所要做的就是抑制发送方发送数据的速率,以便使接收端来得及接收。

TCP进行拥塞控制的算法有四种,即 慢开始(slow-start)、拥塞避免(congestion-avoidance)、快重传(fast retransmit)、快恢复(fast recovery) 。

为了讨论问题方便,提出以下假定:

拥塞控制也叫做 基于窗口 的拥塞控制。为此,发送方维持一个叫作 拥塞窗口cwnd (congestion window)的状态变量。 拥塞窗口的大小取决于网络的用谁程度,并且动态的变化。发送方让自己的发送窗口等于拥塞窗口 。

接收方窗口值rwnd和拥塞窗口值cwnd的区别:

发送方控制拥塞窗口的原则是:只要网络没有出现拥塞,拥塞窗口就可以再扩大一些,以便让更多的分组发送出去,如果网络出现了拥塞,就必须将拥塞窗口减小一些,以减少分组的发送。 判断网络拥塞的依据就是出现了超时 。

慢开始算法的思路:刚开始发送数据时,不一下向网络中注入大量数据,而是先探测一下,即 由小到大逐渐增大发送窗口 ,也就是说, 由小到大逐渐增大拥塞窗口数值 。

慢开始算法具体规定:刚开始发送数据时,先把拥塞窗口cwnd根据 发送方的最大报文段SMSS (Sender Maximum Segment Size)数值的大小设置为不超过2-4个SMSS的数值。在 每收到一个对新的报文段的确认后,可以把拥塞窗口增加最多一个SMSS的数值 。用这样的方法逐步增大发送方的拥塞窗口rwnd,可以使分组注入到网络中的速率更加合理。

下面举例说明一下,虽然实际上TCP是用字节数作为窗口大小的单位,但为了方便描述,下面使用报文段的个数来作为窗口的大小的单位,并且假设所有的报文段大小相等。

所以, 慢开始算法每经过一个传输轮次(transmission round),拥塞窗口cwnd就加倍 。

注:在TCP实际运行时,发送方只有收到一个确认就可以将cwnd加1并发送新的分组,并不需要等一个轮次所有的确认都收到后再发送新的分组。

从上面可以看出,慢开始算法虽然起始的窗口很小,但是每过一个轮次,窗口大小翻倍,呈指数爆炸增长,所以必须要对其进行一个限制,防止其增长过大引起网络拥塞。这个限制就是 慢开始门限ssthresh 状态变量。慢开始门限ssthresh的用法如下:

拥塞避免算法的思路是让拥塞窗口cwnd缓慢增大,即每经过一个往返时间RTT就把发送方的拥塞窗口cwnd加1,而不是像慢开始阶段那样加倍增长。因此在拥塞避免阶段就有 “加法增大”AI (Additive Increase)的特点。这表明在拥塞避免阶段,拥塞窗口cwnd 按线性规律增长 ,比慢开始算法的拥塞窗口增长速率缓慢得多。

下面用一个具体的例子来说明拥塞控制的过程,下图假设TCP发送窗口等于拥塞窗口,慢开始初始门限设置为16个报文段,即ssthresh = 16。

在拥塞避免阶段,拥塞窗口是按照线性规律增大的,这常称为 加法增大AI 。无论在慢开始阶段还是拥塞避免阶段,只要出现一次超时(即出现一次网络拥塞),就把慢开始门限值 ssthresh 设置为当前拥塞窗口的一半,这叫做 乘法减小 MD (Multiplication Decrease)。

当网络频繁出现拥塞时,ssthresh 值就下降的很快,以大大减少注入网络中的分组数。

快恢复算法 ,如果发送方连续接收到3个冗余ACK,发送方知道现在只是丢失了个别的报文段,此时调整门限值 ssthresh为当前拥塞窗口的一半,同时设置拥塞窗口 cwnd为新的门限值(发生报文段丢失时拥塞窗口的一半),而不是从1开始。

TCP对这种丢包事件的行为,相比于超时指示的丢包,不那么剧烈 ,所以对于连续收到3个冗余ACK,拥塞窗口不会从1开始开始。

上文 浅谈TCP(1):状态机与重传机制 介绍了TCP的状态机与重传机制。本文介绍 流量控制 (Flow Control,简称流控)与 拥塞控制 (Congestion Control)。TCP依此保障网络的 QOS (Quality of Service)。

根据前文对TCP超时重传机制的介绍,我们知道Timeout的设置对于重传非常重要:

而且,这个超时时间在不同的网络环境下不同,必须动态设置。为此,TCP引入了 RTT (Round Trip Time,环回时间):一个数据包从发出去到回来的时间。这样,发送端就大约知道正常传输需要多少时间,据此计算 RTO (Retransmission TimeOut,超时重传时间)。 听起来似乎很简单:在发送方发包时记下t0,收到接收方的Ack时记一个t1,于是RTT = t1 – t0。然而,这只是一个采样,不能代表网络环境的普遍情况。

RFC793 中定义了一个 经典算法 :

经典算法描述了RTO计算的基本思路,但还有一个重要问题:RTT的采样取“ 第一次 发Seq+收Ack的时间”,还是“ 重传 Seq+收Ack的时间”?

如图:

问题的本质是: 发送方无法区分收到的Ack对应第一次发的Seq还是重传的Seq (进入网络就都一样了)。针对该问题, Karn / Partridge 算法选择回避重传的问题: 忽略重传的样本,RTT的采样只取未产生重传的样本 。

简单的忽略重传样本也有问题:假设当前的RTO很小,突然发生网络抖动,延时剧增导致要重传所有的包;由于忽略重传样本,RTO不会被更新,于是继续重传使网络更加拥堵;拥堵导致更多的重传,恶性循环直至网络瘫痪。Karn / Partridge算法用了一个取巧的办法: 只要一发生重传,就将现有的RTO值翻倍(指数回退策略),待网络恢复后再仿照经典算法逐渐平滑以降低RTO 。

该算法已经做到可用,然而网络抖动对性能的影响比较大。

前面两种算法均使用加权移动平均算法做平滑,这种方法的最大问题是:很难发现RTT值上的较大波动,因为被平滑掉了(1 - a比较小,即最新RTT的权重小)。针对该问题, Jacobson / Karels 算法引入了最新采样的RTT值和平滑过的SRTT值的差距做因子,即 DevRTT (Deviation RTT,RTT的偏离度),同时考虑SRTT带来的惯性和DevRTT带来的波动:

Linux 采用该算法计算RTO,默认取α = , β = , μ = 1, ∂ = 4(玄学调参,你懂的)。

TCP使用 滑动窗口 (Sliding Window)做流量控制与 乱序重排 。乱序重排在TCP的重传机制中已经介绍,下面介绍流量控制。

TCP头里有一个字段叫Window(或Advertised Window), 用于接收方通知发送方自己还有多少缓冲区可以接收数据 。 发送方根据接收方的处理能力来发送数据,不会导致接收方处理不过来,是谓流量控制 。暂且把Advertised Window当做滑动窗口,更容易理解滑动窗口如何完成流量控制,后面介绍拥塞控制时再说明二者的区别。

观察TCP协议的发送缓冲区和接收缓冲区:

假设位置序号从左向右增长(常见的读、写缓冲区设计),解释一下:

据此在接收方计算 AdvertisedWindow ,在发送方计算 EffectiveWindow :

AdvertisedWindow衡量接收方还能接收的数据量,发送方要根据AdvertisedWindow决定接下来发送的数据量上限,即EffectiveWindow(可能为0)。

由于乱序问题的存在,LastByteRcvd可能指向Seq(LastByteSent),而Seq(LastByteAcked + 1)至Seq(LastByteSent - 1)都还在路上 ,即将到达接收方,最好的情况是不丢包(丢包后会重传), 则LastByteRcvd之后、接收缓冲区边界之前的空间就是发送方下一次发送数据的长度上限 (重传不属于下一次发送),因此, AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd - LastByteRead) 。

LastByteRcvd还可能指向Seq(LastByteAcked)(一个新包都没有收到) ,显然AdvertisedWindow的公式不变, 而Seq(LastByteAcked + 1)至Seq(LastByteSent)都还在路上 ,未来将到达接收方,进入接收缓冲区,则“还在路上的Seq(LastByteAcked + 1)至Seq(LastByteSent)”不应超过接收缓冲区的剩余空间AdvertisedWindow(目前等于MaxRcvBuffer),这要求的是上一次发送满足LastByteSent - LastByteAcked ≤ AdvertisedWindow, 那么LastByteSent之后、接收缓冲区剩余空间边界之前的空间就是发送方窗口内剩余可发送数据的长度上限 ,因此, EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked) 。

以下是一个发送缓冲区的滑动窗口:

上图分为4个部分:

其中, #2 + #3 组成了滑动窗口,总大小不超过AdvertisedWindow,二者比例受到接收方的处理速度与网络情况的影响(如果丢包严重或处理速度慢于发送速度,则 #2:#3 会越来越大)。

以下是一个AdvertisedWindow的调整过程,EffectiveWindow随之变化:

上图,我们可以看到一个处理缓慢的Server(接收端)是怎么把Client(发送端)的发送窗口size给降成0的。对于接收方来说,此时接收缓冲区确实已经满了,因此令发送方的发送窗口size降为0以暂时禁止发送是合理的。那么,等接收方的接收缓冲区再空出来,怎么通知发送方新的window size呢?

针对这个问题,为TCP设计了ZWP技术(Zero Window Probe,零窗通告):发送方在窗口变成0后,会发ZWP的包给接收方,让接收方来Ack他的Window尺寸;ZWP的重传也遵循指数回退策略,默认重试3次;如果3次后window size还是0,则认为接收方出现异常,发RST重置连接( 部分文章写的是重试到window size正常??? )。

注意:只要有等待的地方都可能出现DDoS攻击,Zero Window也不例外。一些攻击者会在和服务端建好连接发完GET请求后,就把Window设置为0,于是服务端就只能等待进行ZWP;然后攻击者再大量并发发送ZWP,把服务器端的资源耗尽。( 客户端等待怎么耗服务端???

为什么要进行拥塞控制?假设网络已经出现拥塞,如果不处理拥塞,那么延时增加,出现更多丢包,触发发送方重传数据,加剧拥塞情况,继续恶性循环直至网络瘫痪。可知,拥塞控制与流量控制的适应场景和目的均不同。

拥塞发生前,可避免流量过快增长拖垮网络;拥塞发生时,唯一的选择就是降低流量 。主要使用4种算法完成拥塞控制:

算法1、2适用于拥塞发生前,算法3适用于拥塞发生时,算法4适用于拥塞解决后(相当于拥塞发生前)。

在正式介绍上述算法之前,先补充下 rwnd (Receiver Window,接收者窗口)与 cwnd (Congestion Window,拥塞窗口)的概念:

介绍流量控制时,我们没有考虑cwnd,认为发送方的滑动窗口最大即为rwnd。实际上, 需要同时考虑流量控制与拥塞处理,则发送方窗口的大小不超过 min{rwnd, cwnd} 。下述4种拥塞控制算法只涉及对cwnd的调整,同介绍流量控制时一样,暂且不考虑rwnd,假定滑动窗口最大为cwnd;但读者应明确rwnd、cwnd与发送方窗口大小的关系。

慢启动算法 (Slow Start)作用在拥塞产生之前: 对于刚刚加入网络的连接,要一点一点的提速,不要妄图一步到位 。如下:

因此,如果网速很快的话,Ack返回快,RTT短,那么,这个慢启动就一点也不慢。下图说明了这个过程:

前面说过,当cwnd >= ssthresh(通常ssthresh = 65535)时,就会进入 拥塞避免算法 (Congestion Avoidance): 缓慢增长,小心翼翼的找到最优值 。如下:

慢启动算法主要呈指数增长,粗犷型,速度快(“慢”是相对于一步到位而言的);而拥塞避免算法主要呈线性增长,精细型,速度慢,但更容易在不导致拥塞的情况下,找到网络环境的cwnd最优值。

慢启动与拥塞避免算法作用在拥塞发生前,采取不同的策略增大cwnd;如果已经发生拥塞,则需要采取策略减小cwnd。那么,TCP如何判断当前网络拥塞了呢?很简单, 如果发送方发现有Seq发送失败(表现为“丢包”),就认为网络拥塞了 。

丢包后,有两种重传方式,对应不同的网络情况,也就对应着两种拥塞发生时的控制算法:

可以看到,不管是哪种重传方式,ssthresh都会变成cwnd的一半,仍然是 指数回退,待拥塞消失后再逐渐增长回到新的最优值 ,总体上在最优值(动态)附近震荡。

回退后,根据不同的网络情况,可以选择不同的恢复算法。慢启动已经介绍过了,下面介绍快速恢复算法。

如果触发了快速重传,即发送方收到至少3次相同的Ack,那么TCP认为网络情况不那么糟,也就没必要提心吊胆的,可以适当大胆的恢复。为此设计 快速恢复算法 (Fast Recovery),下面介绍TCP Reno中的实现。

回顾一下,进入快速恢复之前,cwnd和sshthresh已被更新:

然后,进入快速恢复算法:

下面看一个简单的图示,感受拥塞控制过程中的cwnd变化:

  • 索引序列
  • 硬碳的制备及其储锂性能研究论文
  • 涂层的制备及其性能研究论文
  • 纳米流体的制备及性能研究论文
  • 碳纳米结构及其研究的小论文
  • tcp性能及拥塞控制研究论文
  • 返回顶部