目的应该放在熟悉科研过程和基本实验技能上。如果导师不给找题,如下: 1,与师兄师姐们或者身边有这方面经验的人商谈,听一听他们的想法,选一个和他们的实验方法相近的研究。优点在于:这样你将来实验有了问题,还有个人问,并且在他们的经验下,可以少走弯路和节省经费。我当初的硕士课题就是和我们那里的肿瘤研究所的好友商谈定下来的(与他们关联的题),一路非常顺利,那一步不会问好友就是了! 2,尽可能选简单的实验方法,不光是为了省钱和时间,同一个题能用简单方法证明,为什么非得找什么高级方法,可能有人说:越是高级的方法越有水平!这是大错特错!!!我曾经看过98 年发表在 Science 上的一篇原著,作者就是用了一个 ELASA 法,但实验设计的非常完美,而且就150例病人数。至于说我,当初的硕士课题用的是免疫组织化学染色法,很简单!
pvcpp材料多,相对容易。
在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!
论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成
石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.
另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].
作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.
基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.
1实验部分
原材料
苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).
的制备
PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入 g CTAB, g 草酸以及 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 的制备
采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.
复合材料制备
按照一定比例将含一定量的PANIF液与一定量的 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.
仪器与表征
用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.
电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为~.
比电容计算依据充放电曲线,按式(1)[15]计算:
Cs=iΔtΔVm.(1)
式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.
2结果与讨论
形貌表征
图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.
分析
图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.
电化学性能分析
图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为 F/g.
图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5
值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.
氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.
3结论
采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.
浅谈水泥窑用新型环保耐火材料的研制及应用
1 概述
随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。
发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:
我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:
这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。
2 水泥窑烧成带新型环保耐火材料的研制
研制思路
目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。
试验与研究
铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含和。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为,莫氏硬度为。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:
为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:
原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。
铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。
产品的性能
结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐
火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。
强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。
具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。
产品的应用
新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。
3 结论
高分子材料范围大了,如果想要简单的话,就在网上下载一篇,你得给一个题目才行!
建筑材料论文3000字篇3 浅谈多孔建筑材料热湿物理性能探究及应用 本文分析了多孔介质的传热质理论,同时,结合建筑围护结构来分析了多孔介质材料的传质系数,从而得知多孔建筑材料热湿物理性能与建筑材料本身以及建筑围护结构有着莫大的关系,因此,为进一步改善多孔建筑材料以及建筑围护结构提供有效的依据,从而为建筑材料研发领域提供一定的指导意义。 一、关于多孔介质传热传质理论分析 根据建筑市场来看,绝大部分的材料均属于多孔介质,它是一种固体与流体组成的复合介质。但是目前为止还没有对其有个明确的定义,根据相关研究学者J?Bear对其进行的简单定义得知:多孔介质是指部分空间至少有一种非固态的物质,固体部分被称为固相基质,固体以外的物质以外的空间被称为空隙空间。同时,多孔介质中至少有一个空隙空间是相连通的。另外,在1990年S?P?W?Wong对建筑材料进行了分类,即非多孔介质材料、等吸湿多孔介质材料以及毛细多孔介质材料等。根据多孔介质传输现象可以得知其具有以下特点:第一,多孔介质传输涉及到较多的科学理论,因此具有多学科交叉的特点;第二,多孔介质材料应用于不同的地方,则侧重点就不一样,例如:当多孔介质材料应用于石油开发中,则需要侧重其液相流动的规律;第三,多孔介质具有非均匀的特点,这也是构成其复杂性的重要原因,在此则需要通过实践来了解其中的规律性。 二、关于建筑围护结构多孔介质材料的传质系数分析 多孔介质材料的各种传递系数在传热传质的研究过程中存在着较大的难题,相关研究学者通过一系列的研究,到目前为止,关于传质系数的研究成果有以下几种:水蒸气扩散系数、液态水扩散系数以及传导系数。 (一)水蒸气扩散系数研究分析 水蒸气扩散系数是指在一定的蒸汽压差下,某一时间内通过一定面积扩散的水蒸气量。同时,根据材料的不同,水蒸气的扩散系数是不尽相同的,通过研究发现,水蒸气在材料中的扩散系数与其在空气中的系数呈以下关系:,其中为水蒸气的扩散阻力系数,其与当地大气压力以及温度有着直接的关系,通过实践计算得出,水蒸气扩散系数具有以下几种成果:第一,水蒸气扩散系数在湿传过程中为一定值;第二,水蒸气扩散系数在不同材料中会产生不同的值;第三,水蒸气扩散系数与材料物理有着一定的关系,且呈现出一定的规律。 (二)液态水扩散系数研究分析 随着水蒸气的含湿量的增加,在多孔材料中,将会出现水蒸气以及液态水两种介质传递形式。针对液态水在整个湿传递过程中的变化,不同的研究者提出不同的方程来描述,例如:Künzel认为湿扩散系数由吸湿水分阶段与毛细水分阶段结合而成的;而Roels针对水蒸气湿传递给出了两种扩散系数的计算办法,一种是综合指数法,另一种为叠加函数法,这种系数可以得出水汽曲线。 综上所述,以上均是由国外研究学者针对扩散系数而提供的研究情况,我国国内针对水分在混凝土中的扩散也进行了大量的研究,以土壤与岩层水流为例,张靖在分析岩石扩散系统影响的基础上提出扩散系数的温度校正公式,从而建立了一套研究岩石扩散系统的 方法 ;另外,刘志勇等人针对多孔介质材料的气体传输基础上而提出一种混凝土气体有效扩散系数的计算公式,从而提出一种可以通过提高压力梯度来测量混凝土的透气性试验方法等等。而相对于建筑材料而言,其扩散系数的研究较少,但是也有相关研究者提出一些研究成果,例如:苏向辉针对多孔结构内热湿迁移的问题,提出了将质扩散系数与热质扩散系数作为温度以及含湿量,来观察液态水扩散系数的线性变化。 (三)传导系数研究分析 当驱动力为毛细压力时,传湿量的系数等于液态水传导系数。我国国内不少研究学者就是利用液态水传导系数来计算土壤方面的传导系数。在普通建筑材料中,国外相关研究学者提出以下几点模型,即简化模型、网络模型、管束模型等。简化模型是不考虑多孔结构以及弯曲因子的,而网络模型是利用网格来模拟实际孔隙结构,并且还通过了电阻网络模型的验证。 三、多孔建筑材料质扩散系数研究分析 (一)关于建筑材料多孔孔隙结构分析 对于建筑材料而言,多孔孔隙影响着其材料的物理性质,例如:强度、定都、弹性等,因此,需要研究以及了解孔隙结构对材料性质的影响,从而有效的解决多孔材料耦合计算的问题。材料内部的热湿物理性能与材料本身的结构特性有着直接的关系,而多孔材料的复杂性以及多样性使得多孔材料的孔隙结构模型的建立有着较大的难度,但是还是取得了突破性的收获,例如:在研究多孔材料结构表征中,探析出了图像分析技术等相关设备。孔隙结构可以分为以下两类,即各向同性与各向异性,其中各向异性材料给热湿传递性能的研究带来一定的难度,所以本文着重结合多孔孔隙结构的各向同性建筑材料来分析热湿传递性能。 (二)关于质扩散系数的推导分析 为了阐述湿分在多孔孔隙结构各向同性建筑材料中的传递过程,则需要将材料的孔隙体积进行进一步细分。当热力学平衡时,多孔材料的湿度会随着附近空气的湿度而升高,一旦到了一定湿度程度时则会凝结液态水。这时候液态水会居于孔隙中,随着湿度进一步增高,则形成以液态水的形式来传递湿度,在此过程中及公共三个含湿量过程,即干燥含湿量、过渡含湿量、有效含湿量。由于水蒸气以及液态水的传输机理不一样,有串联模式与并联模式,因此,多孔介质中湿热传递情况也不尽相同。 结语: 本文分析了多孔介质传热传质理论,同时,结合多孔建筑材料质扩散系数理论来分析了热湿物理性能,多孔孔隙结构的建筑材料产生热湿物理性能与建筑的整体能耗以及室内热湿环境有着直接的联系。改善对孔结构建筑材料的热湿物理性能对实现低碳、低能耗的建筑工程有着十分重要的作用,从而为建筑企业带来经济效益与社会效益。 建筑材料论文3000字篇4 浅谈《建筑材料》课程教学中存在的问题及对策 《建筑材料》是技工院校建筑专业一门重要的专业基础课。长久以来,《建筑材料》以其凌乱的系统、繁杂的内容困扰了很多教师和学生。面对新时期课程体系的挑战,如何又好又快地完成教学任务,应是专业教师不断探索的课题。 1 课程教学中存在的问题 内容多,涉及面广,系统性差 《建筑材料》主要介绍了常用的建筑材料,如石灰、石膏、木材、混凝土、吸声材料、建筑砂浆、水泥、轻体材料、建筑装饰材料、建筑钢材、石灰、防水材料、绝热材料、建筑胶体、管道材料等,内容繁杂,品种繁多。虽然各类材料自成体系、但各体系内缺乏逻辑关系,系统性较差,学生学起来易枯燥乏味,上课时提不起兴趣、提不起精神,更别谈能学到多少东西了。 内容枯燥,逻辑性差,实践性强 本课程 经验 性内容多,概念术语多,纯文字叙述多,逻辑推理内容少。看似好学,实则不然,要想真正学好这门课,掌握起来还是比较较难的。在日常教学过程中若 教学方法 不对路, 学习方法 无要领,教师们教起来就会比较累,学生们学起来就会比较吃力,掌握不了多少实用知识。 课程学时少,不能保证学生能够学完 一般来讲,技工院校建筑专业的学生最后一个学期或两个学期通常会被安排到建筑工地一线实习,这样就导致了学生在校学习实际时间减少,为保证教学内容的顺利完成,很多教师就自然而然的出现了“填鸭式”教学,教师不顾学生的学习效果,单追求“快”忽略了“好”,最终导致学生学生学起来枯燥乏味,教师教起来紧张无奈。 教材内容滞后,缺乏创新 目前,《建筑材料》相关教材中,传统材料如石灰、水泥、普通砼、钢材、木材等讲得过多、过细,占用了较多的课时。但很多新材料教材中多数并未提及,例如建筑工程中已经被广泛使用的高性能砼、各种新型玻璃、双钢筋、新型防水材料、新型管材等。 教学方法与手段相对落后 目前,传统教学方法在不少技工院校中仍然有较大的市场。虽说传统的教学方法在某些学科中对学生的基础知识掌握有些效果,但对于建筑材料这门实践性非常强的课程来说,只采用上课老师讲、学生被动学的方法,根本无法使学生真正掌握这门课程的精髓。这种传统的教学方法使学生所学的知识,仅停留在理论的基础层面上,对各类材料的应用知识以及工程实际材料的应用知之甚少,进入工地后,并不能针对现场出现的问题及时做出反应,更谈不上综合应用所学的材料知识去解决工程中的实际问题了。 2 课程教学方面的改进 根据技工院《建筑材料》课程标准、自身特点和建筑材料教学过程中经常存在的问题,教学方法可以从以下几方面着手。 改进教学方法 采用现代化教学手段 采用现代化的教学手段,增强教学直观,这样可以培养和激发学生的学习兴趣。建筑材料是一个发展一日千里、日新月异的行业,新材料层出不穷,但目前广泛使用的教材内容远远滞后于实际。由于各地师资条件不同,在不能实现实物讲课的情况下,教师可以将各种建筑材料的特点、应用等以多媒体展示的形式将原料结构、内部构造等呈现在学生面前,以增加感性认识。多媒体教学以动静皆宜、声像俱佳、图文并茂的表现形式,把知识点直观、生动地结合起来,把抽象的理论以形象、易于接受的形式展现给学生,为学生提供了边看、边听、边做、边想的学习体验,激发学生的学习主动性,提高教学质量。 大量引入案例法教学 实践证明,案例教学法是一种针对技工院校学生非常行之有效的教学方法,深受广大师生好评。建筑材料课程可以根据教学目标的需要,针对建筑工程常用建筑材料,运用发生在身边的工程案例,从引入问题、分析问题到解决问题,使知识在案例中呈现,增强学生的直观感受,增加他们的直观认识。 加强实践教学 实践教学是巩固理论知识和加深对理论认识的有效的、必须的途径,是培养具有创新意识的高素质工程技术人员的重要环节,是理论联系实际、培养学生掌握科学方法和提高动手能力的重要平台。有利于学生素养的提高和正确价值观的形成。建筑材料学科中有大量的建材需要学生去认识,通过建材实验,不仅能验证已学的理论知识,还能锻炼动手能力,培养分析问题、解决问题的能力。 加强学生自主学习能力的培养 大量的教学实践证明,学生主动发展的潜能是强烈的的,学生自主学习的愿望是巨大的,学生有控制课堂的渴望。教师教学要以促进学生智能提高为核心,把学生作为课堂的主人、学习的主人,让学生有足够的时间讨论、观察、思考、质疑、评价,从而增强学生的学习力。 充分利用互联网资源 目前,多数技工院校都覆盖了高速的互联网络,学生能够轻而易举的在网络上获取相关资料,不断学习,增加的知识面。教师可以引导学生充分利用网络资源,例如各种专业的建材网站、科研院所网站、甚至建材市场动态。这些他山之石对扩大学生的知识面,和技术、市场零距离接触是非常有好处的。 选择内容浅显实用而又不失新颖的教材 选对一个教材的作用非常之大,作为专业教师应该把好学生的教材关。选择教材要把握好“三关”一要把握“浅”字,二要把握“用”字,三要把握“新”字。浅显是指应在通俗易懂上下功夫,解决一个“浅”字,在必需、够用、有用的基础上尽可能地降低难度;“用”字就是实用之意,实用是指对培养学生职业能力和再学习能力有用的基本知识、基本理论、基本分析方法;“新”字即新颖,新颖是指教学内容符合并能反映科学技术进步和时代发展的新形势,具有先进性,突出一个“新”字。近些年来建筑领域新材料、新技术等新的信息都要在教学内容里反映出来。 3 结语 在《建筑材料》学科教学过程中,我们要,结合技工院校学生的实际学习情况,根据技工院校课程的特点选择适宜的教材,结合教学内容,认真研究,采用最佳的教学方法和教学手段,从而有效地提高技工院校《建筑材料》课的教学质量,培养出更多更好的广受社会欢迎的建筑人才。 猜你喜欢: 1. 建筑材料论文优秀范文 2. 建筑材料类论文优秀范文 3. 关于建筑材料的论文 4. 有关建筑材料论文2000字 5. 建筑材料论文5000字 6. 建筑材料论文范例
随着建筑工程的发展,建筑工程材料也变得越来越重要,建筑项目的完成质量往往取决于建筑材料质量的好坏。下文是我为大家搜集整理的关于建筑材料论文2000字的内容,欢迎大家阅读参考!
浅析建筑材料检测的相关技术
1、建筑材料的分类与检验项目
房屋建筑材料根据其在建筑物中的部位或使用性能,大体上分为三大类,即建筑结构材料(建筑物受力构件和结构所用的材料)、墙体材料(建筑物内、外及隔墙所用的材料)、建筑功能材料(承担某建筑功能的非承重用的材料)。施工现场所用的建筑材料品种繁多,进场检测、试验材料项目要服从国家、行业及当地建设主管部门(或所属有关部门)的规定,并服从《省建筑工程竣工技术档案编制办法》。
例如配制混凝土用的水泥,需按批检验其安定性、 强度、凝结时间和细度;混凝土用粗骨料按常规进行颗粒级配、密度、含泥量及泥块含量、针片状颗粒含量等检验项目,如若用于≥C35的混凝土须做压碎指标,新采用的质地疏松的骨料还应做坚固性试验,活性骨料做活性试验等。对于合成高分子防水材料,按―2000《高分子防水材料――第一部分片材》,应按批检验其物理性能,例如断裂拉伸强度、胶断伸长率、不透水性和低温弯折。材料检测试验项目的确定应以确保工程质量为前提,只检验其原始合格证明而不按规定抽样试验,或虽抽样试验但检测项目不全,都是不符合要求的。
2、取样的数量和方法
取样要有代表性,一般是以一批材料不同部位随机抽取规定数量的样品(钢材是从规定部位截取),即不仅取样数量要正确,而且取样部位及方法也要按规定进行。试样的数量关系到试验结果的准确性,数量过少、取样部位及方法的偏差,都会使试验误差增大,甚至会得出相反的结果。但是,在实际检测中经常会出现取样不具有代表性、取样的数量不够、取样方法不正确等问题。例如袋装水泥要从该批不少于20袋水泥中任取等量样品,总质量至少12kg。
在实际工作中,多次遇到送检人员一次性提取半袋或整袋水泥作为样品,经检测水泥强度值不符合标准要求的情况,后经现场按标准要求取样后复试,试验结果则完全符合国家标准;又如送检钢筋焊接试件时,有的是用工地的废钢筋头作为模拟试件或者取样方法不正确;再如钢筋气压焊焊件按标准应送检6根,3根做拉伸试验,3根做弯曲试验,而有的只送检3根试件,这样即使3根试件的拉伸试验结果全部合格,仍无法判定该批试件是否合格。
3、常用建筑材料检测技术要点分析
在建筑材料质量控制的实践中,我们深刻地体会到,工程材料的质量监控要采取施工单位自检和监理单位平行检测、跟踪检测、见证取样相结合的办法,检测和试验相结合,完善“企业自检、社会监理、政府监督” 的质量保证体系,牢固树立“百年大计、质量第一” 的方针。 现总结几种建筑材料的检测取样试验方法。
钢筋的检测
钢筋进场时,应按照现行国家标准《钢筋砼用热轧带肋钢筋》GB1499等的规定抽取试件作力学性能检验,其质量必须符合有关标准规定。1)取样时,从任一钢筋端头,截取500mm2~1000mm的钢筋,再进行取样。2)冷拉钢筋:应进行分批验收,每批重量不大于20t的同等级、 同直径的冷拉钢筋为一个检验批。3)钢筋焊接。钢筋焊接在建筑施工中一般分为:闪光对焊、电阻点焊、电弧焊、电渣压力焊、预埋件T型接头埋弧压力焊、钢筋气压焊。
(1)闪光对焊:其机械性能试验包括拉伸试验和弯曲试验,拉伸试件长度一般≥500mm(500mm~650mm),冷弯试件长度一般250mm(250mm~350mm)。
(2)电阻点焊:热轧钢筋点焊做抗剪试验,试件长度一般≥600mm;拔低碳钢丝焊点,除作抗剪试验外,还应对较小钢丝做拉伸试验,试件长度一般≥500mm(500mm~650mm)。
(3)电弧焊与电渣压力焊:在现场安装条件下都做拉伸试验,试件长度一般≥500mm(500mm~650mm)。
水泥、砂石的检测
砂石、水泥、外加剂是建筑工程中最基本的、也是用量最大的建筑材料,以往建筑工程在对这些产品检验时,只是检验产品的强度和一些与强度有关的常规性技术指标。而如今对砂、石和水泥甚至包括回填上都要进行放射性的检测。
水泥进场验收:水泥进场时应对其品种、级别、包装或散装仓号、出厂日期等进行检查,并应对其强度、安定性及其他必要的性能指标进行复验,其质量必须符合现行国家标准《硅酸盐水泥、普通硅酸盐水泥》GB175等的规定。当在使用中对水泥质量有怀疑或水泥出厂日期超过3个月(快硬硅酸盐水泥超过1个月)时,应进行复验,并按复验结果使用。?
砂石取样方法:在料堆水取样时,取样部位应均匀分布。在料堆的顶部、中部、底部各均匀分布的5个不同部位取得,组成一组样品,砂子在各部位抽取大致相等的8份,石子在各部位抽取大致相等的15份。砂石、水泥送检的同时,进行砼配合比、砂浆配比的检验工作,一般是与砂石、水泥检验报告同期出示。在第一次使用配合比搅拌砼或砌筑砂浆时,应至少留置一组标准标养试件(标养条件:温度为20±30℃,相对湿度为90%,试件间距为10mm~20mm)作为验证配合比的依据。同时,根据砂浆配比,对所搅拌的砌筑砂浆用砂的粒径、水泥用量、搅拌时间、砂浆和易性等进行检验试验。
砼工程
结构混凝土的强度等级必须符合设计要求,用于检查结构构件混凝土强度的试件,应在混凝土的浇筑地点随机抽取,应及时检查施工记录及试件强度实验报告。对有抗渗要求的混凝土结构,其混凝土试件应在浇筑地点随机取样 ,抗渗试验报告也应随时检查以保障施工质量。
检测时环境温度与湿度的控制温度和湿度对一些建筑材料的性能有很大的影响,故在标准中对材料养护、测试时的环境条件有明确的规定,必须严格遵守。如GB/T17671―1999《水泥胶砂强度检验方法》规定,试体成型时的环境温度应稳定保持在20℃±2℃,相对湿度应>50%;试体拆模前的养护温度为20℃±1℃,相对湿度应>90%;试体在水中养护的温度控制在200C±10C。又如弹性体改性沥青防水卷材(SBS)等防水材料,其性能对环境温度较为敏感,进行拉伸试验时要求室温控制在23℃±2℃。
4、结束语
随着我国建筑行业的发展飞速,人们越来越关注建筑材料的质量。建筑材料作为构建建筑工程的基础,其质量好坏对建筑工程的安全性造成直接的影响。在施工之前,一定要高度重视建筑材料的检测工作,严格执行质量标准,并不断地总结经验教训,不断提高实际操作水平,保证检测结果的准确性,从中确保建筑材料的质量和工程的使用安全。
>>>下页带来更多的建筑材料论文2000字
在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!
论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成
石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.
另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].
作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.
基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.
1实验部分
原材料
苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).
的制备
PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入 g CTAB, g 草酸以及 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 的制备
采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.
复合材料制备
按照一定比例将含一定量的PANIF液与一定量的 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.
仪器与表征
用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.
电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为~.
比电容计算依据充放电曲线,按式(1)[15]计算:
Cs=iΔtΔVm.(1)
式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.
2结果与讨论
形貌表征
图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.
分析
图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.
电化学性能分析
图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为 F/g.
图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5
值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.
氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.
3结论
采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.
浅谈水泥窑用新型环保耐火材料的研制及应用
1 概述
随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。
发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:
我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:
这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。
2 水泥窑烧成带新型环保耐火材料的研制
研制思路
目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。
试验与研究
铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含和。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为,莫氏硬度为。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:
为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:
原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。
铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。
产品的性能
结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐
火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。
强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。
具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。
产品的应用
新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。
3 结论
在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!
论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成
石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.
另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].
作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.
基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.
1实验部分
原材料
苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).
的制备
PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入 g CTAB, g 草酸以及 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 的制备
采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.
复合材料制备
按照一定比例将含一定量的PANIF液与一定量的 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.
仪器与表征
用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.
电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为~.
比电容计算依据充放电曲线,按式(1)[15]计算:
Cs=iΔtΔVm.(1)
式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.
2结果与讨论
形貌表征
图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.
分析
图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.
电化学性能分析
图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为 F/g.
图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5
值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.
氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.
3结论
采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.
浅谈水泥窑用新型环保耐火材料的研制及应用
1 概述
随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。
发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:
我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:
这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。
2 水泥窑烧成带新型环保耐火材料的研制
研制思路
目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。
试验与研究
铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含和。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为,莫氏硬度为。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:
为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:
原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。
铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。
产品的性能
结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐
火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。
强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。
具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。
产品的应用
新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。
3 结论
同志你好: 以下是我总结的材料,请核对后使用 祝愿你工作愉快 工程热力学 热力学是研究热现象中,物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时,系统与外界相互作用的学科。 工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。 工程热力学的基本任务是:通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。 为此,必须以热力学基本定律为依据,探讨各种热力过程的特性;研究气体和液体的热物理性质,以及蒸发和凝结等相变规律;研究溶液特性也是分析某些类型制冷机所必需的。现代工程热力学还包括诸如燃烧等化学反应过程,溶解吸收或解吸等物理化学过程,这就又涉及化学热力学方面的基本知识。 工程热力学是关于热现象的宏观理论,研究的方法是宏观的,它以归纳无数事实所得到的热力学第一定律、热力学第二定律和热力学第三定律作为推理的基础,通过物质的压力 、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究。 这种方法,把与物质内部结构有关的具体性质,当作宏观真实存在的物性数据予以肯定,不需要对物质的微观结构作任何假设,所以分析推理的结果具有高度的可靠性,而且条理清楚。这是它的独特优点。 古代人类早就学会了取火和用火,不过后来才注意探究热、冷现象的实质。但直到17世纪末,人们还不能正确区分温度和热量这两个基本概念的本质。在当时流行的“热质说”统治下,人们误认为物体的温度高是由于储存的“热质”数量多。1709~1714年华氏温标和1742~1745年摄氏温标的建立,才使测温有了公认的标准。随后又发展了量热技术,为科学地观测热现象提供了测试手段,使热学走上了近代实验科学的道路。 1798年,朗福德观察到用钻头钻炮筒时,消耗机械功的结果使钻头和筒身都升温。1799年,英国人戴维用两块冰相互摩擦致使表面融化,这显然无法由“热质说”得到解释。1842年,迈尔提出了能量守恒理论,认定热是能的一种形式,可与机械能互相转化,并且从空气的定压比热容与定容比热容之差计算出热功当量。 英国物理学家焦耳于1840年建立电热当量的概念,1842年以后用不同方式实测了热功当量。1850年,焦耳的实验结果已使科学界彻底抛弃了“热质说”。公认能量守恒、能的形式可以互换的热力学第一定律为客观的自然规律。能量单位焦耳就是以他的名字命名的。 热力学的形成与当时的生产实践迫切要求寻找合理的大型、高效热机有关。1824年,法国人卡诺提出著名的卡诺定理,指明工作在给定温度范围的热机所能达到的效率极限,这实质上已经建立起热力学第二定律。但受“热质说”的影响,他的证明方法还有错误。1848年,英国工程师开尔文根据卡诺定理制定了热力学温标。1850年和1851年,德国的克劳修斯和开尔文先后提出了热力学第二定律,并在此基础上重新证明了卡诺定理。 1850~1854年,克劳修斯根据卡诺定理提出并发展了熵的概念。热力学第一定律和第二定律的确认,对于两类“永动机”的不可能实现作出了科学的最后结论,正式形成了热现象的宏观理论热力学。同时也形成了“工程热力学”这门技术科学,它成为研究热机工作原理的理论基础,使内燃机、汽轮机、燃气轮机和喷气推进机等相继取得迅速进展。 与此同时,在应用热力学理论研究物质性质的过程中,还发展了热力学的数学理论,找到了反映物质各种性质的相应的热力学函数,研究了物质在相变、化学反应和溶液特性方面所遵循的各种规律 。1906年,德国的能斯脱在观察低温现象和化学反应中发现热定理;1912年,这个定理被修改成热力学第三定律的表述形式。 二十世纪初以来,对超高压、超高温水蒸汽等物性,和极低温度的研究不断获得新成果。随着对能源问题的重视,人们对与节能有关的复合循环、新型的复合工质的研究发生了很大兴趣。
近五年来在国内外学术刊物上发表科研论文20多篇,其中有7篇(次)被SCI、EI收录著作1、《材料学》,高等教育出版社,2005年2月;2、《材料力学性能》,武汉理工大学出版社,2004年8月。论文1、 Cheng Xiaomin, Wu xinwen, Zhang Lianmeng, Chen Tiequn. Synthesis of Al2O3/Al Composites by Reaction between SiO2 and Molten Al. Key Engineering Materials, 2003,249:273-2762、 Cheng Xiaomin, Li Na, Zhou Shiquan. Fabrication and Mechanical Properties of SiC/Al Composites by Die-Forging in Semi-Solid. Key Engineering Materials, 2003,249:269-2723、 Cheng Xiaomin, Zhang Lianmeng, Chen Tiequn. Microstructures and Mechanism of Al2O3/Al Composites Obtained by the Reaction of SiO2 and Molten Aluminum. Journal of Wuhan University of Technology—, 2003,18(3):50-524、 Cheng Xiao-min, Li Na, Wu xin-wen,Fang Hua-bin. Research of Eddy Current Testing System of the Carburized Layer Depth of 20CrMnTi Congress of International Federation for Heat Treatment and Surface Engineering. October 26-28,2004,Shanghai,China,409-4115、 程晓敏,周世权,方华斌. Al2O3颗粒增强铝基复合材料的半固态搅熔复合.中国有色金属学报,2001,11(6):1009-10116、 程晓敏,方华斌,吴兴文,张联盟,陈铁群. 石英玻璃与液态铝反应生成Al2O3/Al复合材料的研制.特种铸造及有色合金,2003,(4):8-97、 程晓敏,吴兴文,陶应龙. 20CrMnTi钢渗碳层深度和渗层碳分布的数值模拟. 金属热处理,2004,29(2):53-558、 程晓敏,陈铁群,方华斌.奥氏体氮碳共渗层的组织分析及性能试验.金属热处理,2002,27(3):19-219、 程晓敏,陈铁群,方华斌. 5CrNiMo钢渗硼层组织分析及性能试验. 金属热处理,2001,26(11):11-1210、程晓敏,方华斌,陈铁群. 涡流检测渗碳层深度的感应电压计算.武汉理工大学学报(信息与管理工程版),2003,25(2):64-6611、程晓敏,陈铁群, 游凤荷.渗碳层电磁特性的数值模拟.武汉汽车工业大学学报,2000,22(5):66-6812、程晓敏,陶应龙,李娜. 渗硼后的热处理工艺对5CrNiMo钢力学性能的影响. 热加工工艺,2003,(4):9-1013、程晓敏,陈铁群,申庆. 石墨-Al基复合材料制备工艺及性能.武汉汽车工业大学学报,1997,19(3):43-4614、程晓敏,陈铁群. RSC Al2O3/Al复合材料试验研究. 武汉汽车工业大学学报,1998,20(3):58-6015、程晓敏,吴兴文,方华斌. 渗碳材料涡流测试系统的研究. 无损检测,2004,26(8):396-398.
作者 | 张晴丹
你能想象克的“绳子”可以提起5公斤重的物体吗?
没开玩笑,这是科研人员创造出的一种力学性能惊人的新材料。它不但具有很好的拉伸性能,拉伸长度能达600%,而且还非常坚韧。
近日,美国北卡罗来纳州立大学Dickey实验室博士后王美香以第一作者的身份,在Nature Materials上发表论文,介绍了这款新材料。它属于离子液体凝胶的一种,在抗拉伸性能和韧性上创造了这类材料的最高纪录,也展现出比水凝胶更广阔的应用前景。
评审专家之一、麻省理工学院教授赵选贺认为,“这些透明的离子液体凝胶具有非常坚韧的机械性能,而且最大的亮点是制作简单,易于使用。”
1+1 10,凝胶界的“佼佼者”
“通常凝胶的机械性能很弱,比如豆腐。但在自然界中也有例外,比如人体内的软骨。一些研究人员一直在努力制造坚韧的凝胶,这启发了我们。”论文共同通讯作者、北卡罗来纳州立大学Dickey实验室负责人Michael D. Dickey告诉《中国科学报》。
此次创造出的离子液体凝胶含有超过60%的离子液体,主要包含丙烯酸和丙烯酰胺两种物质,前者是用于婴儿尿不湿吸水的主要材料,后者是用于隐形眼镜的主要材料。最后,混合材料兼具了聚丙烯酰胺和聚丙烯酸离子液体凝胶的优点,实现了1+1 10的效果。
王美香介绍,新材料透明度达90%以上,其内部的聚合物网络微结构使凝胶拥有极高的力学性能,可拉伸而且非常坚韧。拉伸的长度能达600%,模量有约50个兆帕,断裂强度约有13个兆帕。这是目前离子液体凝胶界的最高纪录。
论文中展示的是用克的离子液体凝胶材料,轻松提起1公斤重量的物体。事实上提起5公斤的重量也不在话下,但因实验室没有5公斤的标准件,他们后来用5公斤的水桶做了实验,材料本身不会有任何破损。
离子液体这个溶剂本身不挥发,且具有很高的热稳定性和导电性。因此,创造出的这款离子液体凝胶具有广阔的应用前景。“可用于电池、传感器、3D打印、致动器和柔性电子设备等。”Michael D. Dickey说。
可穿戴柔性电子器件是当下科学研究的热门之一,要同时满足可弯折、扭曲、拉伸等需求,所以对材料的要求极高。以往做展示用的较多的是传统柔性材料——水凝胶,但水凝胶稳定性是个大问题,长期暴露在空气中会导致水分蒸发、性能受损。
“离子液体凝胶完全可以替代水凝胶在可穿戴柔性电子器件上的应用。首先它很稳定不挥发,不需要任何包覆;其次具有高导电性,不需要额外添加导电介质;可穿戴设备往往需要大变形,离子液体凝胶还可以用来开发应变传感器。”王美香说,“还有一点,它具有自愈合和形状记忆的特性。”
一步法轻松做成
长期以来,在凝胶材料领域最火的,非水凝胶莫属。
实际上,水凝胶在生活中已相当常见。比如,隐形眼镜、果冻、龟苓膏等都是水凝胶的“产物”。自62年前水凝胶横空出世,科研人员便绞尽脑汁地挖掘其力学性能,涌现了无数重大成果。
但同为凝胶材料,离子液体凝胶领域的研究则发展较慢。例如力学性能研究还是一块空白,很难把它的力学性能做到与高强度水凝胶相媲美的程度。
在这篇论文发表之前,合成高强度离子液体凝胶的方法并不易。为了提高材料的力学性能,一些研究人员采用多步法或者溶剂交换,整个过程耗时长、成本高,而且浪费资源。
挑战不可能,这是科研工作者骨子里的基因,恰好离子液体这个溶剂的“72般变化”也让王美香着迷。
“顾名思义,水凝胶用的溶剂只有一种,就是水,而离子液体凝胶用的溶剂是离子液体,有成千上万种,这正是它的魅力所在。”王美香对《中国科学报》说。离子液体在室温下是一种液态的熔融盐,里面含有正离子和负离子,只要熔融盐里的正负离子不一样,就可以实现离子液体的千变万化。
研究选材是从聚丙烯酸和聚丙烯酰胺的单体开始。
最初,王美香把两种材料分开来做。当把丙烯酰胺融到离子液体后,产生的凝胶跟她预想的完全不一样,不透明、发白,就像晒干的面条一样特别脆,一碰就断。随后她又试了丙烯酸,做出来的凝胶则超级软,透明度达到百分百。
完全就是两种极端!这让她无比兴奋,如果把三者混在一起,会擦出什么样的火花呢?
“把丙烯酰胺和丙烯酸融到离子液体里,再加入引发剂和交联剂,然后混匀,用高功率紫外灯照射,3分钟就能制作出论文中这种新型混合材料。”王美香说,“就是这么简单。”
一步法就这样诞生了!它为离子液体凝胶研究开启了新世界的大门。
为实验蓄能,把理论变为现实
王美香在西安交通大学读博期间,就一直从事水凝胶研究。但她看到了离子液体凝胶材料的巨大潜力,因此萌生了调整研究方向的想法。
2018年12月,王美香从西安交通大学获得材料科学与工程博士学位后,进入北卡罗来纳州立大学Dickey实验室做博士后,主要致力于高机械性能凝胶材料的设计和制备,以及研究其在可穿戴柔性电子器件、全固态电池以及超级电容器、传感器和驱动器等领域的应用。
在新的平台,王美香也顺利转换到新赛道,开始离子液体凝胶材料研究。
但是,王美香刚进入北卡罗来纳州立大学,新冠疫情就来了,一下打乱了研究计划,学校封闭,无法进入实验室。
她便利用这段时间查阅文献,为实验蓄能。在家“闭关”三个月后,终于等来复工的消息。王美香便一头扎进实验里,每天在实验室待八个小时,把实验过程中看到的现象记录下来,晚上回家查资料来分析这些现象的成因。
幸运的是,这项工作从始至终都比较顺利,这篇论文投给期刊也很快被接收。并且,评审专家都对该成果给了很高的评价。
“接下来,我们将会做应用方面的拓展,想把离子液体凝胶与3D打印技术相结合,用于开发新型柔性机器人。”王美香说。
参与这项研究的一共有9位作者,其中华人学者就有4位。除了王美香,另外3位分别是论文共同通讯作者、西安交通大学教授胡建,西安交通大学硕士生张鹏尧,以及美国内布拉斯加州大学林肯分校研究助理教授钱文。
下面都是材料学的刊物,很多哟。序号 杂志全名 中译名1 NATURE 自然2 SCIENCE 科学3 SURFACE SCIENCE REPORTS 表面科学报告4 PROGRESS IN MATERIALS SCIENCE 材料科学进展5 PROGRESS IN SURFACE SCIENCE 表面科学进展6 PHYSICAL REVIEW LETTERS 物理评论快报7 MATERIALS SCIENCE & ENGINEERING R-REPORTS 材料科学与工程报告8 ADVANCES IN POLYMER SCIENCE 聚合物科学发展9 ADVANCED MATERIALS 先进材料10 ANNUAL REVIEW OF MATERIALS SCIENCE 材料科学年度评论11 APPLIED PHYSICS LETTERS 应用物理快报12 PROGRESS IN POLYMER SCIENCE 聚合物科学进展13 CHEMISTRY OF MATERIALS 材料化学14 PHYSICAL REVIEW B 物理评论B15 ADVANCES IN CHEMICAL PHYSICS 物理化学发展16 JOURNAL OF MATERIALS CHEMISTRY 材料化学杂志17 ACTA MATERIALIA 材料学报18 MRS BULLETIN 材料研究学会(美国)公告19 BIOMATERIALS 生物材料20 CARBON 碳21 SURFACE SCIENCE 表面科学22 JOURNAL OF APPLIED PHYSICS 应用物理杂志23 CHEMICAL VAPOR DEPOSITION 化学气相沉积24 JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 生物医学材料研究25 IEEE JOURNAL OF QUANTUM ELECTRONICS IEEE量子电子学杂志26 CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 固态和材料科学的动态27 DIAMOND AND RELATED MATERIALS 金刚石及相关材料28 ULTRAMICROSCOPY 超显微术29 EUROPEAN PHYSICAL JOURNAL B 欧洲物理杂志 B30 JOURNAL OF THE AMERICAN CERAMIC SOCIETY 美国陶瓷学会杂志31 APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING 应用物理A-材料科学和进展32 NANOTECHNOLOGY 纳米技术33 JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B 真空科学与技术杂志B34 JOURNAL OF MATERIALS RESEARCH 材料研究杂志35 PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES 哲学杂志A凝聚态物质结构缺陷和机械性能物理36 INTERNATIONAL JOURNAL OF NON-EQUILIBRIUM PROCESSING 非平衡加工技术国际杂志37 JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS 电化学系统新材料杂志38 JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS 真空科学与技术A真空表面和薄膜39 DENTAL MATERIALS 牙齿材料40 JOURNAL OF ELECTRONIC MATERIALS 电子材料杂志41 JOURNAL OF NUCLEAR MATERIALS 核材料杂志42 INTERNATIONAL MATERIALS REVIEWS 国际材料评论43 JOURNAL OF NON-CRYSTALLINE SOLIDS 非晶固体杂志44 JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 磁学与磁性材料杂志45 OPTICAL MATERIALS 光学材料46 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY IEEE应用超导性会刊47 METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIAL 冶金与材料会刊A——物理冶金和材料48 THIN SOLID FILMS 固体薄膜49 JOURNAL OF PHYSICS D-APPLIED PHYSICS 物理杂志D——应用物理50 INTERMETALLICS 金属间化合物51 PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS 哲学杂志B-凝聚态物质统计力学52 SURFACE & COATINGS TECHNOLOGY 表面与涂层技术53 JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 生物材料科学—聚合物版54 MATERIALS RESEARCH INNOVATIONS 材料研究创新55 BIOMETALS 生物金属56 INTERNATIONAL JOURNAL OF PLASTICITY 塑性国际杂志57 SMART MATERIALS & STRUCTURES 智能材料与结构58 ADVANCES IN IMAGING AND ELECTRON PHYSICS 成像和电子物理发展59 SYNTHETIC METALS 合成金属60 JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE 材料科学杂志—医用材料61 SCRIPTA MATERIALIA 材料快报62 COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING 复合材料 A应用科学与制备63 MODERN PHYSICS LETTERS A 现代物理快报A64 SEMICONDUCTOR SCIENCE AND TECHNOLOGY 半导体科学与技术65 JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 欧洲陶瓷学会杂志66 APPLIED SURFACE SCIENCE 应用表面科学67 MATERIALS TRANSACTIONS JIM 日本金属学会材料会刊68 PHYSICA STATUS SOLIDI A-APPLIED RESEARCH 固态物理A——应用研究69 MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECH 材料科学与工程B—先进技术用固体材料70 CORROSION SCIENCE 腐蚀科学71 JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 固体物理与化学杂志72 JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY 粘着科学与技术杂志73 INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS 耐火金属和硬质材料国际杂志74 SURFACE AND INTERFACE ANALYSIS 表面与界面分析75 INTERNATIONAL JOURNAL OF INORGANIC MATERIALS 无机材料国际杂志76 SURFACE REVIEW AND LETTERS 表面评论与快报77 MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROST 材料科学和工程A—结构材料的性能、组织与加工78 NANOSTRUCTURED MATERIALS 纳米结构材料79 IEEE TRANSACTIONS ON ADVANCED PACKAGING IEEE高级封装会刊80 INTERNATIONAL JOURNAL OF FATIGUE 疲劳国际杂志81 JOURNAL OF ALLOYS AND COMPOUNDS 合金和化合物杂志82 JOURNAL OF NONDESTRUCTIVE EVALUATION 无损检测杂志83 MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS 材料科学与工程C—仿生与超分子系统84 JOURNAL OF ELECTROCERAMICS 电子陶瓷杂志85 ADVANCED ENGINEERING MATERIALS 先进工程材料86 IEEE TRANSACTIONS ON MAGNETICS IEEE磁学会刊87 PHYSICA STATUS SOLIDI B-BASIC RESEARCH 固态物理B—基础研究88 JOURNAL OF THERMAL SPRAY TECHNOLOGY 热喷涂技术杂志89 MECHANICS OF COHESIVE-FRICTIONAL MATERIALS 粘着磨损材料力学90 ATOMIZATION AND SPRAYS 雾化和喷涂91 COMPOSITES SCIENCE AND TECHNOLOGY 复合材料科学与技术92 NEW DIAMOND AND FRONTIER CARBON TECHNOLOGY 新型金刚石和前沿碳技术93 MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING 材料科学与工程中的建模与模拟94 INTERNATIONAL JOURNAL OF THERMOPHYSICS 热物理学国际杂志95 JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 溶胶凝胶科学与技术杂志96 HIGH PERFORMANCE POLYMERS 高性能聚合物97 MATERIALS CHEMISTRY AND PHYSICS 材料化学与物理98 METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS 冶金和材料会刊B—制备冶金和材料制备科学99 COMPOSITES PART B-ENGINEERING 复合材料B工程100 CEMENT AND CONCRETE RESEARCH 水泥与混凝土研究101 JOURNAL OF COMPOSITE MATERIALS 复合材料杂志102 JOURNAL OF MATERIALS SCIENCE 材料科学杂志103 JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME 工程材料与技术杂志—美国机械工程师学会会刊104 MATERIALS RESEARCH BULLETIN 材料研究公告105 JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY 矿物、金属和材料学会杂志106 JOURNAL OF BIOMATERIALS APPLICATIONS 生物材料应用杂志107 FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES 工程材料与结构的疲劳与断裂108 JOURNAL OF ADHESION 粘着杂志109 COMPUTATIONAL MATERIALS SCIENCE 计算材料科学110 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING IEEE半导体制造会刊111 MECHANICS OF COMPOSITE MATERIALS AND STRUCTURES 复合材料和结构力学112 PHASE TRANSITIONS 相变113 MATERIALS LETTERS 材料快报114 EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS 欧洲物理杂志—应用物理115 PHYSICA B 物理B116 ADVANCED COMPOSITES LETTERS 先进复合材料快报117 POLYMER COMPOSITES 聚合物复合材料118 CORROSION 腐蚀119 PHYSICS AND CHEMISTRY OF GLASSES 玻璃物理与化学120 JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS 材料科学杂志—电子材料121 COMPOSITE INTERFACES 复合材料界面122 AMERICAN CERAMIC SOCIETY BULLETIN 美国陶瓷学会公告123 APPLIED COMPOSITE MATERIALS 应用复合材料124 RESEARCH IN NONDESTRUCTIVE EVALUATION 无损检测研究125 PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS 晶体生长和材料表征进展126 JOURNAL OF COMPUTER-AIDED MATERIALS DESIGN 计算机辅助材料设计杂志127 CERAMICS INTERNATIONAL 国际陶瓷128 POLYMER TESTING 聚合物测试129 ADVANCED PERFORMANCE MATERIALS 先进性能材料 130 SEMICONDUCTORS 半导体131 URNAL OF BIOACTIVE AND COMPATIBLE POLYMERSJO 生物活性与兼容性聚合物杂志132 HIGH TEMPERATURE MATERIALS AND PROCESSES 高温材料和加工133 ADVANCES IN POLYMER TECHNOLOGY 聚合物技术发展134 COMPOSITE STRUCTURES 复合材料结构135 JOURNAL OF THE CERAMIC SOCIETY OF JAPAN 日本陶瓷学会杂志136 BIO-MEDICAL MATERIALS AND ENGINEERING 生物医用材料与工程137 INTERNATIONAL JOURNAL OF MODERN PHYSICS B 现代物理国际杂志B138 INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS 理论物理国际杂志139 INTEGRATED FERROELECTRICS 集成铁电材料
1.中国电机工程学报 2.电力系统自动化 3.电工技术学报 4.电网技术 5.电池 6.电源技术 7.高电压技术 8.电工电能新技术 9.中国电力 10.电力系统保护与控制 11. 电力自动化设备12. 电力系统及其自动化学报 13. 电力电子技术 14. 高压电器 15. 微特电机 16. 电化学 17. 电机与控制学报 18. 华北电力大学学报 19. 变压器 20.电工技术杂志 21. 电气传动 22.磁性材料及器件 23.电机与控制应用 24.华东电力 25.绝缘材料 26. 低压电器 27.电瓷避雷器
这些都是检索系统,一个收录很多论文的数据库。 SCI主要偏重理论性研究。 SSCI是社会科学期刊数据库。 EI偏工程应用。 CSCD和核心期刊都是中国的数据库。 ISTP是会议论文数据库,以上都是期刊论文。
TM 电工技术 1.中国电机工程学报 2. 电力系统自动化 3. 电工技术学报4.电网技术 5. 电池6. 电源技术7. 高电压技术8. 电工电能新技术9. 中国电力 10. 继电器(改名为:电力系统保护与控制)11. 电力自动化设备12. 电力系统及其自动化学报 13.电力电子技术 14. 高压电器15. 微特电机16. 电化学17. 电机与控制学报18. 华北电力大学学报19. 变压器20. 微电机21. 电气传动22. 磁性材料及器件23.电机与控制学报 24.华东电力25.绝缘材料 26低压电器. 27. 电瓷避雷器28.蓄电池29.电气应用30.大电机技术31.电测与仪表 32.照明工程学报TN 无线电电子学,电信技术 1.电子学报 2. 半导体学报3. 通信学报4. 电波科学学报5. 北京邮电大学学报6.光电子、激光 7. 液晶与显示8.电子与信息学报9.系统工程与电子技术10.西安电子科技大学学报 11. 现代雷达12. 红外与毫米波学报 13. 信号处理14. 红外与激光工程 15半导体光电16. 激光与红外17. 红外技术18. 光电工程19. 电路与系统学报20.微电子学21. 激光技术 22. 电子元件与材料23. 固体电子学研究与进展 24.电信科学25.半导体技术26. 微波学报27. 电子科技大学学报28. 光通信技术29. 激光杂志30. 光通信研究31. 重庆邮电学院学报.自然科学版(改名为:重庆邮电大学学报.自然科学版)32.功能材料与器件学报33.光电子技术34. 应用激光35.电子技术应用 36. 数据采集与处理37.压电与声光38. 电视技术39.电讯技术 40.应用光学 41. 激光与光电子学进展42.微纳电子技术43.电子显微学报