首页 > 学术论文知识库 > 变频器论文2000字

变频器论文2000字

发布时间:

变频器论文2000字

随着我国电力技术和科技的快速发展,电力变频器广泛的应用于工业生产以及人类日常生活中。这是我为大家整理的变频器应用技术论文参考 范文 ,仅供参考! 变频器应用技术论文参考范文篇一:《变频器节能技术应用与研究》 【摘 要】本文根据水泵、风机轴功率与转速的平方成正比的特点,阐述变频调速节能原理,提出泵与风机应采用变频技术,已降低成本,延长设备使用寿命,提高经济效益。 【关键词】变频器;节能;水泵;风机 0 引言 锅炉是比较常见的用于集中供热设备,通常情况下,由于气温和负荷的变化,需对锅炉燃烧情况进行调节,传统的调节方式其原理是依靠增加系统的阻力,水泵采用调节阀门来控制流量,风机采用调节风门挡板开度的大小来控制风量。但在运行中调节阀门、挡板的方式,不论供热需求大小,水泵、风机都要满负荷运转,拖动水泵、风机的电动机的轴功率并不会改变,电动机消耗的能量也并没有减少,而实际生产所需要的流量一般都比设计的最大流量小很多,因而普遍存在着“大马拉小车”现象。锅炉这样的运行方式不仅损失了能量,而且增大了设备损耗,导致设备使用寿命缩短,维护、维修费用高。把变频调速技术应用于水泵(或风机)的控制,代替阀门(或挡板)控制就能在控制过程中不增加管路阻力,提高系统的效率。变频调速能够根据负荷的变化使电动机自动、平滑地增速或减速,实现电动机无级变速。变频调速范围宽、精度高,是电动机最理想的调速方式。如果将水泵、风机的非调速电动机改造为变频调速电动机,其耗电量就能随负荷变化,从而节约大量电能。 1 变频器应用在水泵、风机的节能原理 图1为水泵(风机)的H-Q关系曲线。图1中,曲线R2为水泵(风机)在给定转速下满负荷时,阀门(挡板)全开运行时阻力特征曲线;曲线 R1为部分负荷时,阀门(挡板)部分开启时的阻力特性曲线;曲线H(n1)和H(n2)表示不同转速时的Q=f(H)曲线。采用阀门(挡板)控制时,流(风)量从Q2减小到Q1,阻力曲线从R2移到R1,扬程(风压)从HA移到HB。采用调速控制时,H(n2)移到H(n1),流(风)量从Q2减小到Q1,扬程(风压)从HA移到HC。 图1 水泵(风机)的H-Q关系曲线 图2为水泵(风机)的P-Q的关系曲线。由图2可以看出,流(风)量Q1时,采用阀门(挡板)控制的功率为PB。采用变频调速控制的功率为 PC。ΔP=PB-PC就是节省的功率。 图2 为水泵(风机)的P-Q的关系曲线 如果不计风机的效率η,则采用阀门(挡板)时的功率消耗在图中由面积OHBBQ1所代表,而采用调速控制时的功率消耗由面积OHCCQ1所代表,后者较前者面积相差为HCHBBC,即采用调速控制流(风)量比采用阀门(挡板)控制可节约能量。 2 水泵、风机的节能计算和分析 通常转速n与频率f成正比,若将电动机的运行频率由原来的50Hz降至40Hz时,其实际转速则降为额定转速的80%,即实际转速nsn和额定转速nn:nsn=(■)nn=。设K为电机过载系数,则电动机额定功率Pn=Kn■■。因此电动机运行在40Hz时,实际功率为: Psn=Kn■■=K()3=■■= 节能率 =■=■=■= 表1 电动机节能率 供热公司胜利锅炉房将电动机改为变频调速,其中: 表2 补水泵电动机在定速和变速不同情况下测出的数据 根据表2的数据,一个采暖期按190天计算,工业电费单价为元/kWh。加装变频器后补水泵电动机节约电费: ()×24×190×元 表3 鼓风机电动机在定速和变速不同情况下测出的数据 根据表3的数据,胜利车间有5台鼓风机电动机。一个采暖期按190天计算,工业电费单价为元/kWh。加装变频器后鼓风机电动机节约电费: ()×24×190××5=元 表4 引风机电动机在定速和变速不同情况下测出的数据 根据表4的数据,胜利车间有5台鼓风机电动机。一个采暖期按190天计算,工业电费单价为元/kWh。加装变频器后引风机电动机节约电费: ()×24×190××5=元 综上所述,胜利车间安装变频后,一个保温期合计节约电费: 元 节能效果明显。 通过上述分析和实际应用,锅炉水泵、风机采用变频调速后具有以下优点。 (1)水泵、风机的电动机工作电流下降,温升明显下降,同时减少了机械磨损,维修工作量大大减少。 (2)保护功能可靠,消除了电动机因过载或单相运行而烧坏的现象,延长了使用寿命,能长期稳定运行。 (3)电动机实现软起动,实现平滑地无级调速,精度高,调速范围宽(0-100%)。频率变化范围大(O-50Hz)。效率可高达(90%-95%)以上。减小了对电网的冲击。 (4)安装容易,调试方便,操作简便,维护量小。 (5)节能省电,燃煤效率提高。 (6)变频器可采用软件与计算机可编程控制器联机控制的功能,容易实现生产过程的自动控制。 3 结束语 引进变频器可以实现能源的有效利用,避免过多的能源消耗。使用变频器节能主要是通过改变电动机的转速实现流量和压力的控制,来降低管道阻力,减少了阀门半开的能源损失。其次变频状态下的水泵(风机)运行转速明显低于工频电源之下,这样能尽量减少由于摩擦带来的电力损耗。最后变频技术是一种先进的现代自动化技术,自动化的运行能增加电力运行的可靠性,节省人力投入,从而实现了成本的节约。 【参考文献】 [1]赵斌,莫桂强.变频调速器在锅炉风机节能改造中的应用[J].广西电力. [2]吴民强.泵与风机节能技术问答[M].北京:中国电力出版社,1998. [3]梁学造,蔡泽发.异步电动机的降损节能 方法 [Z].湖南省电力工业局. 变频器应用技术论文参考范文篇二:《变频器技术改造实践与应用》 【摘要】介绍了锅炉风机电机以及补水泵、循环泵电机等设备变频器技术改造实例及应用,并对变频器调速改造中应注意的一些技术问题进行了论述。 【关键词】自动化控制;变频器;技术改造 1 锅炉风机电机应用变频器调速控制 以Ⅱ热水锅炉为例,每台锅炉配置引风机和鼓风机各六台,各电机主要技术参数如下: 型号 容量(KW) 电压(V) 额定电流(A) 引风机 Y280S4 75 380 鼓风机 Y200L4 30 380 57 在进行变频器改造以前,各风机在正常情况下的运行数据统计如下: 平均电流 最大电流 最小电流 引风机 142 145 139 鼓风机 59 63 57 首先选择在1#5#炉的鼓、引风机上进行改造尝试,并考虑到风机电机功率设计时配置,选择相匹配功率的变频器来控制电机,变频器的型号为ABB ACS51001157A4(引风机)、ZXBP30(鼓风机),电压等级为380V,通过一段时间的运行测试,引风机工频电流由原来的平均140(A)下降到现在的平均95―110(A),鼓风机工频电流由原来的平均57(A)下降到现在的平均30(A)节能效果相当显著,并且变频器技术性能完全满足锅炉运行工艺的要求(主要是风压、风量、加减风的速率等),电机在启动、运行调节、控制操作等方面都得到极大的改善。变频调速由安装在锅炉操作台上的启动、停机、转速调整开关进行远程控制,并可同DCS系统接口,通过DCS实现变频器的调速控制,变频调速装置还提供报警指示、故障指示、待机状态、运行状态、连锁保护等保护信息以及转速给定值和风机实际转速值等必要指示,以便操作人员进行操作控制。 2 补水泵、循环泵电机应用变频器进行调节控制 以2台补水泵、4台循环泵实际应用为例,其电动机的技术参数分别为: 序号 型号 功率 额定电流 流量 补水泵 1#泵 Y180M4 25 2#泵 Y180M4 25 循环泵 1#泵 Y315M14 132 237 630 2#泵 Y315M14 132 237 630 3#泵 Y315M14 132 237 630 4#泵 Y2315M4 132 630 正常补水时泵出力太大,紧急补水时一台泵又不能满足耗水需要,同时启动时出力又太大,连续供水补水效率高,效果也好。补水泵改用变频器调节补水,不仅仅在于考虑它对电机的节能效益,更重要的是从生产设备运行安全角度考虑,变频器选用富士FRN132P11S―4CX,电压等级为380V。 为充分利用变频器,采用1台变频器来实现两台电机的调速控制;2台补水泵均可实现变速、定速两种方式运行,变频器在同一时间只能作一台电机的变频电源,所以每台电机启动、停止必须相互闭锁,用逻辑电路控制,保证可靠切换,出口采用双投闸刀切换;2台补水泵工作时,其中一台由工频供电作定速运行,另一台由变频器供电作变速运行,同一台电机的变速、定速运行由交流接触器相互闭锁,即在变速运行时,定速合不上,如下图中,1C1与1C2及2C1与2C2不允许同时合上;为确保工艺控制安全、可靠,变频器及两台电机的控制、保护、测量单元全部集中在就地控制柜内,控制调节通过屏蔽信号电缆引接到控制室; 图1 补水泵电机变频器接线,虚框内为改造增加部分3 变频器调速改造中应注意的一些技术问题 锅炉的安全运行是全队动力的根本保证,虽然变频调速装置是可靠的,但一旦出现问题,必须确保锅炉安全供热,所以,必须实现工频――变频运行的切换系统(旁路系统),在生产过程中,采用手工切换如能满足设备运行工艺要求,建议尽量不要选用自动旁路,对一般的小功率电机,采用双投闸刀方式作为手动、自动切换手段也是比较理想的方法。 对于大惯量负荷的电机(如锅炉引风机),在变频改造后,要注意风机可能存在扭曲共振现象,运行中,一旦发生共振,将严重损坏风机和拖动电机。所以,必须计算或测量风机――电机连接轴系扭振临界转速以及采取相应的技术 措施 (如设置频率跳跃功能避开共振点、软连接及机座加震动吸收橡胶等)。 采用变频调速控制后,如果变频器长时间运行在1/2工频以下,随着电机转速的下降,电机散热能力也下降,同时电机发热量也随之减少。所以电机的本身温度其实是下降的,仍旧能够正常运行而不至温度过高。 变频器不能由输出口反向送电,在电气回路设计中必须注意,如在补水泵和循环泵变频器改造接线图中,要求1C1与1C2及2C1与2C2不允许同时合上,不仅要求在电气二次回路中实现电气的连锁,同时要求在机械上实现机构互锁,以确保变频器的运行安全。 低压变频器,由于体积较小,在改造中的安装地点选择比较容易些。选择变频器室位置,既要考虑离电机设备不能太远,又要考虑周围环境对变频器运行可能造成的影响。变频器的安装和运行环境要求较高,为了使变频器能长期稳定和可靠运行,对安装变频器室的室内环境温度要求最好控制在0-40℃之间,如果温度超过允许值,应考虑配备相应的空调设备。同时,室内不应有较大灰尘、腐蚀或爆炸性气体、导电粉尘等。 要保证变频器柜体和厂房大地的可靠连接,保证人员和设备安全。为防止信号干扰,控制系统最好埋设独立的接地系统,对接地电阻的要求不大于4Ω。到变频器的信号线,必须采用屏蔽电缆,屏蔽线的一端要求可靠接地。 随着电力电子技术的发展,变频器的各项技术性能也得到拓宽和提高,在热电行业中,风机水泵类负荷较多,充分应用变频器进行节能改造已经逐渐被大家所接受。对于目前低压变频器,投资较低、效益高,一年左右就可以收回投资而被广泛应用。随着目前国产变频器的迅速发展,使得变频器的性能价格比大大提高,为利用变频器进行节能技术改造提供了更加广阔的前景。 参考文献: [1]王占奎.变频调速应用百例.北京:科学出版社出版, [2]吴忠智,吴加林.变频器应用手册.北京:机械工业出版社, 变频器应用技术论文参考范文篇三:《浅议变频调速技术的应用》 摘要:调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM(IntelligentPowerModule)等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。 关键词:变频器,控制技术,应用 电力电子技术诞生至今已近50年,他对人类的文明起了巨大的作用.近10年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。交流电机变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其有益的 调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。 1.变频调速技术的现状 电气传动控制系统通常由电动机、控制装置和信息装置三部分组成。电气传动可分为调速和不调速两大类,调速又分为交流调速和直流调速两种方式。不调速电动机直接由电网供电。但是,随着电力电子技术的发展,原本不调速的机械越来越多地改用调速传动以节约电能,改善产品质量,提高产量。以我国为例,60%的发电量是通过电动机消耗的。因此,调速传动有着巨大的节能潜力,变频调速是交流调速的基础和主干内容,变频调速技术的出现使频率变为可以充分利用的资源。近年来。变频调速技术已成为交流调速中最活跃、发展最快的技术。 国外现状 采用变频的方法,实现对电机转速的控制,大约已有40年的历史,但变频调速技术的高速发展,则是近十年的事情,主要是由下面几个因素决定: 市场有大量需求 随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。 功率器件发展迅速 变频调速技术是建立在电力电子技术基础之上的。近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM(Intelligent Power Module)等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。在大功率交—交变频(循环交流器)调速技术方面,法国阿尔斯通已能提供单机容量达30000kW的电器传动设备用于船舶推进系统。在大功率无换向器电机变频调速技术方面,意大利ABB公司提供了单机容量为60000kW的设备用于抽水蓄能电站;在中功率变频调速技术方面,德国西门子公司Simovert A电流型晶闸管变频调速设备单机容量为10-2600kVA和Simovert PGTOPWM变频调速设备单机容量为100-900kVA,其控制系统已实现全数字化,用于电机风车,风机,水泵传动;在小功率变频调速技术方面,日本富士BJT变频器最大单机容量可达700kVA,IGBT变频器已形成系列产品,其控制系统也已实现全数字化。 IPM投入应用比IGBT约晚二年,由于IPM包含了1GBT芯片及外围的驱动和保护电路,有的甚至还把光耦也集成于一体,是一种更为适用的集成型功率器件。目前,在模块额定电流10-600A范围内,通用变频器均有采用IPM的趋向。IPM除了在工业变频器中被大量采用之外,经济型的IPM在近年内也开始在一些民用品,如家用空调变频器,冰箱变频器,洗衣机变频器中得到应用。IPM也在向更高的水平发展,日本三菱电机最近开发的专用智能模块ASIPM将不需要外接光耦,通过内部自举电路可单电源供电,并采用了低电感的封装技术,在实现系统小型化、专用化、高性能、低成本方面又推近了一步。 控制理论和微电子技术的支持 在现代自动化控制领域中,以现代控制论为基础,融入模糊控制、专家控制、神经控制等新的控制理论,为高性能变频调速提供了理论基础;16位、32位高速微处理器以及信号处理器(DSP)和专用集成电路(ASIC)技术的快速发展,则为实现变频调速的高精度、多功能提供了硬件手段。 国内现状 从整体上看我国电气传动系统制造技术水平较国际先进水平差距10-15年。在大功率交-交,无换向器电动机等变频技术方面,国内只有少数科研单位有能力制造,但在数字化及系统可靠性方面与国外还有相当差距。而这方面产品在诸如抽水蓄能电站机组启动及运行、大容量风机、压缩机和轧机传动、矿井卷扬机方面有很大需求。在中小频率技术方面,国内学者做了大量变频理论的基础研究。早在80年代,已成功引入矢量控制的理论,针对交流电机具有多变量、强耦合、非线性的特点,采用了线性解耦和非线性解耦的方法,探讨交流电机变频调速的控制策略。 进入90年代,随着高性能单片机和数字信号处理的使用,国内学者紧跟国外最新控制策略,针对交流电机感应特点,采用高次谐波注入SPWM和空间磁通矢量PWM等方法,控制算法采用模糊控制,神经网络理论对感应电机转子电阻、磁链和转矩进行在线观测,在实现无速度传感器交流变频调速系统的研究上作了有益的基础研究。在新型电力电子器件应用方面,由于GTR,GTO,IGBT,IPM等全控制器件的使用,使得中小功率的变流主电路大大简化,大功率SCR,GTO,IG-BT,IGCT等器件的并联、串联技术应用,使高电压、大电流变频器产品的生产及应用成为现实。在控制器件方面,实现了从16位单片机到32位DSP的应用。国内学者一直致力于变频调速新型控制策略的研究,但由于半导体功率器件和DSP等器件依赖进口,使得变频器的制造成本较高,无法形成产业化,与国外的知名品牌相抗衡。国内几乎所有的产品都是普通的V/f控制,仅有少量的样机采用矢量控制,品种与质量还不能满足市场需要,每年需大量进口高性能的变频器。 因此,国内交流变频调速技术产业状况表现如下:(1)变频器控制策略的基础研究与国外差距不大。(2)变频器的整机技术落后,国内虽有很多单位投入了一定的人力、物力,但由于力量分散,并没形成一定的技术和生产规模。(3)变频器产品所用半导体功率器件的制造业几乎是空白。(4)相关配套产业及行业落后。(5)产销量少,可靠性及工艺水平不高。 2.变频调速技术未来发展的方向 变频调速技术主要向着两个方向发展:一是实现高功率因数、高效率、无谐波干扰,研制具有良好电磁兼容性能的“绿色电器”;二是向变频器应用的深度和广度发展。随着变流器应用领域深度和广度的不断开拓,变频调速技术将越来越清楚地展示它在一个国家国民经济中的重要性。可以预料,现代控制理论和人工智能技术在变频调速技术的应用和推广,将赋予它更强的生命力和更高的技术含量。其发展方向具有如下几项:(1)实现高水平的控制;(2)开发清洁电能的变流器;(3)缩小装置的尺寸;(4)高速度的数字控制;(5)模拟与计算机辅助设计(CAD)技术。论文检测。 3变频调速技术的应用 纵观我国变频调速技术的应用,总的说来走的是一个由试验到实用,由零星到大范围,由辅助系统到生产装置,由单纯考虑节能到全面改善工艺水平,由手动控制到自动控制,由低压中小容量到高压大容量,一句话,由低级到高级的过程。论文检测。我国是一个能耗大国,60%的发电量被电动机消耗掉,据有关资料统计,我国大约有风机、水泵、空气压缩机4200万台,装机容量约亿万千瓦,然而实际工作效率只有40%-60%,损耗电能占总发电量的40%,已有 经验 表明,应用变频调速技术,节电率一般可达10%-30%,有的甚至高达40%,节能潜力巨大。 有关资料表明,我国火力发电厂有八种泵与风机配套电动机的总容量为12829MW,年总用电量为450。2亿千瓦小时。还有总容量约为3913MW的泵与风机需要进行节能改造,完成改造后,估计年节电量可达25。论文检测。69亿千瓦小时;冶金企业也是我国的能耗大户,单位产品能耗高出日本3倍,法国4。9倍,印度1。9倍,冶金企业使用的风机泵类非常多,实施变频改造,不仅可以大幅度节约电能,还可改善产品质量。 参考文献 [1]何庆华,陈道兵. 变频器常见故障的处理及日常维护[J]. 变频器世界, 2009, (04) . [2]龙卓珉,罗雪莲. 矩阵式变频调速系统抗干扰设计[J]. 变频器世界, 2009, (04) . 猜你喜欢: 1. 电气类科技论文 2. 电子应用技术论文 3. 电气控制与plc应用技术论文 4. 变频器应用技术论文 5. 变电运行技术论文 6. 光伏应用技术论文

离心泵技术论文篇二 离心泵的管理和维修技术探讨 摘要:离心泵是机械装备制造业中比较通用的一种机械,广泛应用于社会生产的各个行业和部门。近年来,伴随着石油化工和国民经济的发展,对离心泵的安全可靠性能提出了更为严格的要求。离心泵作为输送物料的一种转动设备,对连续性较强的化工生产尤为重要。基于此,本文就离心泵的管理和维修技术展开分析与研究。 关键词:离心泵;管理;维修 中图分类号:C93文献标识码: A 引言 随着社会经济的快速发展及企业管理体制的不断改革,离心泵故障管理及维护受到了越来越多人们的关注,在我国现阶段,寻找离心泵馆长的维修技术已经成为一个新的课题,对离心泵进行良好的日常保养,完善设备的保养机制,是延长离心泵使用寿命的关键。 一、离心泵的基本构造 (一)叶轮。常见的离心泵结构中,主要有开式、半开式和闭式三种型式的叶轮。开式叶轮仅有叶片,没有前后盖板;半开式类型的叶轮则是由后盖板和叶片组成;而闭式叶轮不但有叶片,还有前盖板和后盖板。在各泵体结构中,离心泵主要通过叶轮对液体做功,也是唯一的做功部件。 (二)泵体。径向剖分式和轴向剖分式是两种普遍的离心泵壳体类型。离心泵中的单机泵壳体大多数为蜗壳式,多级泵壳体按径向剖分壳体划分成圆形和环形两种壳体类型。泵壳内腔呈现螺旋形是蜗壳式泵壳的主要特征。 (三)泵轴。泵轴主要是用来传递机械能,它是由联轴器和电动机相连,从而可以将电动机的转矩通过泵轴传送到叶轮。 (四)轴承。离心泵的轴承多为滑动轴承,所以润滑剂要求就比较严格,常用透明油作为润滑剂。 (五)密封环。减漏环是密封环的另一种说法,在不同资料下可能显示有所不同。 (六)填料函。填料函的主要作用是封闭泵轴和泵壳之间的狭小空隙,保证泵内水流和泵外空气不能相互泄露。主要构造是由填料、填料筒、填料压盖、水封环和水封管组成。 二、离心泵的基本工作原理 研究离心泵工作原理可为处理故障与制定预防措施提供技术依据。在通常情况下,离心泵就是利用物体离心力作用,来达到对液体物体完成输送的目的。在离心泵工作前,须事先将泵内叶片间和贮液槽内充灌满流体,然后再启动离心泵开始正常运转,此时离心泵内的流体就会随着叶轮高速旋转产生离心力运动,并在叶轮中心向外周作径向运动,最后顺叶片流道进入到排出管内。同时泵内的原有流体被旋转甩出后,叶轮中心即形成了一个低压区,而暂处于高压区贮液槽的流体就会源源不断的被吸收到叶轮中心,再依靠叶轮高速旋转被甩出进入到排出管内,形成流体不间断的被吸入和排出的循环输送作业,从而实现离心泵连续不断地将液态物体抽出进行输送 三、离心泵常见故障处理措施 (一)离心泵排液不畅和排液后中断的解决措施 检查泵内气体是否处于真空状态,泵壳和入口管线内的流体是否全部注满,如果不是真空要立即排净空气,没有灌注满的要及时重新添加达到要求标准。检查泵内叶轮转速有无异常,发现叶轮表现出过低的转速时,要立即进行调整适当提速。检查入口滤网、底阀有无附着的杂物,有就须立即排除异物,避免再次发生堵塞;检查吸入侧管道连接处有无漏气,有就需及时排尽气体,检查吸入口淹埋深度是否太浅,调整合适位置避免异物堵上。 (二)离心泵运行中出现震动或异响的解决措施 检查离心泵的轴承情况及间隙大小,检查泵内油质清洁度和润滑程度,并进行逐一排除故障隐患。损坏轴承要及时进行更换处理,间距大的了要及时调整轴距到适当的位置;对已经污染了的油质要马上进行杂质清除,对润滑不到位的部件,要立即更换新的润滑油脂。至于对那些过高震动频率的,则应及时更换、调整离心泵的轴承、轮齿等部位。 (三)离心泵功率消耗太大的解决措施 检查叶轮与耐磨环、泵壳有无摩擦,而进行适度的修理。检查流液密度是否合适,轴承有无损坏,如果有就及时进行修理或者更换轴承,调整零部件。检查泵轴是否有弯曲,并及时矫正。检查联轴器是否存在对中不良、轴向间隙太小,进而调整对中和轴向间隙到合适位置。 (四)水泵不能正常运转的解决措施 首先,检查离心泵的原动机运行有无异常,电源接入是否正确,如存在有原动机异常和电源接错的问题,须加以整改处理好;也可用手盘联轴器直接检测,如遇故障问题严重的,可通过拆解泵壳,观察泵体内有无被卡的现象。检查泵内系统的水头、净压头等部件磨损情况,对凡是发现有磨损的零部件应及时更换。检查叶轮的完好程度及叶轮之间的间隙,及时更换掉完好程度差的损坏叶轮,调整间隙大的叶轮间隙到合适的位置为止。检查吸液槽的真空状态与吸入的高度位置,对没有排尽空气的要再排气,使吸液槽内达到真空状态,同时,对泵内系统的水头位置设置过高的,要重新调整。 (五)离心泵流量不足,扬程不达标的解决措施 导致离心泵的流量和扬程不够的主要原因为:叶轮的转速太低或叶轮的转动方向不对、泵吸入口串气、吸入口管线、滤网或叶轮堵塞、灌注不够、叶轮损坏、口环的间隙过大,漏损过大、吸入管中压力接近汽化压力、泵体内有气体。如离心泵在出现如下情况时,可采取下面的方法进行处理:①检查调整。②检查入口管线法兰。③清理入口过滤器。④更换叶轮。⑤增加入口压力,提高灌注头。⑥更换口环。⑦适当地增加入口压力,同时降低传输介质的温度。⑧放空排气或向有关系统卸压。 四、离心泵的管理和维护的优化策略 现代工业系统中,离心泵的适用范围从基本的生活需求到石油化工行业都有广泛涉及,不但用来输送水,而且还用来输送石油等其他不同性质的液体。按照不同的输送媒介,离心泵的种类也变得纷繁复杂,常见的有防腐泵和清水泵两种。为了保证一定的使用年限,减少企业成本提高经济效益,就必须不定期对离心泵加强管理和维护。 (一)做好离心泵安装工作,确保正常运行。离心泵是石油化工生产中的核心装置,其重要性不言而喻。而离心泵安装工作是前提和基础部分,要求安装工作人员一定要严格按照规范要求,确保设备的科学安装和正常运行。首先,设备的基础尺寸和位置一定要符合要求,横纵坐标的位置一定要合理,一般偏差不能超过20mm,地脚螺栓孔中心位置的偏差应该控制在10mm以内,地脚螺栓孔壁铅的垂直角度偏差应该在2毅。其次,安装中,一定要慎重选择垫铁的位置,在垫铁安装之前,一定要调整泵的标高、水平度,使其达到设计的标准值。只有精准的安全,才能确保离心泵运行的稳定性和安全性,垫铁的主要作用是使泵的重量以及运转过程中产生的惯性力均匀地传递给基础部分,这样能减少离心泵自身承载的荷重,确保其能长久运行。最后,离心泵安装中,需要安装两个垫铁,其中一平二斜,固定离心泵,如果一般离心泵的荷载比较大,可以选用三个垫铁,但是,数量最好不要超过三个。离心泵的安装是系统性的工作,对安装技术人员提出较高的要求,技术人员一定要注重每一个安装细节,确保每一个环节的工作质量,这样更能提高运行的可靠性,保证离心泵工作运行的效率。 (二)合理使用离心泵,提高运行效率。合理使用离心泵要求技术人员严格按照规范操作开展工作,避免离心泵低流量运行。一般离心泵在正常运行时,高压力下顺利运行,但是如果出现低流量运行,会导致离心泵故障问题。低流量运行时,离心泵内就会出现径向漩涡现象,此时就会产生很大的径向推动力,此时,离心泵就无法正常运转。石油离心泵的实际流量比较小,如果处于不合理连续转动运行中,就会导致轴折断。但是,一般离心泵的流量都比较低,很多时候能将大部分轴功率转化为热能,将能量传递给泵内的液体,进而引起整个外壳温度上升,此时,泵体温度升高,在长期小流量运行状态下,就会发生震动等故障现象。因此,一定要避免离心泵在低流量状态下运行,这样才能保证离心泵的正常工作,提高运行效率。其次,还应该做好离心泵润滑工作,基本都是滚轴承类型,润滑剂的养护和使用能确保离心泵的正常运行,在不受外界干扰的情况下,保证机械不会因为负荷力而变形。润滑工作也是重要的环节,一定要使润滑达到良好的状态。在选用润滑油时,一定要慎重选择比较良好的润滑油,在不同转速的情况下,应该形成油膜,这样更有助于提高离心泵的安全运行。同时,选用的润滑油应该具有高粘度性,离心泵在不同的条件下,都能有效的保护其使用寿命,确保离心泵不会受到负荷力以及温度等因素的影响,进而确保离心泵内部部件的顺利运行,避免离心泵在运行过程中轴和固定轴之间的摩擦,减少离心泵故障问题。 结束语 随着科技的不断发展,,离心泵的管理和维护对技术人员的业务水平提出了更高的要求,因此,企业各部门的操作人员必须加强理论知识的学习,并在实际工作中熟练运用。只有对离心泵的管理和维护工作充分重视,才能够保证其利用率、可靠性和安全性得到大幅度提高。 参考文献: [1]刘福玉,刘福磊,孙广军,张凤霞.探讨多级离心泵常见故障检测与维修[J].才智,2012,20:36. [2]席玉洁.离心泵故障诊断专家系统的应用研究[D].北京化工大学,2011. [3]陈来保,潘金亮,焦红志,李京沛.高速离心泵常见故障原因分析及处理[J].河南化工,2008,08:38-39. [4]朱力勇.离心泵常见故障分析与处理[J].中国石油和化工标准与质量,2013,17:79. [5]白俊华.离心泵常见故障原因及预防措施[J].现代农业科技,2011,03:265-266. 看了“离心泵技术论文”的人还看: 1. 变频泵技术论文 2. 泵与风机节能技术论文 3. 变频技术论文2000字 4. 节电技术论文 5. 变频器技术论文

论文题目:PLC和变频技术在恒压供水系统中的应用 PLC和变频技术在恒压供水系统中的应用WwWWW 摘要: 本文是针对节能和提高供水质量问题而提出的恒压供水系统设计和应用的研究.文中分析了旧系统存在的问题,介绍了水位自动检测技术及保护措施,阐述了采用变频技术、PLC技术及自动控制技术相结合来实现的恒压供水控制的系统总体设计方案和软件设计。通过实践证明.该系统具有较强的功能.对供水质量、节约能源和运行可靠性具有较好的改善。关键词:变频技术;PLC技术;恒压供水;自启动1 引言随着各住宅小区的宿舍楼等一座座高楼拔地而起,相应的生活用水量也大幅度增加。人们对提高供水质量的要求越来越高,另外人们的节能意识及对运行的可靠性的要求越来越强。采用变频器及PLC技术实现的无塔恒压供水系统,不仅能提高供水质量,而且在节约能源和运行可靠性具有较好的改善。其中,采用变频调速的主要目的是通过调速来恒定用水管道的压力以达到节能的目的,恒压供水则是为了满足用户对流量的要求。应用PLC技术是为了实现系统的软启动,减少手动操作或抚慰操作,同时替代部分继电器减少机械触点的故障,增强可靠性。下面笔者根据这方面的工作经验谈谈在恒压供水系统设计和实践过程中的一些思路和做法。2 变频器的工作原理在恒压供水控制系统中,关键技术主要是变频技术。目前效率最高、性能最好的系统是变压变频调速控制系统。2.1变频器的基本构成变频器的基本构成如图1所示,由主回路(包括整流器、滤波器、逆变器)和控制电路组成。 整流器的作用是把三相交流整流成直流。滤波器是用来缓冲直流环节和负载之间的无功能量。逆变器最常见的结构形式是利用六个半导体器件开关组成的三相桥式逆变电路,有规律地控制逆变器中主开关的通与断,可以得到任意频率的三相交流输出。控制电路主要是完成对逆变器的开关控制、对整流器的电压控制以及完成各种保护功能等。2.2变频器基本原理 变频器的基本原理是利用逆变器中的开关元件,由控制电路按一定的规律控制开关元件的通断,从而在逆变器的输出端获得一系列等幅而不等宽的矩形脉冲波形,来近似等效于正弦电压波。图2所示出正弦波的正半周,并将其分为n等分(n=12)。每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的等幅矩形所代替。这样,由n个等幅而不等宽的矩形脉冲所组成的波形与正弦波的正半周等效。正弦波的负半周也可以用相同的方法来等效。可采用正弦波与三角波相交的方案来确定各分段矩形脉冲的宽度。当逆变器输出端需要升高电压时,只要增大正弦波相对三角波的幅值,这时逆变器的输出的矩形脉冲幅值不变而宽度相应增大,达到了调压的要求。当逆变器的输出端需要变频时,只要改变正弦波的频率就可以了。3 控制系统总体设计过去的供水控制系统投资多,采用的模式为多台小功率水泵供水。在运行实践中暴露出主控电路设计不合理和逻辑控制设计不合理的现象。新系统总体设计方案如图3所示。在该供水系统的控制电路中除采用了变频器(VVVF),还采用一些先进控制装置如数字调节器(PID)、可编程控制器(PLC)等,这些装置都是以电脑芯片为内核完成各自不同的控制功能。为简化控制电路,根据负荷需要,使用一台18.5KW大容量水泵供水。为提高使用的安全系数,选用一台日本富士22.5KW变频器进行水泵调速,该变频器内置PID调节功能,但不具备参数监视功能。为能有效监视调节工况,特选数字显示调节器进行监视和控制,以备实现串级PID控制。鉴于外部I/O可控点数不多,可编程控制器PLC选用20点即可满足控制要求。4 水位检测电路设计4.1水位检测开关考虑到水位检测装置要求故障率少,运行可靠,为简化检测环节,设计中采用结构简单的浮子式水位检测开关,但为防止信号串扰,另外增加了一个隔离转换装置。该装置内选用了干簧继电器用以提高开关接点的可靠性和使用寿命。4.2水位检测逻辑控制水位检测逻辑控制功能如前所述完全由可编程控制器PLc编程实现,减少了硬件配置,提高了运行的可靠性和应用的灵活性。PLC的I/O地址分配见图4(a)所示,简化梯形图如图4(b)所示。其逻辑电路主要完成如下功能,见图4(b)所示。(1)水位信号保持功能水位开关检测分别由PLC的常开接点实现。由于水位由于簧管的常开接点来检测,只有在水面越过该点时闭合,低于该点即断开,因此信号需由PLC保持。(2)水位信号显示、报警、保护功能水位正常时01002动作,使输出绿灯亮。水位低时01003动作,使输出红灯亮,且通过其常闭接点停供水泵。水位高时20000、01000同时启动,使输出黄灯亮(闪光l5秒转平光)且无条件停蓄水泵。 5 操作保护功能设计除了常规保护功能外还增加了人性化操作功能。考虑到泵短时间内的频繁启动对泵运行不利,故设置1分钟内只允许连续启动两次,第三次需延时3分钟后进行,以利泵的散热,延长设备使用寿命,减少功耗。编程时可采用定时器和计数器配合来实现。这项功能在启停调试设备过程中得到检验。6 系统自启动功能设计(1)自启动概述为了方便运行维护人员,有两种情况可以考虑自启动:①系统断电一段时间后恢复供电的自启动,系统在正常运行工况下突然停电时,如果其它检测无异常则来电后可实现自启动,这一点在夜间更为重要,可给维护人员带来方便,此项功能得到了维护人员的认可。②低水位使泵跳闸后水位恢复时的自启动管网用水负荷过大或蓄水水压过低流量减少造成的低水位,会引起供水泵跳闸。在水位恢复正常后可实现自启动。(2)自启功能的实现 如图5所示。图中,“自启动条件”有两个:一是计数器C103接点,二是“水位正常”信号接点。由于计数器C103具有停电记忆特性,所以只要水位恢复正常时01002闭合就可自启动。其过程是:微分继电器20006(13)产生的微分信号由20009继电器保持,再经时间继电器"1"020延时后使其输出的常开接点"1"020(见图4b)接通启动回路,则水泵重新运转。 (3)自启动的预置自启动功能可根据用户需要事先预置,否则,该功能会被屏蔽。设计方案如下:①预置和解除均借用运行状态下的启动按钮。预置时按动启动按钮三下使计数器C103启动,则其常开接点C103闭合。解除自启功能:按住启动按钮1秒,使计数器C103复位或按停止按钮使泵停运的同时也解除了自启动设置。②预置的显示借用水位正常灯(闪光3秒),解除借用高水位报警灯(闪光3秒)。7 结束语上述无塔供水控制系统经投入使用,各项设计功能运行正常,供水质量有了很大提高,单位大功率设备用电量也明显减少。期间,还经历了系统实际异常情况自动处理的考验,如“储水罐满水后的蓄水泵自动跳闸”、“电力网停电来电后的供水泵自启动”、“电源缺相报警”等,这些功能都得到了很好的验证。参考文献[1]张燕宾主编.变频调速应用实践.机械工业出版社,2001.[2]北京四通工控技术有限公司编.FRENIC5000G11S/P11S说明手册.2001.[3]北京鹭岛公司编.OMRON可编程控制器使用手册.2000.[4]高勤主编.电器与PLC控制技术.高等教育出版社,2001. 借鉴一下吧,以前搞了很多,找不到了~不好意思

变频器应用技术论文

浅析变频器发展和应用的趋势[摘要]随着变频控制理论和制造工艺的进一步发展,变频器的应用和发展将会朝着以下方向发展:矩阵变频器的出现和推广;网络化配置的变频器将成为主流;同步电动机的变频应用将得到更为迅猛的发展。 [关键词]矩阵变频器 网络化配置变频器 同步电机 一、矩阵变频器的出现 多年来,电气传动专家一直都在讨论关于“矩阵变换”技术的变频器将会是下一代变频器。几个主要的传动供应商包括罗克韦尔、西门子等都在研究该项技术。舆论一直认为:尽管矩阵变频器具有非常诱人的前景,但是由于成本太高而无法在目前进行商业化应用。 从原理上讲,矩阵变频器使用了一组电力半导体开关,按照预定的数学算法控制开关顺序,并直接连接到三相电机上。在安川矩阵变频器中有9个开关,每一个都有2个IGBT组成双向开关,能允许正向电压和负向电压通到电机上。IGBT数量的增加是导致矩阵变频器造价昂贵的其中一个因素。 矩阵变频器使用了三相电压输入来控制输出电压,这就不仅能吸收任何电流杂波,也能提供一个清洁的输出电压,也就是说“可以有效地进行输入电源电流控制与输出电压控制”。这也是矩阵变频器吸引人们的一个重要点:能大大降低输入电流谐波的产生,只有大约传统交-直-交变频器的20%以下。而且矩阵变频器的电流几乎是正弦波,即使在带载情况下,也是如此。当有再生发电时,电流能以180°转换并反馈到电网中,而且也是以正弦波方式。在再生制动方式的工作中,矩阵变频器不需要制动电阻或特殊的变换器。反馈回的电亦无需额外的设备(如变压器等)进行处理。总之,传动能在四象限高效率地运行。 另外,一个吸引点就是矩阵变频器去掉了直流电容,作为有一定寿命地铝电解电容,交—直—交变频器就必须在一定年限更换电容,如5~8年,矩阵变频器就能长时间可靠工作。 在安川的计划中,矩阵变频器将逐步覆盖400V的,直至75kW,当然也有200V级的变频器。至于价格策略目前尚未公布,但基本上为目前通功率段传统变频器的2倍左右。 二、以网络配置为主的系统化 变频器的网络化配置主要基于三个层面:设备层、控制层和信息层。其中变频器做为执行器,可以配接最基本的RS232/RS485串行通讯协议、Profibus等的现场总线协议以及Internet局域网协议。针对不同的控制系统和不同的用户要求,配置和选用不同的网络协议。 网络化配置的变频器具有以下显著的特点: (1)高精度的频率设定; (2)远程控制与工厂信息化的基本要素; (3)远程诊断系统。 通过网络设定频率是一种高精度的频率设定,其具有通讯速率高,稳定可靠,接线简单等优点,而且在模拟量控制时,输出端经过一个数模转换器,经过导线,进入输入端(变频器)又经过一个模数转换器才能参与控制。两个转换器位数不同和导线损耗都可能造成一定误差,而通讯传递直接是数字量,不需要转换,没有误差,在传输过程中不会造成损耗,而且响应速度率也会很高。 变频器经常被用于系统复杂、工作环境恶劣、高负荷、长时间运行的工况中,如无人值守泵站、油田磕头机等。变频器故障率在这种环境中自然,比较高,一般都采取事后维修的方式进行,随着电子技术的发展,传统的维修方式将变为故障预报和整机在线维修。有必要对其实现在线工作状态的监测以及常规故障机理的综合分析研究,以便对其故障的事先诊断分析。目前大功率变频器的故障诊断、远程监控系统及智能控制方面取得了较大进展,并已经投入实际运行。请登陆:输配电设备网浏览更多信息 在网络化日益普及的今天,与普通的点对点硬线连接方式而言,通过高速通讯连接的变频器系统可以最大程度上降低系统维护时间、提高生产效率、减少运行成本。目前安装的现场总线模块有ProfibusDP、Interbus、DeviceNet、CANOpen和ModbusPlus等。用户可以有更大的自由根据生产过程来选择PLC型号和品牌,并非常简单地集成到现有地网络中去。而且通过现场总线模块,可以不考虑变频器的型号,而以同一种语言来与不同功率段、不同型号地变频器进行组构,如功率、速度、转矩、电流、设定值等。 由于采用了通讯方式,可以通过PC机来方便地进行组态和系统维护,包括上传、下载、复制、监控、参数读写等。 以SEWMOVIDRIVE变频器为例,它可以如图2组成WAGO-I/O系统,利用后者地现场总线技术进行通讯互联。这种连接方式能通过WAGO的可编程总线控制器PFC实现变频器到网络控制主机之间的输入数据过程、输出数据过程的交换。而且,总线互联方式可以通过WAGO公司专用的软件功能块()方便地进行变频器参数的读龋该方式能在最大程度上降低变频器系统的构建成本。三、同步电机的配合应用 交流同步电动机已成为交流可调速传动中的一颗新星,特别是永磁同步电动机,电机是无刷结构,功率因数高、效率也高,转子转速严格与电源频率保持同步。同步电机变频调速系统有他控变频和自控变频两大类,自控变频同步电机在原理上和直流电机极为相似,用电力电子变流器取代了直流电机的机械换向器,如采用交-直-交变压变频器时叫做“直流无换向器电机”或称“无刷直流电动机”。传统的自控变频同步机调速系统有转子位置传感器,现正开发无转子位置传感器的系统,且已经取得重大进步和在市场的成功应用。同步电机的他控变频方式也可采用矢量控制,其按转子磁场定向的矢量控制比异步电机简单。 采用同步电机的最有效特点: (1)大大降低电机尺寸; (2)高效率的转矩输出; (3)无编码器运行。 目前大多数的纸机需要安装速度编码器来反馈电机转速,而且编码器也被证明是可靠的。但是安装的编码器由于是采用轴承需要常规定期性的维护保养和润滑,在一个大型的纸机(如50个传动)上每隔一定的周期还必须更换所有的编码器以防止意外的由编码器故障引起的纸机停机。从这个层面上来说,无编码器的运行自然是同步电机直接传动的一个优点和着眼点。 电机的实际速度是需要同时反馈和监测的,一个计算电机速度的新方法已经在ACSDTC得到发展和应用。为ABB造纸部门对直接传动的37kW永磁电机进行测试得出的波形曲线。上面的2条曲线是表示经速度编码器测量的数据和通过变频器计算出来的数据。从图中可以看出两条曲线几乎是一致的,即使在动态扰动中也是少有偏差。第3条曲线是表示电机由于突加负载产生的电机转矩,该负载的变化大概是正常负载的1/3,以表示在电机在正常运行下突然有一个大的变化。将ABB传统的交流传动纸机改造成一个直接传动的纸机系统是非常简单的,纸厂需要购买新的直接传动部分的电机,同时将ABB的常规变频器ACS600通过下载PM-DTC软件来升级,而且新的直接传动的系统可以与现 有的交流或直流传动同时正常运行。总而言之,用户将从直接传动中获益。 参考文献: [1]王廷才.变频器原理及应用[M].机械工业出版社,2005. [2]张选正,张金远.变频器应用经验[M].国电力出版社,2006. [3]吴忠智,吴加林.变频器应用手册[M],机械工业出版社,2007.

随着我国电力技术和科技的快速发展,电力变频器广泛的应用于工业生产以及人类日常生活中。这是我为大家整理的变频器应用技术论文参考 范文 ,仅供参考! 变频器应用技术论文参考范文篇一:《变频器节能技术应用与研究》 【摘 要】本文根据水泵、风机轴功率与转速的平方成正比的特点,阐述变频调速节能原理,提出泵与风机应采用变频技术,已降低成本,延长设备使用寿命,提高经济效益。 【关键词】变频器;节能;水泵;风机 0 引言 锅炉是比较常见的用于集中供热设备,通常情况下,由于气温和负荷的变化,需对锅炉燃烧情况进行调节,传统的调节方式其原理是依靠增加系统的阻力,水泵采用调节阀门来控制流量,风机采用调节风门挡板开度的大小来控制风量。但在运行中调节阀门、挡板的方式,不论供热需求大小,水泵、风机都要满负荷运转,拖动水泵、风机的电动机的轴功率并不会改变,电动机消耗的能量也并没有减少,而实际生产所需要的流量一般都比设计的最大流量小很多,因而普遍存在着“大马拉小车”现象。锅炉这样的运行方式不仅损失了能量,而且增大了设备损耗,导致设备使用寿命缩短,维护、维修费用高。把变频调速技术应用于水泵(或风机)的控制,代替阀门(或挡板)控制就能在控制过程中不增加管路阻力,提高系统的效率。变频调速能够根据负荷的变化使电动机自动、平滑地增速或减速,实现电动机无级变速。变频调速范围宽、精度高,是电动机最理想的调速方式。如果将水泵、风机的非调速电动机改造为变频调速电动机,其耗电量就能随负荷变化,从而节约大量电能。 1 变频器应用在水泵、风机的节能原理 图1为水泵(风机)的H-Q关系曲线。图1中,曲线R2为水泵(风机)在给定转速下满负荷时,阀门(挡板)全开运行时阻力特征曲线;曲线 R1为部分负荷时,阀门(挡板)部分开启时的阻力特性曲线;曲线H(n1)和H(n2)表示不同转速时的Q=f(H)曲线。采用阀门(挡板)控制时,流(风)量从Q2减小到Q1,阻力曲线从R2移到R1,扬程(风压)从HA移到HB。采用调速控制时,H(n2)移到H(n1),流(风)量从Q2减小到Q1,扬程(风压)从HA移到HC。 图1 水泵(风机)的H-Q关系曲线 图2为水泵(风机)的P-Q的关系曲线。由图2可以看出,流(风)量Q1时,采用阀门(挡板)控制的功率为PB。采用变频调速控制的功率为 PC。ΔP=PB-PC就是节省的功率。 图2 为水泵(风机)的P-Q的关系曲线 如果不计风机的效率η,则采用阀门(挡板)时的功率消耗在图中由面积OHBBQ1所代表,而采用调速控制时的功率消耗由面积OHCCQ1所代表,后者较前者面积相差为HCHBBC,即采用调速控制流(风)量比采用阀门(挡板)控制可节约能量。 2 水泵、风机的节能计算和分析 通常转速n与频率f成正比,若将电动机的运行频率由原来的50Hz降至40Hz时,其实际转速则降为额定转速的80%,即实际转速nsn和额定转速nn:nsn=(■)nn=。设K为电机过载系数,则电动机额定功率Pn=Kn■■。因此电动机运行在40Hz时,实际功率为: Psn=Kn■■=K()3=■■= 节能率 =■=■=■= 表1 电动机节能率 供热公司胜利锅炉房将电动机改为变频调速,其中: 表2 补水泵电动机在定速和变速不同情况下测出的数据 根据表2的数据,一个采暖期按190天计算,工业电费单价为元/kWh。加装变频器后补水泵电动机节约电费: ()×24×190×元 表3 鼓风机电动机在定速和变速不同情况下测出的数据 根据表3的数据,胜利车间有5台鼓风机电动机。一个采暖期按190天计算,工业电费单价为元/kWh。加装变频器后鼓风机电动机节约电费: ()×24×190××5=元 表4 引风机电动机在定速和变速不同情况下测出的数据 根据表4的数据,胜利车间有5台鼓风机电动机。一个采暖期按190天计算,工业电费单价为元/kWh。加装变频器后引风机电动机节约电费: ()×24×190××5=元 综上所述,胜利车间安装变频后,一个保温期合计节约电费: 元 节能效果明显。 通过上述分析和实际应用,锅炉水泵、风机采用变频调速后具有以下优点。 (1)水泵、风机的电动机工作电流下降,温升明显下降,同时减少了机械磨损,维修工作量大大减少。 (2)保护功能可靠,消除了电动机因过载或单相运行而烧坏的现象,延长了使用寿命,能长期稳定运行。 (3)电动机实现软起动,实现平滑地无级调速,精度高,调速范围宽(0-100%)。频率变化范围大(O-50Hz)。效率可高达(90%-95%)以上。减小了对电网的冲击。 (4)安装容易,调试方便,操作简便,维护量小。 (5)节能省电,燃煤效率提高。 (6)变频器可采用软件与计算机可编程控制器联机控制的功能,容易实现生产过程的自动控制。 3 结束语 引进变频器可以实现能源的有效利用,避免过多的能源消耗。使用变频器节能主要是通过改变电动机的转速实现流量和压力的控制,来降低管道阻力,减少了阀门半开的能源损失。其次变频状态下的水泵(风机)运行转速明显低于工频电源之下,这样能尽量减少由于摩擦带来的电力损耗。最后变频技术是一种先进的现代自动化技术,自动化的运行能增加电力运行的可靠性,节省人力投入,从而实现了成本的节约。 【参考文献】 [1]赵斌,莫桂强.变频调速器在锅炉风机节能改造中的应用[J].广西电力. [2]吴民强.泵与风机节能技术问答[M].北京:中国电力出版社,1998. [3]梁学造,蔡泽发.异步电动机的降损节能 方法 [Z].湖南省电力工业局. 变频器应用技术论文参考范文篇二:《变频器技术改造实践与应用》 【摘要】介绍了锅炉风机电机以及补水泵、循环泵电机等设备变频器技术改造实例及应用,并对变频器调速改造中应注意的一些技术问题进行了论述。 【关键词】自动化控制;变频器;技术改造 1 锅炉风机电机应用变频器调速控制 以Ⅱ热水锅炉为例,每台锅炉配置引风机和鼓风机各六台,各电机主要技术参数如下: 型号 容量(KW) 电压(V) 额定电流(A) 引风机 Y280S4 75 380 鼓风机 Y200L4 30 380 57 在进行变频器改造以前,各风机在正常情况下的运行数据统计如下: 平均电流 最大电流 最小电流 引风机 142 145 139 鼓风机 59 63 57 首先选择在1#5#炉的鼓、引风机上进行改造尝试,并考虑到风机电机功率设计时配置,选择相匹配功率的变频器来控制电机,变频器的型号为ABB ACS51001157A4(引风机)、ZXBP30(鼓风机),电压等级为380V,通过一段时间的运行测试,引风机工频电流由原来的平均140(A)下降到现在的平均95―110(A),鼓风机工频电流由原来的平均57(A)下降到现在的平均30(A)节能效果相当显著,并且变频器技术性能完全满足锅炉运行工艺的要求(主要是风压、风量、加减风的速率等),电机在启动、运行调节、控制操作等方面都得到极大的改善。变频调速由安装在锅炉操作台上的启动、停机、转速调整开关进行远程控制,并可同DCS系统接口,通过DCS实现变频器的调速控制,变频调速装置还提供报警指示、故障指示、待机状态、运行状态、连锁保护等保护信息以及转速给定值和风机实际转速值等必要指示,以便操作人员进行操作控制。 2 补水泵、循环泵电机应用变频器进行调节控制 以2台补水泵、4台循环泵实际应用为例,其电动机的技术参数分别为: 序号 型号 功率 额定电流 流量 补水泵 1#泵 Y180M4 25 2#泵 Y180M4 25 循环泵 1#泵 Y315M14 132 237 630 2#泵 Y315M14 132 237 630 3#泵 Y315M14 132 237 630 4#泵 Y2315M4 132 630 正常补水时泵出力太大,紧急补水时一台泵又不能满足耗水需要,同时启动时出力又太大,连续供水补水效率高,效果也好。补水泵改用变频器调节补水,不仅仅在于考虑它对电机的节能效益,更重要的是从生产设备运行安全角度考虑,变频器选用富士FRN132P11S―4CX,电压等级为380V。 为充分利用变频器,采用1台变频器来实现两台电机的调速控制;2台补水泵均可实现变速、定速两种方式运行,变频器在同一时间只能作一台电机的变频电源,所以每台电机启动、停止必须相互闭锁,用逻辑电路控制,保证可靠切换,出口采用双投闸刀切换;2台补水泵工作时,其中一台由工频供电作定速运行,另一台由变频器供电作变速运行,同一台电机的变速、定速运行由交流接触器相互闭锁,即在变速运行时,定速合不上,如下图中,1C1与1C2及2C1与2C2不允许同时合上;为确保工艺控制安全、可靠,变频器及两台电机的控制、保护、测量单元全部集中在就地控制柜内,控制调节通过屏蔽信号电缆引接到控制室; 图1 补水泵电机变频器接线,虚框内为改造增加部分3 变频器调速改造中应注意的一些技术问题 锅炉的安全运行是全队动力的根本保证,虽然变频调速装置是可靠的,但一旦出现问题,必须确保锅炉安全供热,所以,必须实现工频――变频运行的切换系统(旁路系统),在生产过程中,采用手工切换如能满足设备运行工艺要求,建议尽量不要选用自动旁路,对一般的小功率电机,采用双投闸刀方式作为手动、自动切换手段也是比较理想的方法。 对于大惯量负荷的电机(如锅炉引风机),在变频改造后,要注意风机可能存在扭曲共振现象,运行中,一旦发生共振,将严重损坏风机和拖动电机。所以,必须计算或测量风机――电机连接轴系扭振临界转速以及采取相应的技术 措施 (如设置频率跳跃功能避开共振点、软连接及机座加震动吸收橡胶等)。 采用变频调速控制后,如果变频器长时间运行在1/2工频以下,随着电机转速的下降,电机散热能力也下降,同时电机发热量也随之减少。所以电机的本身温度其实是下降的,仍旧能够正常运行而不至温度过高。 变频器不能由输出口反向送电,在电气回路设计中必须注意,如在补水泵和循环泵变频器改造接线图中,要求1C1与1C2及2C1与2C2不允许同时合上,不仅要求在电气二次回路中实现电气的连锁,同时要求在机械上实现机构互锁,以确保变频器的运行安全。 低压变频器,由于体积较小,在改造中的安装地点选择比较容易些。选择变频器室位置,既要考虑离电机设备不能太远,又要考虑周围环境对变频器运行可能造成的影响。变频器的安装和运行环境要求较高,为了使变频器能长期稳定和可靠运行,对安装变频器室的室内环境温度要求最好控制在0-40℃之间,如果温度超过允许值,应考虑配备相应的空调设备。同时,室内不应有较大灰尘、腐蚀或爆炸性气体、导电粉尘等。 要保证变频器柜体和厂房大地的可靠连接,保证人员和设备安全。为防止信号干扰,控制系统最好埋设独立的接地系统,对接地电阻的要求不大于4Ω。到变频器的信号线,必须采用屏蔽电缆,屏蔽线的一端要求可靠接地。 随着电力电子技术的发展,变频器的各项技术性能也得到拓宽和提高,在热电行业中,风机水泵类负荷较多,充分应用变频器进行节能改造已经逐渐被大家所接受。对于目前低压变频器,投资较低、效益高,一年左右就可以收回投资而被广泛应用。随着目前国产变频器的迅速发展,使得变频器的性能价格比大大提高,为利用变频器进行节能技术改造提供了更加广阔的前景。 参考文献: [1]王占奎.变频调速应用百例.北京:科学出版社出版, [2]吴忠智,吴加林.变频器应用手册.北京:机械工业出版社, 变频器应用技术论文参考范文篇三:《浅议变频调速技术的应用》 摘要:调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM(IntelligentPowerModule)等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。 关键词:变频器,控制技术,应用 电力电子技术诞生至今已近50年,他对人类的文明起了巨大的作用.近10年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。交流电机变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其有益的 调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。 1.变频调速技术的现状 电气传动控制系统通常由电动机、控制装置和信息装置三部分组成。电气传动可分为调速和不调速两大类,调速又分为交流调速和直流调速两种方式。不调速电动机直接由电网供电。但是,随着电力电子技术的发展,原本不调速的机械越来越多地改用调速传动以节约电能,改善产品质量,提高产量。以我国为例,60%的发电量是通过电动机消耗的。因此,调速传动有着巨大的节能潜力,变频调速是交流调速的基础和主干内容,变频调速技术的出现使频率变为可以充分利用的资源。近年来。变频调速技术已成为交流调速中最活跃、发展最快的技术。 国外现状 采用变频的方法,实现对电机转速的控制,大约已有40年的历史,但变频调速技术的高速发展,则是近十年的事情,主要是由下面几个因素决定: 市场有大量需求 随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。 功率器件发展迅速 变频调速技术是建立在电力电子技术基础之上的。近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM(Intelligent Power Module)等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。在大功率交—交变频(循环交流器)调速技术方面,法国阿尔斯通已能提供单机容量达30000kW的电器传动设备用于船舶推进系统。在大功率无换向器电机变频调速技术方面,意大利ABB公司提供了单机容量为60000kW的设备用于抽水蓄能电站;在中功率变频调速技术方面,德国西门子公司Simovert A电流型晶闸管变频调速设备单机容量为10-2600kVA和Simovert PGTOPWM变频调速设备单机容量为100-900kVA,其控制系统已实现全数字化,用于电机风车,风机,水泵传动;在小功率变频调速技术方面,日本富士BJT变频器最大单机容量可达700kVA,IGBT变频器已形成系列产品,其控制系统也已实现全数字化。 IPM投入应用比IGBT约晚二年,由于IPM包含了1GBT芯片及外围的驱动和保护电路,有的甚至还把光耦也集成于一体,是一种更为适用的集成型功率器件。目前,在模块额定电流10-600A范围内,通用变频器均有采用IPM的趋向。IPM除了在工业变频器中被大量采用之外,经济型的IPM在近年内也开始在一些民用品,如家用空调变频器,冰箱变频器,洗衣机变频器中得到应用。IPM也在向更高的水平发展,日本三菱电机最近开发的专用智能模块ASIPM将不需要外接光耦,通过内部自举电路可单电源供电,并采用了低电感的封装技术,在实现系统小型化、专用化、高性能、低成本方面又推近了一步。 控制理论和微电子技术的支持 在现代自动化控制领域中,以现代控制论为基础,融入模糊控制、专家控制、神经控制等新的控制理论,为高性能变频调速提供了理论基础;16位、32位高速微处理器以及信号处理器(DSP)和专用集成电路(ASIC)技术的快速发展,则为实现变频调速的高精度、多功能提供了硬件手段。 国内现状 从整体上看我国电气传动系统制造技术水平较国际先进水平差距10-15年。在大功率交-交,无换向器电动机等变频技术方面,国内只有少数科研单位有能力制造,但在数字化及系统可靠性方面与国外还有相当差距。而这方面产品在诸如抽水蓄能电站机组启动及运行、大容量风机、压缩机和轧机传动、矿井卷扬机方面有很大需求。在中小频率技术方面,国内学者做了大量变频理论的基础研究。早在80年代,已成功引入矢量控制的理论,针对交流电机具有多变量、强耦合、非线性的特点,采用了线性解耦和非线性解耦的方法,探讨交流电机变频调速的控制策略。 进入90年代,随着高性能单片机和数字信号处理的使用,国内学者紧跟国外最新控制策略,针对交流电机感应特点,采用高次谐波注入SPWM和空间磁通矢量PWM等方法,控制算法采用模糊控制,神经网络理论对感应电机转子电阻、磁链和转矩进行在线观测,在实现无速度传感器交流变频调速系统的研究上作了有益的基础研究。在新型电力电子器件应用方面,由于GTR,GTO,IGBT,IPM等全控制器件的使用,使得中小功率的变流主电路大大简化,大功率SCR,GTO,IG-BT,IGCT等器件的并联、串联技术应用,使高电压、大电流变频器产品的生产及应用成为现实。在控制器件方面,实现了从16位单片机到32位DSP的应用。国内学者一直致力于变频调速新型控制策略的研究,但由于半导体功率器件和DSP等器件依赖进口,使得变频器的制造成本较高,无法形成产业化,与国外的知名品牌相抗衡。国内几乎所有的产品都是普通的V/f控制,仅有少量的样机采用矢量控制,品种与质量还不能满足市场需要,每年需大量进口高性能的变频器。 因此,国内交流变频调速技术产业状况表现如下:(1)变频器控制策略的基础研究与国外差距不大。(2)变频器的整机技术落后,国内虽有很多单位投入了一定的人力、物力,但由于力量分散,并没形成一定的技术和生产规模。(3)变频器产品所用半导体功率器件的制造业几乎是空白。(4)相关配套产业及行业落后。(5)产销量少,可靠性及工艺水平不高。 2.变频调速技术未来发展的方向 变频调速技术主要向着两个方向发展:一是实现高功率因数、高效率、无谐波干扰,研制具有良好电磁兼容性能的“绿色电器”;二是向变频器应用的深度和广度发展。随着变流器应用领域深度和广度的不断开拓,变频调速技术将越来越清楚地展示它在一个国家国民经济中的重要性。可以预料,现代控制理论和人工智能技术在变频调速技术的应用和推广,将赋予它更强的生命力和更高的技术含量。其发展方向具有如下几项:(1)实现高水平的控制;(2)开发清洁电能的变流器;(3)缩小装置的尺寸;(4)高速度的数字控制;(5)模拟与计算机辅助设计(CAD)技术。论文检测。 3变频调速技术的应用 纵观我国变频调速技术的应用,总的说来走的是一个由试验到实用,由零星到大范围,由辅助系统到生产装置,由单纯考虑节能到全面改善工艺水平,由手动控制到自动控制,由低压中小容量到高压大容量,一句话,由低级到高级的过程。论文检测。我国是一个能耗大国,60%的发电量被电动机消耗掉,据有关资料统计,我国大约有风机、水泵、空气压缩机4200万台,装机容量约亿万千瓦,然而实际工作效率只有40%-60%,损耗电能占总发电量的40%,已有 经验 表明,应用变频调速技术,节电率一般可达10%-30%,有的甚至高达40%,节能潜力巨大。 有关资料表明,我国火力发电厂有八种泵与风机配套电动机的总容量为12829MW,年总用电量为450。2亿千瓦小时。还有总容量约为3913MW的泵与风机需要进行节能改造,完成改造后,估计年节电量可达25。论文检测。69亿千瓦小时;冶金企业也是我国的能耗大户,单位产品能耗高出日本3倍,法国4。9倍,印度1。9倍,冶金企业使用的风机泵类非常多,实施变频改造,不仅可以大幅度节约电能,还可改善产品质量。 参考文献 [1]何庆华,陈道兵. 变频器常见故障的处理及日常维护[J]. 变频器世界, 2009, (04) . [2]龙卓珉,罗雪莲. 矩阵式变频调速系统抗干扰设计[J]. 变频器世界, 2009, (04) . 猜你喜欢: 1. 电气类科技论文 2. 电子应用技术论文 3. 电气控制与plc应用技术论文 4. 变频器应用技术论文 5. 变电运行技术论文 6. 光伏应用技术论文

您好, 很高兴能够回答您的问题。变频器是一种电子设备,用于控制电动机的转速和输出功率。其作用是将输入的固定频率和固定电压的交流电转换成可调变频和可调电压的交流电输出,从而控制电机的转速和输出功率。变频器通常由整流器、滤波器、逆变器、控制电路等组成,通过控制电路的设计,可以实现多种不同的运行模式和功能。变频器广泛应用于各种需要可调速和可调负载的场合,如工业生产线、风力发电、水泵、压缩机等。我们可以帮您解决变频器、电气控制柜、软起动等问题。

变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。1:变频器输出为PWM波,含有较多的高次谐波。变频功率传感器通过对输入的电压、电流信号进行交流采样,再将采样值通过电缆、光纤等传输系统与数字量输入变频功率分析仪,数字量输入变频功率分析仪对电压、电流的采样值进行运算,可以获取电压有效值、电流有效值、基波电压、基波电流、谐波电压、谐波电流、有功功率、基波功率、谐波功率等参数。2:就国内变频器市场格局而言,业内人士将其概括为,变频器通用领域内资企业占据80%以上的市场份额,竞争激烈导致10年价格大幅下滑;高性能市场仍以外资品牌为主,未来将成为国内变频器企业的主攻方向。是国内智能化电气研发、生产和销售的为一体的高新技术企业。生产变频调速器、电机软起动器等工业自动化控制的厂家,产品采用重载型设计,过载能力强,具有超大起动和运行容量、完善的自动检测、保护和控制性能,可以起动和控制任何类型的重型负载电动机,产品已广泛应用于冶金、矿山、造纸、化工、建材、机械、电力、以及建筑系统等所有工业传动领域3:中国变频器的市场保持着12-15%的增长率,预计至少在未来5年内将会保持10%以上的增长率。中国市场上变频器安装容量(功率)的增长率实际上在20%左右,预计至少在10年以后,变频器市场才能饱和并逐渐成熟。

变频器毕业论文设计

哥们帮你搞定,有什么好处

简单给你说下吧,具体的方案也不好一次性拿出来变频器的原理是AC-DC-AC 的过程,第一步就是整流的过程其中还有滤波、功率因数校正等环节,第二个环节就是逆变器的原理,通过控制开关管开闭的时间、顺序,达到输出是不同频率交流电的目的,这部分有PWM和SPWM技术,由于你的是单相电机,因此四个管就够用了。输出还有个滤波的过程,可以平滑下波形,具体实现控制开关管,还要有单片机实现控制的哦。

基于PLC的恒压供水系统设计摘要随着人民生活水平的日趋提高,新技术和先进设备的应用,使给供水设计得到了发展的机遇。于是选择一种符合各方面规范、卫生安全而又经济合理的供水方式,对我们给供水设计带来了新的挑战。本系统采用PLC进行逻辑控制,采用带PID功能的变频器进行压力调节,系统存在工作可靠,使用方便,压力稳定,无冲击等优越性。本设计恒压变频供水设备由PLC、变频器、传感器、低压电气控制柜和水泵等组成。通过PLC、变频器、继电器、接触器控制水泵机组运行状态,实现管网的恒压变流量供水要求。设备运行时,压力传感器不断将管网水压信号变换成电信号送入PLC,经PLC运算处理后,获得最佳控制参数,通过变频器和继电器控制元件自动调整水泵机组高效率地运行。供水系统的监控主要包括水泵的自动启停控制、供水压力的测量与调节、系统主管道水压的;系统水处理设备运转的监视、控制;故障及异常状况的报警等。现场监控站内的控制器按预先编制的软件程序来满足自动控制的要求,即根据供水管的高/低水压位信号来控制水泵的启/停及进水控制阀的开关,并且进行溢水和枯水的预警等。文中详细介绍了所选PLC机、变频器、传感器的特点、各高级单元的使用及设定情况,给出了系统工作流程图、程序设计流程图及设计程序。关键词:可编程控制器;变频器;传感器目录1前言供水系统发展过程及现状供水系统的概述.变频恒压供水系统主要特点:.恒压供水设备的主要应用场合:.恒压供水技术实现:32系统总体设计方案系统设计方案系统控制要求控制方案运行特征系统方案可编程控制器(PLC)的特点及选型特点及应用可编程控制器的选型.PLCCPM2A模拟量输入/输出单元变频器选型及特点产品信息:变频节能理论:.变频恒压供水系统及控制参数选择:.变频恒压供水系统的优点及体现远传压力表主要技术指标结构原理系统控制流程设计系统组成及作用系统运行过程203软件设计系统中检测及控制开关I/O分配地址及标志位分配表流程图程序设计:294.结论43致谢44参考文献45

给煤机变频器论文文献

浅析变频器发展和应用的趋势[摘要]随着变频控制理论和制造工艺的进一步发展,变频器的应用和发展将会朝着以下方向发展:矩阵变频器的出现和推广;网络化配置的变频器将成为主流;同步电动机的变频应用将得到更为迅猛的发展。 [关键词]矩阵变频器 网络化配置变频器 同步电机 一、矩阵变频器的出现 多年来,电气传动专家一直都在讨论关于“矩阵变换”技术的变频器将会是下一代变频器。几个主要的传动供应商包括罗克韦尔、西门子等都在研究该项技术。舆论一直认为:尽管矩阵变频器具有非常诱人的前景,但是由于成本太高而无法在目前进行商业化应用。 从原理上讲,矩阵变频器使用了一组电力半导体开关,按照预定的数学算法控制开关顺序,并直接连接到三相电机上。在安川矩阵变频器中有9个开关,每一个都有2个IGBT组成双向开关,能允许正向电压和负向电压通到电机上。IGBT数量的增加是导致矩阵变频器造价昂贵的其中一个因素。 矩阵变频器使用了三相电压输入来控制输出电压,这就不仅能吸收任何电流杂波,也能提供一个清洁的输出电压,也就是说“可以有效地进行输入电源电流控制与输出电压控制”。这也是矩阵变频器吸引人们的一个重要点:能大大降低输入电流谐波的产生,只有大约传统交-直-交变频器的20%以下。而且矩阵变频器的电流几乎是正弦波,即使在带载情况下,也是如此。当有再生发电时,电流能以180°转换并反馈到电网中,而且也是以正弦波方式。在再生制动方式的工作中,矩阵变频器不需要制动电阻或特殊的变换器。反馈回的电亦无需额外的设备(如变压器等)进行处理。总之,传动能在四象限高效率地运行。 另外,一个吸引点就是矩阵变频器去掉了直流电容,作为有一定寿命地铝电解电容,交—直—交变频器就必须在一定年限更换电容,如5~8年,矩阵变频器就能长时间可靠工作。 在安川的计划中,矩阵变频器将逐步覆盖400V的,直至75kW,当然也有200V级的变频器。至于价格策略目前尚未公布,但基本上为目前通功率段传统变频器的2倍左右。 二、以网络配置为主的系统化 变频器的网络化配置主要基于三个层面:设备层、控制层和信息层。其中变频器做为执行器,可以配接最基本的RS232/RS485串行通讯协议、Profibus等的现场总线协议以及Internet局域网协议。针对不同的控制系统和不同的用户要求,配置和选用不同的网络协议。 网络化配置的变频器具有以下显著的特点: (1)高精度的频率设定; (2)远程控制与工厂信息化的基本要素; (3)远程诊断系统。 通过网络设定频率是一种高精度的频率设定,其具有通讯速率高,稳定可靠,接线简单等优点,而且在模拟量控制时,输出端经过一个数模转换器,经过导线,进入输入端(变频器)又经过一个模数转换器才能参与控制。两个转换器位数不同和导线损耗都可能造成一定误差,而通讯传递直接是数字量,不需要转换,没有误差,在传输过程中不会造成损耗,而且响应速度率也会很高。 变频器经常被用于系统复杂、工作环境恶劣、高负荷、长时间运行的工况中,如无人值守泵站、油田磕头机等。变频器故障率在这种环境中自然,比较高,一般都采取事后维修的方式进行,随着电子技术的发展,传统的维修方式将变为故障预报和整机在线维修。有必要对其实现在线工作状态的监测以及常规故障机理的综合分析研究,以便对其故障的事先诊断分析。目前大功率变频器的故障诊断、远程监控系统及智能控制方面取得了较大进展,并已经投入实际运行。请登陆:输配电设备网浏览更多信息 在网络化日益普及的今天,与普通的点对点硬线连接方式而言,通过高速通讯连接的变频器系统可以最大程度上降低系统维护时间、提高生产效率、减少运行成本。目前安装的现场总线模块有ProfibusDP、Interbus、DeviceNet、CANOpen和ModbusPlus等。用户可以有更大的自由根据生产过程来选择PLC型号和品牌,并非常简单地集成到现有地网络中去。而且通过现场总线模块,可以不考虑变频器的型号,而以同一种语言来与不同功率段、不同型号地变频器进行组构,如功率、速度、转矩、电流、设定值等。 由于采用了通讯方式,可以通过PC机来方便地进行组态和系统维护,包括上传、下载、复制、监控、参数读写等。 以SEWMOVIDRIVE变频器为例,它可以如图2组成WAGO-I/O系统,利用后者地现场总线技术进行通讯互联。这种连接方式能通过WAGO的可编程总线控制器PFC实现变频器到网络控制主机之间的输入数据过程、输出数据过程的交换。而且,总线互联方式可以通过WAGO公司专用的软件功能块()方便地进行变频器参数的读龋该方式能在最大程度上降低变频器系统的构建成本。三、同步电机的配合应用 交流同步电动机已成为交流可调速传动中的一颗新星,特别是永磁同步电动机,电机是无刷结构,功率因数高、效率也高,转子转速严格与电源频率保持同步。同步电机变频调速系统有他控变频和自控变频两大类,自控变频同步电机在原理上和直流电机极为相似,用电力电子变流器取代了直流电机的机械换向器,如采用交-直-交变压变频器时叫做“直流无换向器电机”或称“无刷直流电动机”。传统的自控变频同步机调速系统有转子位置传感器,现正开发无转子位置传感器的系统,且已经取得重大进步和在市场的成功应用。同步电机的他控变频方式也可采用矢量控制,其按转子磁场定向的矢量控制比异步电机简单。 采用同步电机的最有效特点: (1)大大降低电机尺寸; (2)高效率的转矩输出; (3)无编码器运行。 目前大多数的纸机需要安装速度编码器来反馈电机转速,而且编码器也被证明是可靠的。但是安装的编码器由于是采用轴承需要常规定期性的维护保养和润滑,在一个大型的纸机(如50个传动)上每隔一定的周期还必须更换所有的编码器以防止意外的由编码器故障引起的纸机停机。从这个层面上来说,无编码器的运行自然是同步电机直接传动的一个优点和着眼点。 电机的实际速度是需要同时反馈和监测的,一个计算电机速度的新方法已经在ACSDTC得到发展和应用。为ABB造纸部门对直接传动的37kW永磁电机进行测试得出的波形曲线。上面的2条曲线是表示经速度编码器测量的数据和通过变频器计算出来的数据。从图中可以看出两条曲线几乎是一致的,即使在动态扰动中也是少有偏差。第3条曲线是表示电机由于突加负载产生的电机转矩,该负载的变化大概是正常负载的1/3,以表示在电机在正常运行下突然有一个大的变化。将ABB传统的交流传动纸机改造成一个直接传动的纸机系统是非常简单的,纸厂需要购买新的直接传动部分的电机,同时将ABB的常规变频器ACS600通过下载PM-DTC软件来升级,而且新的直接传动的系统可以与现 有的交流或直流传动同时正常运行。总而言之,用户将从直接传动中获益。 参考文献: [1]王廷才.变频器原理及应用[M].机械工业出版社,2005. [2]张选正,张金远.变频器应用经验[M].国电力出版社,2006. [3]吴忠智,吴加林.变频器应用手册[M],机械工业出版社,2007.

应用机电一体化技术,对于提升煤矿生产操作的自动化处理水平,避免造成更大的损失与危害,提高了工作效率方面起到了重要作用。下面是我为大家整理的煤矿机电一体化毕业论文,供大家参考。

摘要:文章首先介绍了煤矿机械产品的机电一体化要求,然后对机电一体化的参数化模型展开分析,同时根据煤矿机械产品的表达模式的机电一体化分析FlexRIA法。

关键词:煤矿机械;机电一体化

1关于机电一体化技术

我国机电一体化技术研究历程

从过去几十年的研究历史可以看出,我们可以把机电一体化技术的研究在我国分为四个阶段:上世纪六十年代以前,由于中国的内部问题以及战争,促使煤矿机械和电子技术的集成处理系统,这也体现出我们国家在这个问题上的机电一体化产品发展,在很大程度上是自我发展的水平,这也导致了我国发展自己的技术限制,已开发成功的产品难以获得大范围,导致下一个努力工作得到进一步发展;七十年代初,受到世界飞速的传播与发展,计算机通信控制技术为中国的机电一体化产品的发展提供了良好的外部技术基础。例如,技术的发展和国际大规模集成电路,计算机,研究我国机电一体化技术以外部物质条件。第三阶段始于九十年代初,由于光学技术的渗透,微加工技术,新型机电一体化技术越来越多地开始出现,最后的决定机电一体化技术是向智能化方向发展。

机电一体化技术概述

目前最先进的机电一体化技术功能对比传统机电技术最大的特点是极大地加强了控制系统,以主菜单与机电一体化相结合以及源函数为基础,利用高端智能软件技术和微电子技术,引进多个相互融合、相互渗透的领域,以此新兴机电一体化注入新的活力。但在这一过程中,也可能面临多项技术的简单的、不集中的相加,这也给当前机电一体化增加了不少困难。研究发现,机电一体化技术在信息、计算机、煤矿机械加工、微电子技术等领域中可以寻求到最佳匹配。现在的机电一体化产品的发展是一个系统———智能化和小型化,以此达到煤矿机械加工与机电一体化技术能够共同操作,极大地满足了煤矿安全生产的需求、有效降低劳动紧张程度,并提高最终救援人员的安全度,极大地保护了矿区原生态环境,以此达到降低生产能耗的目的,使机电一体化得到长期有效稳定的发展。

煤矿机械加工中机电一体化产品

伴随着全球资源日益紧缺,各国对能源问题的越来越关注,煤矿作为我国战略资源不可或缺的成员,其开采的重要性可见一斑。如今,伴随着越来越先进的机电一体化产品应用到煤矿机械加工中来,煤矿企业的开采效益越来越高。如今,以计算机控制为主的国产供电设备、提升机、电牵引采煤机、掘进机和输送机等煤矿机械加工都具备了全程监控、自动报警、图景扫描、信息控制等先进功能。这使得在我国的煤矿机械加工管理工作中,机电一体化产品的应用尤为广泛,也确保了煤矿开采工作中的高安全性、高效益性与高技术性。

2煤矿机械产品的机电一体化与生产流程的协同策略

机电一体化策略的主要内容有:其一、关系型产品模型;其二、与关系型产品模型相匹配的产品信息管理系统;其三、以实例推理为基础的智能技术。三方面是机电一体化策略的重要手段。以企业原有产品作为开发对象,开拓思路,对其进行重新改造与设计,充分重视与利用企业可再生的信息资源,提高交货效率及产品质量,节约成本的同时,增加了产品的环保性。企业想要在激烈的市场竞争中立于不败之地,就需要在机电一体化中积极寻求方法。

零件分类及其变型模式

受制作成本限制,一般在定制煤矿机械产品零件事都是批量生产的,所以,首先应保证零件资源特性,其次要考虑不同客户的不同需求,对不同要求的零件进行单独处理。煤矿机械产品一般由标准件、通用件与定制件三类组成零件。机电一体化的模式受不同类型零件的影响其功能会产生差异。需要特别说明的是,在煤矿机械产品的机电一体化阶段,首先应该保证通用件的变型是根据已有实例做出的取代变形模型,当该模型已经不具备重用条件或是达不到变型所需要的条件时,零件变型主模型就必须通过参数化变型得到满足煤矿机械产品定制的需求。

利用AutoCAD软件操作系统作为快速实现机电一体化产品信息的辅助工具

AutoCAD是指计算机的辅助设计,是设计者在设计过程中利用计算机技术或其他辅助设备帮助设计师工作时使用,使用它的画,抬高的过程,可以很简单按照各部分的大小、模式进行绘图,最终依据准确的命令完成煤矿机械的设计。由平面和高程AutoCAD绘制,在图纸中,利用软件充分表述设计者思想意图,并且可以产生三维立体模型,用最直观的方式在最大程度上表现出设计与施工。当然,任何软件都不可能完美无趣,AutoCAD绘制出来的图形同样也会存在一些软件系统难以完善的缺陷。因此,在设计部门经常使用PS图象处理软件。在煤矿机械产品的机电一体化开发中,利用几何数据模型和属性数据模型可建立煤矿机械产品的变型模型。

煤矿机械几何数据模型

目前,在一体化煤矿机械产品中,操作者主要做到两项工作,一是数据化管理产品固有生成属性,二是要分析数据间的关系,此关系主要指层次分布关系。因此,分析机电一体化模型就要将其分为两部分:矿机械生产属性信息及零件图形信息。为了更好地体现零件图形信息,一般可以运用AutoCAD技术细致的体现煤矿机械零件的各个微小细节;相比之下,煤矿机械产品属性产生巨大的信息数据量,它对煤矿机械中各类零件特征进行采集归纳,以此为基础,才能实现生产煤矿机械零件实施信息化操控以及全程监控机电一体化过程等,具体到在几何数据模型中体现机电一体化工作则是由几何图形表示,为了便于从直观上观察数据,在几何数据模型中将通过点、线、面结合的方法展示。通过这些数据可以充分了解矿区环境下的所有煤矿机械产品和零件分别具有的不同属性特征与几何特征。首先,系统下的点线位置表示了几何特征;其次,属性特征则依据不同地物的分属类型进行层次归类。由前文所述可知,研究对象是几何集合构成,组成方式,为了更好地展开研究,我们可以将杂煤矿机械类的属性特征和几何特征分别分类并阐述其定义。一般情况下,具备几何特征的数据可以分为层次数据与几何数据两方面。几何数据是研究煤矿机械形状大小、空间位置及其拓扑关系等方面的基础数据。

煤矿机械属性数据模型

一般情况下,属性特征可以对描述各物体要素特征、形态和分布关系等方面产生直接影响。煤矿机械产品属性与图形信息息息相关。实体对象与图层信息都拥有单向的属性数据。首先对属性数据和客观数据间的联系进行简要介绍。基本属性数据一般可以分成公共属性、独享属性、共名或共值属性、可否传播属性、传值属性和传名属性八种类型。然而如果以分类和层次关系为分类标准,那么又可将各属性数据分做两大类,例如:煤矿机械产品属性数据主要是由各设备的名称编号、赋予原值、生产状态、地理坐标等构成。

3结束语

文章首先介绍了煤矿机械产品的机电一体化要求,然后对机电一体化的参数化模型展开分析,同时根据煤矿机械产品的表达模式的机电一体化分析FlexRIA法。可以是一个很好的产品,传统的煤矿机械性能和实现数据管理通过模型的属性数据,几何数据模型对现有大量煤矿机械产品零件的分布式层次关系进行了总结,体现出系统界面、可视化、可操作性强等优点,极大地促进了中国的煤矿机械产品技术的发展,提高了企业经济效益,同时对煤矿机械产品制造技术与生产流程的协同性具有很好的借鉴和指导意义。

参考文献

1、机电一体化技术在煤矿的应用张莉;山西煤炭管理干部学院学报2007-02-25

2、机电一体化数控技术在煤矿机械中的应用方媛;卞奕明;李艳平;煤炭技术2012-07-10

摘要:在当前的煤矿开采行业中,机电一体化数控技术的应用具有重要的现实意义,不仅可以保证煤矿生产的安全可靠,提供煤矿开采的效率和质量,还可以促进机电一体化数控技术的进一步完善。

关键词:煤矿机械;机电一体化

科学技术的进步,在客观上带动了机电一体化数控技术的更新和完善,并且在当前的发展态势下,被广泛应用到了众多的领域中。煤矿开采作为社会经济发展的重要支撑,是社会经济稳定正常运行不可忽视的方面,机电一体化数控技术在煤矿开采企业中的应用,可以大大地提高开采的质量和效率,改进开采的技术和方式,并且在不断的实践探索中,在采煤机故障的诊断以及微机监控等方面也取得了显著的成效,根据机电一体化数控技术的发展状况,它在煤矿机械设备中的应用是具有重要意义的。

1机电一体化数控技术在煤矿中应用的概况分析

从当前的煤矿开采施工的现状来看,机电一体化数控技术的应用具有重要的作用,它是综合了各种先进的技术,包括液压控制技术、电子技术以及机械技术等的综合,可以极大地提高煤矿机械设备操作的安全性、可靠性和经济性,并且也为后期的维护拆除等各种提供了便利。当前的应用现状,主要是以微处理器和微机为核心的控制装置和电子技术,在很多的煤矿机械设备中都有体现,其中电子技术较为突出,例如煤矿机械设备中故障的报警、自诊以及在线监控等,还包括提升机的PLC系统、采煤机的变频控制系统等的诸多方面,而且随着煤矿开采技术的进一步发展,会对煤矿机械性能有更高的要求,这就使得在煤矿机械的结构构成中,电子控制装置的应用会更加的普遍,维护会更加的专业。在实际的煤矿生产过程中,煤矿机械的经济性和性能的自动化程度是决定着煤矿生产通风、排水以及供电等安全性能的。煤矿电子性能的优劣以及控制系统的质量是否良好是直接影响着机械设备的运行可靠性、动力性和经济性的,然后对其使用寿命、生产效率和施工质量产生深刻影响,作为现代煤矿机械设备重要组成部分的电子控制系统,逐渐成为了现代煤矿机械化水平的重要体现。科学技术的不断发展,在煤矿机械设备中,电子控制系统的地位更加的巩固,随之而来的就是它的结构复杂程度不断加深,那么它的性能作用会更加全面的发挥,这就需要操作人员有专业的技能水平,可以对机械设备有熟练的掌握,能够简单处理一些故障问题,并制定合理的维护保养措施。一般来说,从大量的煤矿机械设备在实际开采中的应用可以看出,煤矿机械设备需要满足以下几方面的性能,首先,具有较高的精度,施工的操作简单,自动化程度高不需要过多的人工投入,并且满足节能降耗的要求,生产效率十分良好,并且实用性强,便于后期的维修管理;其次,要满足使用寿命长、安全系数高以及运行稳定可靠的要求,并且它的制造和使用成本不会过高;第三,负责操作的工作岗位条件好,劳动强度不能过高;最后,可以大大降低停机维修的时间,可以对出现故障的部位及时准确的查出,并且可以对故障进行自诊和自动警报。随着时代的发展,如果仅仅依靠液压技术和机械技术,那是很难满足煤矿机械设备各种性能改进的要求的。因此,就需要积极地发展电子控制技术,提高其普及率和使用率,它是机电一体化数控技术的重要体现,如果可以在煤矿开采机械设备中应用,必然会推动煤矿开采机械设备的又一次更新换代,从性能上产生质的飞跃。

2煤矿机械中机电一体化数控技术的应用分析

煤矿综合采煤中的应用

当前,机电一体化数控技术在煤矿机械设备中应用最为典型的就是电牵引采煤机,它是机电一体化数控技术的有力体现,从它的实际应用来看,在它的牵引特性上,是远远优于液压牵引的,具有无可比拟的先进性,可以很好地应用在大倾角煤层上。它还具有一系列的应用优点,例如反应灵敏、使用周期长、运行效率高、安全可靠、动态性好以及结构简单等等。

煤矿开采运输的提升设备

第一,带式输送机。这是煤矿开采输送环节中重要的运输设备,其自身具有效率高、运行可靠、输送量大,运输距离长等的特点。第二,矿井提升机。它可以轻松的完成全数字化交直流提升工作,特别是对内装式提升机,驱动和滚筒是连接在一起的整体,它是机电一体化数控技术应用的典型设备,它的应用可以大大地简化机械设备的结构。

其他类的煤矿机电一体化装置

从实质上来说,煤矿供电设备是属于其他机电一体化设备范畴的。根据煤矿供电的特点,也就是要满足大功率设备的要求,设备的质量较高,运行安全可靠,因此,就要根据煤矿开采的实际来采取合理的方法以最大程度的减少无功功率的损耗,减少供电系统中的无功电流,进而提高功率的因数,一般来说,常用的方法有两种,即就地补偿和集中补偿。从当前的应用现状来看,使用最为广泛的是微机保护开关,它的网络功能是较为齐全的,对于煤矿开采来说,是十分有益的,值得大力的推广采用。

煤矿安全生产中的应用

除了上述的分析外,机电一体化数控技术在煤矿机械中的应用还涉及到矿井安全生产监控系统,它是一种十分高效和合理的措施,可以对煤矿管理和安全生产起到积极的维护作用。从实际的煤矿开采工作来看,它所具有的特点就是,首先,它所采用的是Win-dows操作系统,可以接入互联网,实现网络功能,可以促进测控分站智能化水平的提高;其次,根据煤矿开采工作的特点,严格的遵守煤矿开采安全生产的规章章程,要求在一些大中小的煤矿高瓦斯矿井中,特别是瓦斯含量超标的矿井中,必须要安装矿井监测监控系统,对矿井的情况进行实时的监测,便于及早发现异常状况。

3机电一体化数控技术在煤矿机械中应用的建议

由于我国的机电一体化数控技术起步较晚,相对于国外先进技术来说,还存在着很大的差距,加上从当前我国的社会经济发展态势来看,就需要研究人员加大科研力度,增加在机电一体化数控技术上的资金投入,进而在实践中不断的提高我国的机电一体化数控技术水平,使其可以更好的应用在煤矿机械中,提高自动化程度。另外,也可以积极的借鉴国外先进的技术,并依据我国煤矿开采行业的实际状况,把握开采活动的要点,从而制定出一套不仅符合我国煤矿企业发展而且又可以促进机电一体化数控技术进步的发展规划,使其两者可以更好的结合,从而使我国的煤矿开采行业发展前景更为广阔。

4结束语

在当前的煤矿开采行业中,机电一体化数控技术的应用具有重要的现实意义,不仅可以保证煤矿生产的安全可靠,提供煤矿开采的效率和质量,还可以促进机电一体化数控技术的进一步完善。我国的机电一体化数控技术起步较晚,相对国外先进技术来说,还有很大的不足之处,需要技术人员加强研究,并积极借鉴先进经验,从而推动煤矿机械的智能化、自动化发展。

参考文献

1、机电一体化技术在现代煤矿生产中的应用胡福庆;科技致富向导2013-01-20

十大关键词 回顾变频器辉煌60年 六十,这是最近每个中国人心里默念的一个数字。是啊,六十年,新中国崛起的六十年,一头连着满目疮痍的旧社会,一头连着繁荣兴旺的新中国!六十一甲子,历史长河中的一小簇浪花,在中国五千年的历史中,也不过是短暂的一瞬,新中国却完成了从一片废墟到世界强国过渡,一个看似不可能完成的任务。关键词一:增长根据本刊调查统计,中国变频器市场2008年为120多亿,品牌数量达220多家,装机容量为3000多万kW。在过去的十几年中,国内变频器市场保持着12%~15%的增长率,虽然2008年全球经济遭受了严重的冲击,中国的变频器市场仍然保持了10%左右的增长。 关键词二:国产化进入21世纪,国产变频器得到了前所未有的发展,国产变频企业到现在已超过100多家,并且在技术上也有了很大的进步。关键词三:本土化过去十几年的中国变频器行业,外资企业大面积抢滩中国,在本土化上作了很多卓有成效的努力。国内变频器行业的飞速发展与外资企业的本土化战略密不可分。关键词四: 矢量控制矢量控制是将交流电机空间磁场矢量的方向作为坐标轴的基准方向,通过坐标变换将电机定子电流正交分解为与磁场方向一致的励磁电流分量和与磁场方向垂直的转矩电流分量,然后就可以像直流电机一样控制。矢量控制理论的提出为交流调速开辟了广阔的空间。关键词五:直接转矩控制直接转矩控制结构简单、控制信号处理的物理概念明确、系统的转矩响应迅速且无超调,是一种具有高性能的新型交流调速控制方式。直接转矩控制完成了交流调速的又一次飞跃。关键词六:高压变频器在变频器业界内有这样一种说法,谁拥有高压变频器技术优势,谁就将在变频器行业乃至工控领域占有一席之地。目前,国内已经有十几家企业有能力生产高压变频器,国产品牌约占市场的50%以上。关键词七:矩阵变频器矩阵式交-交变频器能实现功率为1,输入电流为正弦且能四象限运行,系统的功率密度大,并能实现轻量化。然而舆论却认为:尽管矩阵变频器具有非常诱人的前景,但由于成本太大,目前无法进行商业化应用。关键词八:并购与整合国外巨头将目光锁定在一些竞争力较强的国内变频器制造商,通过并购的方式快速进入中国市场或巩固其在亚太地区乃至全球产业链中的地位。国内部分变频器企业也通过构筑联盟等方式,扩大其在产业中的竞争力。关键词九:节能2008年4月1日,新的能源法正式施行,它在法律层面将节约资源确定为中国的基本国策。作为节能的最直接产品,变频器的发展遇到了一个难得的良好机遇。关键词十:国际化随着经济全球化、一体化的深入发展,中国变频器行业在积极“引进来”的同时,一批优秀企业也在积极地“走出去”。2008年的经济危机使全球的经济都受到了重创,用户越来越注重产品性价比,这为中国变频器企业“走出去”创造了前所未有的机会。可能没有三千字哦

关于变频器的论文题目

论文题目:PLC和变频技术在恒压供水系统中的应用 PLC和变频技术在恒压供水系统中的应用WwWWW 摘要: 本文是针对节能和提高供水质量问题而提出的恒压供水系统设计和应用的研究.文中分析了旧系统存在的问题,介绍了水位自动检测技术及保护措施,阐述了采用变频技术、PLC技术及自动控制技术相结合来实现的恒压供水控制的系统总体设计方案和软件设计。通过实践证明.该系统具有较强的功能.对供水质量、节约能源和运行可靠性具有较好的改善。关键词:变频技术;PLC技术;恒压供水;自启动1 引言随着各住宅小区的宿舍楼等一座座高楼拔地而起,相应的生活用水量也大幅度增加。人们对提高供水质量的要求越来越高,另外人们的节能意识及对运行的可靠性的要求越来越强。采用变频器及PLC技术实现的无塔恒压供水系统,不仅能提高供水质量,而且在节约能源和运行可靠性具有较好的改善。其中,采用变频调速的主要目的是通过调速来恒定用水管道的压力以达到节能的目的,恒压供水则是为了满足用户对流量的要求。应用PLC技术是为了实现系统的软启动,减少手动操作或抚慰操作,同时替代部分继电器减少机械触点的故障,增强可靠性。下面笔者根据这方面的工作经验谈谈在恒压供水系统设计和实践过程中的一些思路和做法。2 变频器的工作原理在恒压供水控制系统中,关键技术主要是变频技术。目前效率最高、性能最好的系统是变压变频调速控制系统。2.1变频器的基本构成变频器的基本构成如图1所示,由主回路(包括整流器、滤波器、逆变器)和控制电路组成。 整流器的作用是把三相交流整流成直流。滤波器是用来缓冲直流环节和负载之间的无功能量。逆变器最常见的结构形式是利用六个半导体器件开关组成的三相桥式逆变电路,有规律地控制逆变器中主开关的通与断,可以得到任意频率的三相交流输出。控制电路主要是完成对逆变器的开关控制、对整流器的电压控制以及完成各种保护功能等。2.2变频器基本原理 变频器的基本原理是利用逆变器中的开关元件,由控制电路按一定的规律控制开关元件的通断,从而在逆变器的输出端获得一系列等幅而不等宽的矩形脉冲波形,来近似等效于正弦电压波。图2所示出正弦波的正半周,并将其分为n等分(n=12)。每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的等幅矩形所代替。这样,由n个等幅而不等宽的矩形脉冲所组成的波形与正弦波的正半周等效。正弦波的负半周也可以用相同的方法来等效。可采用正弦波与三角波相交的方案来确定各分段矩形脉冲的宽度。当逆变器输出端需要升高电压时,只要增大正弦波相对三角波的幅值,这时逆变器的输出的矩形脉冲幅值不变而宽度相应增大,达到了调压的要求。当逆变器的输出端需要变频时,只要改变正弦波的频率就可以了。3 控制系统总体设计过去的供水控制系统投资多,采用的模式为多台小功率水泵供水。在运行实践中暴露出主控电路设计不合理和逻辑控制设计不合理的现象。新系统总体设计方案如图3所示。在该供水系统的控制电路中除采用了变频器(VVVF),还采用一些先进控制装置如数字调节器(PID)、可编程控制器(PLC)等,这些装置都是以电脑芯片为内核完成各自不同的控制功能。为简化控制电路,根据负荷需要,使用一台18.5KW大容量水泵供水。为提高使用的安全系数,选用一台日本富士22.5KW变频器进行水泵调速,该变频器内置PID调节功能,但不具备参数监视功能。为能有效监视调节工况,特选数字显示调节器进行监视和控制,以备实现串级PID控制。鉴于外部I/O可控点数不多,可编程控制器PLC选用20点即可满足控制要求。4 水位检测电路设计4.1水位检测开关考虑到水位检测装置要求故障率少,运行可靠,为简化检测环节,设计中采用结构简单的浮子式水位检测开关,但为防止信号串扰,另外增加了一个隔离转换装置。该装置内选用了干簧继电器用以提高开关接点的可靠性和使用寿命。4.2水位检测逻辑控制水位检测逻辑控制功能如前所述完全由可编程控制器PLc编程实现,减少了硬件配置,提高了运行的可靠性和应用的灵活性。PLC的I/O地址分配见图4(a)所示,简化梯形图如图4(b)所示。其逻辑电路主要完成如下功能,见图4(b)所示。(1)水位信号保持功能水位开关检测分别由PLC的常开接点实现。由于水位由于簧管的常开接点来检测,只有在水面越过该点时闭合,低于该点即断开,因此信号需由PLC保持。(2)水位信号显示、报警、保护功能水位正常时01002动作,使输出绿灯亮。水位低时01003动作,使输出红灯亮,且通过其常闭接点停供水泵。水位高时20000、01000同时启动,使输出黄灯亮(闪光l5秒转平光)且无条件停蓄水泵。 5 操作保护功能设计除了常规保护功能外还增加了人性化操作功能。考虑到泵短时间内的频繁启动对泵运行不利,故设置1分钟内只允许连续启动两次,第三次需延时3分钟后进行,以利泵的散热,延长设备使用寿命,减少功耗。编程时可采用定时器和计数器配合来实现。这项功能在启停调试设备过程中得到检验。6 系统自启动功能设计(1)自启动概述为了方便运行维护人员,有两种情况可以考虑自启动:①系统断电一段时间后恢复供电的自启动,系统在正常运行工况下突然停电时,如果其它检测无异常则来电后可实现自启动,这一点在夜间更为重要,可给维护人员带来方便,此项功能得到了维护人员的认可。②低水位使泵跳闸后水位恢复时的自启动管网用水负荷过大或蓄水水压过低流量减少造成的低水位,会引起供水泵跳闸。在水位恢复正常后可实现自启动。(2)自启功能的实现 如图5所示。图中,“自启动条件”有两个:一是计数器C103接点,二是“水位正常”信号接点。由于计数器C103具有停电记忆特性,所以只要水位恢复正常时01002闭合就可自启动。其过程是:微分继电器20006(13)产生的微分信号由20009继电器保持,再经时间继电器"1"020延时后使其输出的常开接点"1"020(见图4b)接通启动回路,则水泵重新运转。 (3)自启动的预置自启动功能可根据用户需要事先预置,否则,该功能会被屏蔽。设计方案如下:①预置和解除均借用运行状态下的启动按钮。预置时按动启动按钮三下使计数器C103启动,则其常开接点C103闭合。解除自启功能:按住启动按钮1秒,使计数器C103复位或按停止按钮使泵停运的同时也解除了自启动设置。②预置的显示借用水位正常灯(闪光3秒),解除借用高水位报警灯(闪光3秒)。7 结束语上述无塔供水控制系统经投入使用,各项设计功能运行正常,供水质量有了很大提高,单位大功率设备用电量也明显减少。期间,还经历了系统实际异常情况自动处理的考验,如“储水罐满水后的蓄水泵自动跳闸”、“电力网停电来电后的供水泵自启动”、“电源缺相报警”等,这些功能都得到了很好的验证。参考文献[1]张燕宾主编.变频调速应用实践.机械工业出版社,2001.[2]北京四通工控技术有限公司编.FRENIC5000G11S/P11S说明手册.2001.[3]北京鹭岛公司编.OMRON可编程控制器使用手册.2000.[4]高勤主编.电器与PLC控制技术.高等教育出版社,2001. 借鉴一下吧,以前搞了很多,找不到了~不好意思

哥们帮你搞定,有什么好处

随着我国电力技术和科技的快速发展,电力变频器广泛的应用于工业生产以及人类日常生活中。这是我为大家整理的变频器应用技术论文参考 范文 ,仅供参考! 变频器应用技术论文参考范文篇一:《变频器节能技术应用与研究》 【摘 要】本文根据水泵、风机轴功率与转速的平方成正比的特点,阐述变频调速节能原理,提出泵与风机应采用变频技术,已降低成本,延长设备使用寿命,提高经济效益。 【关键词】变频器;节能;水泵;风机 0 引言 锅炉是比较常见的用于集中供热设备,通常情况下,由于气温和负荷的变化,需对锅炉燃烧情况进行调节,传统的调节方式其原理是依靠增加系统的阻力,水泵采用调节阀门来控制流量,风机采用调节风门挡板开度的大小来控制风量。但在运行中调节阀门、挡板的方式,不论供热需求大小,水泵、风机都要满负荷运转,拖动水泵、风机的电动机的轴功率并不会改变,电动机消耗的能量也并没有减少,而实际生产所需要的流量一般都比设计的最大流量小很多,因而普遍存在着“大马拉小车”现象。锅炉这样的运行方式不仅损失了能量,而且增大了设备损耗,导致设备使用寿命缩短,维护、维修费用高。把变频调速技术应用于水泵(或风机)的控制,代替阀门(或挡板)控制就能在控制过程中不增加管路阻力,提高系统的效率。变频调速能够根据负荷的变化使电动机自动、平滑地增速或减速,实现电动机无级变速。变频调速范围宽、精度高,是电动机最理想的调速方式。如果将水泵、风机的非调速电动机改造为变频调速电动机,其耗电量就能随负荷变化,从而节约大量电能。 1 变频器应用在水泵、风机的节能原理 图1为水泵(风机)的H-Q关系曲线。图1中,曲线R2为水泵(风机)在给定转速下满负荷时,阀门(挡板)全开运行时阻力特征曲线;曲线 R1为部分负荷时,阀门(挡板)部分开启时的阻力特性曲线;曲线H(n1)和H(n2)表示不同转速时的Q=f(H)曲线。采用阀门(挡板)控制时,流(风)量从Q2减小到Q1,阻力曲线从R2移到R1,扬程(风压)从HA移到HB。采用调速控制时,H(n2)移到H(n1),流(风)量从Q2减小到Q1,扬程(风压)从HA移到HC。 图1 水泵(风机)的H-Q关系曲线 图2为水泵(风机)的P-Q的关系曲线。由图2可以看出,流(风)量Q1时,采用阀门(挡板)控制的功率为PB。采用变频调速控制的功率为 PC。ΔP=PB-PC就是节省的功率。 图2 为水泵(风机)的P-Q的关系曲线 如果不计风机的效率η,则采用阀门(挡板)时的功率消耗在图中由面积OHBBQ1所代表,而采用调速控制时的功率消耗由面积OHCCQ1所代表,后者较前者面积相差为HCHBBC,即采用调速控制流(风)量比采用阀门(挡板)控制可节约能量。 2 水泵、风机的节能计算和分析 通常转速n与频率f成正比,若将电动机的运行频率由原来的50Hz降至40Hz时,其实际转速则降为额定转速的80%,即实际转速nsn和额定转速nn:nsn=(■)nn=。设K为电机过载系数,则电动机额定功率Pn=Kn■■。因此电动机运行在40Hz时,实际功率为: Psn=Kn■■=K()3=■■= 节能率 =■=■=■= 表1 电动机节能率 供热公司胜利锅炉房将电动机改为变频调速,其中: 表2 补水泵电动机在定速和变速不同情况下测出的数据 根据表2的数据,一个采暖期按190天计算,工业电费单价为元/kWh。加装变频器后补水泵电动机节约电费: ()×24×190×元 表3 鼓风机电动机在定速和变速不同情况下测出的数据 根据表3的数据,胜利车间有5台鼓风机电动机。一个采暖期按190天计算,工业电费单价为元/kWh。加装变频器后鼓风机电动机节约电费: ()×24×190××5=元 表4 引风机电动机在定速和变速不同情况下测出的数据 根据表4的数据,胜利车间有5台鼓风机电动机。一个采暖期按190天计算,工业电费单价为元/kWh。加装变频器后引风机电动机节约电费: ()×24×190××5=元 综上所述,胜利车间安装变频后,一个保温期合计节约电费: 元 节能效果明显。 通过上述分析和实际应用,锅炉水泵、风机采用变频调速后具有以下优点。 (1)水泵、风机的电动机工作电流下降,温升明显下降,同时减少了机械磨损,维修工作量大大减少。 (2)保护功能可靠,消除了电动机因过载或单相运行而烧坏的现象,延长了使用寿命,能长期稳定运行。 (3)电动机实现软起动,实现平滑地无级调速,精度高,调速范围宽(0-100%)。频率变化范围大(O-50Hz)。效率可高达(90%-95%)以上。减小了对电网的冲击。 (4)安装容易,调试方便,操作简便,维护量小。 (5)节能省电,燃煤效率提高。 (6)变频器可采用软件与计算机可编程控制器联机控制的功能,容易实现生产过程的自动控制。 3 结束语 引进变频器可以实现能源的有效利用,避免过多的能源消耗。使用变频器节能主要是通过改变电动机的转速实现流量和压力的控制,来降低管道阻力,减少了阀门半开的能源损失。其次变频状态下的水泵(风机)运行转速明显低于工频电源之下,这样能尽量减少由于摩擦带来的电力损耗。最后变频技术是一种先进的现代自动化技术,自动化的运行能增加电力运行的可靠性,节省人力投入,从而实现了成本的节约。 【参考文献】 [1]赵斌,莫桂强.变频调速器在锅炉风机节能改造中的应用[J].广西电力. [2]吴民强.泵与风机节能技术问答[M].北京:中国电力出版社,1998. [3]梁学造,蔡泽发.异步电动机的降损节能 方法 [Z].湖南省电力工业局. 变频器应用技术论文参考范文篇二:《变频器技术改造实践与应用》 【摘要】介绍了锅炉风机电机以及补水泵、循环泵电机等设备变频器技术改造实例及应用,并对变频器调速改造中应注意的一些技术问题进行了论述。 【关键词】自动化控制;变频器;技术改造 1 锅炉风机电机应用变频器调速控制 以Ⅱ热水锅炉为例,每台锅炉配置引风机和鼓风机各六台,各电机主要技术参数如下: 型号 容量(KW) 电压(V) 额定电流(A) 引风机 Y280S4 75 380 鼓风机 Y200L4 30 380 57 在进行变频器改造以前,各风机在正常情况下的运行数据统计如下: 平均电流 最大电流 最小电流 引风机 142 145 139 鼓风机 59 63 57 首先选择在1#5#炉的鼓、引风机上进行改造尝试,并考虑到风机电机功率设计时配置,选择相匹配功率的变频器来控制电机,变频器的型号为ABB ACS51001157A4(引风机)、ZXBP30(鼓风机),电压等级为380V,通过一段时间的运行测试,引风机工频电流由原来的平均140(A)下降到现在的平均95―110(A),鼓风机工频电流由原来的平均57(A)下降到现在的平均30(A)节能效果相当显著,并且变频器技术性能完全满足锅炉运行工艺的要求(主要是风压、风量、加减风的速率等),电机在启动、运行调节、控制操作等方面都得到极大的改善。变频调速由安装在锅炉操作台上的启动、停机、转速调整开关进行远程控制,并可同DCS系统接口,通过DCS实现变频器的调速控制,变频调速装置还提供报警指示、故障指示、待机状态、运行状态、连锁保护等保护信息以及转速给定值和风机实际转速值等必要指示,以便操作人员进行操作控制。 2 补水泵、循环泵电机应用变频器进行调节控制 以2台补水泵、4台循环泵实际应用为例,其电动机的技术参数分别为: 序号 型号 功率 额定电流 流量 补水泵 1#泵 Y180M4 25 2#泵 Y180M4 25 循环泵 1#泵 Y315M14 132 237 630 2#泵 Y315M14 132 237 630 3#泵 Y315M14 132 237 630 4#泵 Y2315M4 132 630 正常补水时泵出力太大,紧急补水时一台泵又不能满足耗水需要,同时启动时出力又太大,连续供水补水效率高,效果也好。补水泵改用变频器调节补水,不仅仅在于考虑它对电机的节能效益,更重要的是从生产设备运行安全角度考虑,变频器选用富士FRN132P11S―4CX,电压等级为380V。 为充分利用变频器,采用1台变频器来实现两台电机的调速控制;2台补水泵均可实现变速、定速两种方式运行,变频器在同一时间只能作一台电机的变频电源,所以每台电机启动、停止必须相互闭锁,用逻辑电路控制,保证可靠切换,出口采用双投闸刀切换;2台补水泵工作时,其中一台由工频供电作定速运行,另一台由变频器供电作变速运行,同一台电机的变速、定速运行由交流接触器相互闭锁,即在变速运行时,定速合不上,如下图中,1C1与1C2及2C1与2C2不允许同时合上;为确保工艺控制安全、可靠,变频器及两台电机的控制、保护、测量单元全部集中在就地控制柜内,控制调节通过屏蔽信号电缆引接到控制室; 图1 补水泵电机变频器接线,虚框内为改造增加部分3 变频器调速改造中应注意的一些技术问题 锅炉的安全运行是全队动力的根本保证,虽然变频调速装置是可靠的,但一旦出现问题,必须确保锅炉安全供热,所以,必须实现工频――变频运行的切换系统(旁路系统),在生产过程中,采用手工切换如能满足设备运行工艺要求,建议尽量不要选用自动旁路,对一般的小功率电机,采用双投闸刀方式作为手动、自动切换手段也是比较理想的方法。 对于大惯量负荷的电机(如锅炉引风机),在变频改造后,要注意风机可能存在扭曲共振现象,运行中,一旦发生共振,将严重损坏风机和拖动电机。所以,必须计算或测量风机――电机连接轴系扭振临界转速以及采取相应的技术 措施 (如设置频率跳跃功能避开共振点、软连接及机座加震动吸收橡胶等)。 采用变频调速控制后,如果变频器长时间运行在1/2工频以下,随着电机转速的下降,电机散热能力也下降,同时电机发热量也随之减少。所以电机的本身温度其实是下降的,仍旧能够正常运行而不至温度过高。 变频器不能由输出口反向送电,在电气回路设计中必须注意,如在补水泵和循环泵变频器改造接线图中,要求1C1与1C2及2C1与2C2不允许同时合上,不仅要求在电气二次回路中实现电气的连锁,同时要求在机械上实现机构互锁,以确保变频器的运行安全。 低压变频器,由于体积较小,在改造中的安装地点选择比较容易些。选择变频器室位置,既要考虑离电机设备不能太远,又要考虑周围环境对变频器运行可能造成的影响。变频器的安装和运行环境要求较高,为了使变频器能长期稳定和可靠运行,对安装变频器室的室内环境温度要求最好控制在0-40℃之间,如果温度超过允许值,应考虑配备相应的空调设备。同时,室内不应有较大灰尘、腐蚀或爆炸性气体、导电粉尘等。 要保证变频器柜体和厂房大地的可靠连接,保证人员和设备安全。为防止信号干扰,控制系统最好埋设独立的接地系统,对接地电阻的要求不大于4Ω。到变频器的信号线,必须采用屏蔽电缆,屏蔽线的一端要求可靠接地。 随着电力电子技术的发展,变频器的各项技术性能也得到拓宽和提高,在热电行业中,风机水泵类负荷较多,充分应用变频器进行节能改造已经逐渐被大家所接受。对于目前低压变频器,投资较低、效益高,一年左右就可以收回投资而被广泛应用。随着目前国产变频器的迅速发展,使得变频器的性能价格比大大提高,为利用变频器进行节能技术改造提供了更加广阔的前景。 参考文献: [1]王占奎.变频调速应用百例.北京:科学出版社出版, [2]吴忠智,吴加林.变频器应用手册.北京:机械工业出版社, 变频器应用技术论文参考范文篇三:《浅议变频调速技术的应用》 摘要:调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM(IntelligentPowerModule)等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。 关键词:变频器,控制技术,应用 电力电子技术诞生至今已近50年,他对人类的文明起了巨大的作用.近10年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。交流电机变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其有益的 调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。 1.变频调速技术的现状 电气传动控制系统通常由电动机、控制装置和信息装置三部分组成。电气传动可分为调速和不调速两大类,调速又分为交流调速和直流调速两种方式。不调速电动机直接由电网供电。但是,随着电力电子技术的发展,原本不调速的机械越来越多地改用调速传动以节约电能,改善产品质量,提高产量。以我国为例,60%的发电量是通过电动机消耗的。因此,调速传动有着巨大的节能潜力,变频调速是交流调速的基础和主干内容,变频调速技术的出现使频率变为可以充分利用的资源。近年来。变频调速技术已成为交流调速中最活跃、发展最快的技术。 国外现状 采用变频的方法,实现对电机转速的控制,大约已有40年的历史,但变频调速技术的高速发展,则是近十年的事情,主要是由下面几个因素决定: 市场有大量需求 随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。 功率器件发展迅速 变频调速技术是建立在电力电子技术基础之上的。近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM(Intelligent Power Module)等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。在大功率交—交变频(循环交流器)调速技术方面,法国阿尔斯通已能提供单机容量达30000kW的电器传动设备用于船舶推进系统。在大功率无换向器电机变频调速技术方面,意大利ABB公司提供了单机容量为60000kW的设备用于抽水蓄能电站;在中功率变频调速技术方面,德国西门子公司Simovert A电流型晶闸管变频调速设备单机容量为10-2600kVA和Simovert PGTOPWM变频调速设备单机容量为100-900kVA,其控制系统已实现全数字化,用于电机风车,风机,水泵传动;在小功率变频调速技术方面,日本富士BJT变频器最大单机容量可达700kVA,IGBT变频器已形成系列产品,其控制系统也已实现全数字化。 IPM投入应用比IGBT约晚二年,由于IPM包含了1GBT芯片及外围的驱动和保护电路,有的甚至还把光耦也集成于一体,是一种更为适用的集成型功率器件。目前,在模块额定电流10-600A范围内,通用变频器均有采用IPM的趋向。IPM除了在工业变频器中被大量采用之外,经济型的IPM在近年内也开始在一些民用品,如家用空调变频器,冰箱变频器,洗衣机变频器中得到应用。IPM也在向更高的水平发展,日本三菱电机最近开发的专用智能模块ASIPM将不需要外接光耦,通过内部自举电路可单电源供电,并采用了低电感的封装技术,在实现系统小型化、专用化、高性能、低成本方面又推近了一步。 控制理论和微电子技术的支持 在现代自动化控制领域中,以现代控制论为基础,融入模糊控制、专家控制、神经控制等新的控制理论,为高性能变频调速提供了理论基础;16位、32位高速微处理器以及信号处理器(DSP)和专用集成电路(ASIC)技术的快速发展,则为实现变频调速的高精度、多功能提供了硬件手段。 国内现状 从整体上看我国电气传动系统制造技术水平较国际先进水平差距10-15年。在大功率交-交,无换向器电动机等变频技术方面,国内只有少数科研单位有能力制造,但在数字化及系统可靠性方面与国外还有相当差距。而这方面产品在诸如抽水蓄能电站机组启动及运行、大容量风机、压缩机和轧机传动、矿井卷扬机方面有很大需求。在中小频率技术方面,国内学者做了大量变频理论的基础研究。早在80年代,已成功引入矢量控制的理论,针对交流电机具有多变量、强耦合、非线性的特点,采用了线性解耦和非线性解耦的方法,探讨交流电机变频调速的控制策略。 进入90年代,随着高性能单片机和数字信号处理的使用,国内学者紧跟国外最新控制策略,针对交流电机感应特点,采用高次谐波注入SPWM和空间磁通矢量PWM等方法,控制算法采用模糊控制,神经网络理论对感应电机转子电阻、磁链和转矩进行在线观测,在实现无速度传感器交流变频调速系统的研究上作了有益的基础研究。在新型电力电子器件应用方面,由于GTR,GTO,IGBT,IPM等全控制器件的使用,使得中小功率的变流主电路大大简化,大功率SCR,GTO,IG-BT,IGCT等器件的并联、串联技术应用,使高电压、大电流变频器产品的生产及应用成为现实。在控制器件方面,实现了从16位单片机到32位DSP的应用。国内学者一直致力于变频调速新型控制策略的研究,但由于半导体功率器件和DSP等器件依赖进口,使得变频器的制造成本较高,无法形成产业化,与国外的知名品牌相抗衡。国内几乎所有的产品都是普通的V/f控制,仅有少量的样机采用矢量控制,品种与质量还不能满足市场需要,每年需大量进口高性能的变频器。 因此,国内交流变频调速技术产业状况表现如下:(1)变频器控制策略的基础研究与国外差距不大。(2)变频器的整机技术落后,国内虽有很多单位投入了一定的人力、物力,但由于力量分散,并没形成一定的技术和生产规模。(3)变频器产品所用半导体功率器件的制造业几乎是空白。(4)相关配套产业及行业落后。(5)产销量少,可靠性及工艺水平不高。 2.变频调速技术未来发展的方向 变频调速技术主要向着两个方向发展:一是实现高功率因数、高效率、无谐波干扰,研制具有良好电磁兼容性能的“绿色电器”;二是向变频器应用的深度和广度发展。随着变流器应用领域深度和广度的不断开拓,变频调速技术将越来越清楚地展示它在一个国家国民经济中的重要性。可以预料,现代控制理论和人工智能技术在变频调速技术的应用和推广,将赋予它更强的生命力和更高的技术含量。其发展方向具有如下几项:(1)实现高水平的控制;(2)开发清洁电能的变流器;(3)缩小装置的尺寸;(4)高速度的数字控制;(5)模拟与计算机辅助设计(CAD)技术。论文检测。 3变频调速技术的应用 纵观我国变频调速技术的应用,总的说来走的是一个由试验到实用,由零星到大范围,由辅助系统到生产装置,由单纯考虑节能到全面改善工艺水平,由手动控制到自动控制,由低压中小容量到高压大容量,一句话,由低级到高级的过程。论文检测。我国是一个能耗大国,60%的发电量被电动机消耗掉,据有关资料统计,我国大约有风机、水泵、空气压缩机4200万台,装机容量约亿万千瓦,然而实际工作效率只有40%-60%,损耗电能占总发电量的40%,已有 经验 表明,应用变频调速技术,节电率一般可达10%-30%,有的甚至高达40%,节能潜力巨大。 有关资料表明,我国火力发电厂有八种泵与风机配套电动机的总容量为12829MW,年总用电量为450。2亿千瓦小时。还有总容量约为3913MW的泵与风机需要进行节能改造,完成改造后,估计年节电量可达25。论文检测。69亿千瓦小时;冶金企业也是我国的能耗大户,单位产品能耗高出日本3倍,法国4。9倍,印度1。9倍,冶金企业使用的风机泵类非常多,实施变频改造,不仅可以大幅度节约电能,还可改善产品质量。 参考文献 [1]何庆华,陈道兵. 变频器常见故障的处理及日常维护[J]. 变频器世界, 2009, (04) . [2]龙卓珉,罗雪莲. 矩阵式变频调速系统抗干扰设计[J]. 变频器世界, 2009, (04) . 猜你喜欢: 1. 电气类科技论文 2. 电子应用技术论文 3. 电气控制与plc应用技术论文 4. 变频器应用技术论文 5. 变电运行技术论文 6. 光伏应用技术论文

  • 索引序列
  • 变频器论文2000字
  • 变频器应用技术论文
  • 变频器毕业论文设计
  • 给煤机变频器论文文献
  • 关于变频器的论文题目
  • 返回顶部