1、知网论文查重系统:知网查重系统应当是不少人都有所了解的一个查重网站,它具备的优势也十分突出,如数据库庞大、文章、资料更新及时,可以为使用者提供十分可靠的查重结果;知网查重系统还具备了批量上传、下载测试结果等功能,操作起来也十分的方便快捷,便于保障使用者的查重效率,节省查重时间。2、PaperPass检测系统: PaperPass采用 了自主研发的动态指纹越级扫描检测技术,具备查重速度快、精度高的优点,高度的准确率可以为使用者提供精确的查重报告,有利于使用者及时的对论文进行修改、调整。3、万方论文查重系统:万方查重系统采用的检测技术十分先进科学,能够为使用者提供多版本、多维度的论文查重报告;万方查重系统还可同时为科研管理、教育教学、人事管理等多个领域的学术机构提供学术成果相似性检测服务。4、维普论文查重系统:该论文查重系统采用了国际领先的海量论文动态语义跨域识别加指纹比对技术,能够快捷准确的检测论文是否存在抄袭问题;中文期刊论文库、硕博学位论文库、高校特色论文库、互联网数据资源等多个数据库的存在,也使得维普论文查重系统能够高效的比对文本数据。一、论文查重标准是什么?我国大部分高校要求本科论文重复率不高于30%。当然,学历越高,对论文的要求就越严格。对于大学硕士生和博士生教育来说,他们对论文的查重要求一般不高于20%和10%。然而,不同的大学对查重率有不同的要求。例如,一些严格的学校要求本科生的论文不超过20%。除了学生论文外,期刊论文检查权重率的要求也与期刊的等级有关。核心期刊论文查重率要求更高,不能超过15%,高级期刊论文查重率要求小于20%,普通期刊论文查重率小于30%才能发表。二、论文查重到底怎么查的?论文查重是借助论文查重系统进行的,论文作者只需要把论文上传到查重系统,系统会根据论文目录进行分段查重。查重系统会根据连续出现13个字符的重复来计算论文的整体查重率。由于不同系统的数据库包含不同的文献和算法,查重结果会有所不同。在选择论文查重系统是,尽量选择跟大学或者大学要求一致的查重系统,或者企业选择一个安全、可靠、准确的第三方查重系统设计进行管理自查。
淘宝搜查重,买一万方或者维普比较便宜
1、知网论文查重系统:知网查重系统应当是不少人都有所了解的一个查重网站,它具备的优势也十分突出,如数据库庞大、文章、资料更新及时,可以为使用者提供十分可靠的查重结果;知网查重系统还具备了批量上传、下载测试结果等功能,操作起来也十分的方便快捷,便于保障使用者的查重效率,节省查重时间。
2、PaperPass检测系统: PaperPass采用 了自主研发的动态指纹越级扫描检测技术,具备查重速度快、精度高的优点,高度的准确率可以为使用者提供精确的查重报告,有利于使用者及时的对论文进行修改、调整。
3、万方论文查重系统:万方查重系统采用的检测技术十分先进科学,能够为使用者提供多版本、多维度的论文查重报告;万方查重系统还可同时为科研管理、教育教学、人事管理等多个领域的学术机构提供学术成果相似性检测服务。
4、维普论文查重系统:该论文查重系统采用了国际领先的海量论文动态语义跨域识别加指纹比对技术,能够快捷准确的检测论文是否存在抄袭问题;中文期刊论文库、硕博学位论文库、高校特色论文库、互联网数据资源等多个数据库的存在,也使得维普论文查重系统能够高效的比对文本数据。
一、论文查重标准是什么?
我国大部分高校要求本科论文重复率不高于30%。当然,学历越高,对论文的要求就越严格。对于大学硕士生和博士生教育来说,他们对论文的查重要求一般不高于20%和10%。然而,不同的大学对查重率有不同的要求。例如,一些严格的学校要求本科生的论文不超过20%。除了学生论文外,期刊论文检查权重率的要求也与期刊的等级有关。核心期刊论文查重率要求更高,不能超过15%,高级期刊论文查重率要求小于20%,普通期刊论文查重率小于30%才能发表。
二、论文查重到底怎么查的?
论文查重是借助论文查重系统进行的,论文作者只需要把论文上传到查重系统,系统会根据论文目录进行分段查重。查重系统会根据连续出现13个字符的重复来计算论文的整体查重率。由于不同系统的数据库包含不同的文献和算法,查重结果会有所不同。在选择论文查重系统是,尽量选择跟大学或者大学要求一致的查重系统,或者企业选择一个安全、可靠、准确的第三方查重系统设计进行管理自查。
可以免费论文查重的系统,下面给你分享一些:1,蝌蚪论文查重(免费)专业版每天免费查重一次,非常适合初稿检测,不花钱。3,论文狗(免费)专业版每天免费查重一次,适合初稿检测4,paperpp(可免费)关注送5000字免费查重5,papertime(可免费)关注领取10000字免费查重6,渣搜paperfree(可免费)关注领取10000字免费查重7,paperOK(可免费)关注领取10000字免费查重8、paperpass(可免费)关注领取1000字免费查重,旗舰版付费检测,支持在线降重9,paperccb(免费)专业版每天免费查重一次,适合初稿检测完毕!
靠谱的论文查重网站:
一、中国知网
由清华大学和清华同方发起,在党和国家领导以及教育部、中宣部、科技部、新闻出版总署、国家版权局和国家发改委的大力支持下,在全国学术界、教育界、出版界和图书情报界等社会各界的密切配合和清华大学的直接领导下,CNKI工程集团经过多年努力。
采用自主开发并具有国际领先水平的数字图书馆技术,建成了世界上全文信息量规模最大的”CNKI数字图书馆”,并正式启动建设《中国知识资源总库》及CNKI网格资源共享平台,通过产业化运作,为全社会知识资源高效共享提供最丰富的知识信息资源和最有效的知识传播与数字化学习平台。
是目前最安全、最快捷、最权威的论文检测软件,全面覆盖研究生毕业论文查重、大学生抄袭检测、职称评审及相关学术成果,大部分单位机构都是与知网进行合作。除了收费昂贵之外,几乎没有任何缺点。
二、维普
是国内领先的论文查重软件,可以快速准确地检测出毕业论文、博士、硕士论文、期刊论文中的不当引用、过度引用、论文抄袭、伪造、篡改等学术不端行为,自动生成检测报告,并支持PDF、网页等浏览格式,最大特点就是快!
三、万方
采用科学先进的检测技术,实现海量学术文献数据全文比对,秉持客观、公正、精准、全面的服务原则,为用户提供精准详实多维度的查重检测报告。提供包括万方通用版、硕博论文版、大学生论文版、职称论文版等,查重检测结果客观、准确、详实!
四、蝌蚪论文查重
蝌蚪论文查重系统扫码直接登录就可以享受每天免费查重服务,不需要做任何任务,不受字数限制(10万字内),同时提供在线智能降重、人工降重等服务。
采用阿里云认证的高防服务器,检测系统全程自动论文检测,无任何人工参与,系统不保存用户源文件,解除用户论文泄露之忧。
系统数据库覆盖9000万的学术期刊和学位论文,10亿数量的互联网数据源,有效确保精准论文查重! 采用强大的智能语义识别技术,能够快速命中并识别出相似内容。并进行周期性算法升级,实现智能算法预处理学科分类,准确度高出行业70%。
Paperbye论文查重软件目前有两个版本,标准版(免费版)和旗舰版(收费版),同时还有自建库查重可以查出所有参考内容,这样不易担心任何查重软件。
优秀功能1、自动降重,根据论文重复率情况,自己选择性软件自动降重辅助提高论文修改效率;2、自动排版,根据各校论文要求格式会自动进行格式排版,一键生成,快速便捷;3、同步改重,在查重报告里实现一边修改文章,一边进行查重,及时反馈修改结果。4、自建库,自建上传参考过的文章进行单独比对,可以查出所有抄袭内容。5、自动纠错,AI识别文档中的错别字和标点误用,提示错误位置并提供修改建议。
总结了五种修改论文方法,感觉是降重必备的。
1、变换表达。先理解原句的意思,用自己的话复述一遍。
2、词语替换,在变换表达方式的基础上结合同义词替换,效果更好。
3、变换句式,通过拆分合并语句的方式进行修改,把长句变短句,短句变长句,。
4、图片法,针对专业性太强不好修改的语句或段落(比如计算机代码,法律条款,原理理论等),可以适当把文字写在图片上展现,但是这种方法不宜用的太多。
5、翻译法,用百度翻译或谷歌翻译,中文翻译成英文,英文翻译成日语或其他语种,再从日语翻译成中文,这种看似不错,感觉效果还是不好。
这个问题我咨询了我已经毕业的姐姐,她说当初毕业真的是被论文查重问题折磨得不轻!下面是我根据她的回答整理出的比较靠谱的论文查重网站,希望可以帮到你。
1、知网论文查重系统
知网论文查重系统是大部分学校要求使用的查重系统,它有独立的查重数据库,大学生联合对比数据库,这个数据库包括学长学姐的论文,目前知网论文查重系统是不对外开放,可以在学校的图书馆电脑使用。
2、万方论文查重系统
万方论文查重系统目前跟学信网有相关合作,是很多学校要求使用的论文查重系统,查重费用在3元-4元左右,对于要求使用万方查重的同学,完全可以用万方来进行初稿和定稿的检测,为了顺利毕业,没必要节省那点钱。
3、维普论文查重系统
维普论文查重系统跟万方查重是同一级别的系统,比知网的知名度稍弱,在查重软件领域的知名度是非常的,检测费用也比较便宜,只需要元/千字,如果要求使用维普查重的同学,可以使用该系统进行初稿检测。
4、paperpass论文查重系统
这个系统是paper系列里面时间最长,比较知名的支持免费体验查重的系统之一,该系统提供5000字左右的免费论文查重体验,对于有些学校要求的本科论文还是足够的。如果非学校指定该系统进行检测,建议用于初稿检测。
在选择论文查重网站的时候,首选学校一致的论文查重系统,其次要选择正规靠谱的论文查重系统。初稿论文查重系统选择,只要不泄露论文,基本上都可以用,但是不能作为评判标准,只能作为参考,定稿检测系统一定要跟学校一致的系统,这样才能保证查重结果的准确性。
切记:论文查重非常重要,一定不要贪图免费,让自己的论文泄露了,到时候后悔莫及,一切白费!
论文查重软件排行榜:
1、中国知网查重
知网查重结果的准确度是很高的,是如今国内最权威的论文查重软件,其中收录的数据库很全面,并且有海量的资源。检测本科论文适合使用知网pmlc论文查重系统,检测硕博研究生论文适合使用知网论文查重系统,很多高校也都是与知网合作,大家需要根据自己论文的类型选择对应的知网论文查重系统。
2、万方检测和维普网检测
这两个论文查重也有部分学校使用,也是国内除知网以外的主流论文查重软件,检测严格性不如知网,但是检测速度较快,收费价格也比知网便宜,查重结果准确也比较高,部分学校也是认可的。
3、PaperPP论文查重
PaperPP一款致力于为广大有论文查重需求的人们提供恰当有效查重服务的对软件,性价比很高,收费价格十分亲民接地气,还有机会能够免费查重,对于大学毕业生来说是一大福利,其查重质量和安全性都比较高。
4、PaperPass论文检测
这个是前几年兴起,近几年比较活跃的一个论文查重系统,价格中等,也是有一部分人使用具有一定知名度的软件。
5、PaperYY论文检测
价格也比较便宜,同样适合用来检测论文初稿,不建议使用其来检测论文终稿,因为数据库资源比知网相差还很多,查重结果准确度没有知网那么高的精确度。
原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为 最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。 需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。
论文原文:
YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:
如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:
每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:
其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。
每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)
举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:
在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:
等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。
得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。
1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。
2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。
3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。
4、损失函数公式见下图:
在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:
解决方法:
只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。
作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。
然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。
作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。
作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。
作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。
YOLO模型相对于之前的物体检测方法有多个优点:
1、 YOLO检测物体非常快
因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。
2、 YOLO可以很好的避免背景错误,产生false positives
不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。
3、 YOLO可以学到物体的泛化特征
当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。
尽管YOLO有这些优点,它也有一些缺点:
1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。
2、YOLO容易产生物体的定位错误。
3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。
有一个月没更博客了,捂脸 o( ̄= ̄)d
端午回家休息了几天,6月要加油~
回到正文,HOG是很经典的一种图像特征提取方法,尤其是在行人识别领域被应用的很多。虽然文章是2005年发表在CVPR上的,但近十年来还没有被淹没的文章真的是很值得阅读的研究成果了。
key idea: 局部物体的形状和外观可以通过局部梯度或者边缘的密度分布所表示。
主要步骤:
上图为论文中提供的图,个人觉得我在参考资料中列出的那篇 博客 中给出的图可能更好理解一些。
具体细节: 关于每一个过程的详细解释还是在 这篇博客 中已经写得很清楚了,这里就不再搬运了。
文章中数据集的图像大小均为:64*128, block大小为16x16, block stride为8x8,cell size为8x8,bins=9(直方图等级数);
获取到每张图的特征维度后,再用线性SVM训练分类器即可。
下图为作者而给出的示例图:
这两篇博客写的都很好,推荐阅读一波。
1、知网论文查重系统:知网查重系统应当是不少人都有所了解的一个查重网站,它具备的优势也十分突出,如数据库庞大、文章、资料更新及时,可以为使用者提供十分可靠的查重结果;知网查重系统还具备了批量上传、下载测试结果等功能,操作起来也十分的方便快捷,便于保障使用者的查重效率,节省查重时间。2、PaperPass检测系统: PaperPass采用 了自主研发的动态指纹越级扫描检测技术,具备查重速度快、精度高的优点,高度的准确率可以为使用者提供精确的查重报告,有利于使用者及时的对论文进行修改、调整。3、万方论文查重系统:万方查重系统采用的检测技术十分先进科学,能够为使用者提供多版本、多维度的论文查重报告;万方查重系统还可同时为科研管理、教育教学、人事管理等多个领域的学术机构提供学术成果相似性检测服务。4、维普论文查重系统:该论文查重系统采用了国际领先的海量论文动态语义跨域识别加指纹比对技术,能够快捷准确的检测论文是否存在抄袭问题;中文期刊论文库、硕博学位论文库、高校特色论文库、互联网数据资源等多个数据库的存在,也使得维普论文查重系统能够高效的比对文本数据。一、论文查重标准是什么?我国大部分高校要求本科论文重复率不高于30%。当然,学历越高,对论文的要求就越严格。对于大学硕士生和博士生教育来说,他们对论文的查重要求一般不高于20%和10%。然而,不同的大学对查重率有不同的要求。例如,一些严格的学校要求本科生的论文不超过20%。除了学生论文外,期刊论文检查权重率的要求也与期刊的等级有关。核心期刊论文查重率要求更高,不能超过15%,高级期刊论文查重率要求小于20%,普通期刊论文查重率小于30%才能发表。二、论文查重到底怎么查的?论文查重是借助论文查重系统进行的,论文作者只需要把论文上传到查重系统,系统会根据论文目录进行分段查重。查重系统会根据连续出现13个字符的重复来计算论文的整体查重率。由于不同系统的数据库包含不同的文献和算法,查重结果会有所不同。在选择论文查重系统是,尽量选择跟大学或者大学要求一致的查重系统,或者企业选择一个安全、可靠、准确的第三方查重系统设计进行管理自查。
目前免费论文检测网站比较多,主流的查重网站有知网学术不端查重、维普查重、万方查重,高校都有1-2次的免费查重机会,具体得看各个学校的要求而定,paper系列主流查重有PaperFree、PaperPass、PaperTime、Paperok等,以上几家paper系列都是跟wps、百度学术、360学术等都有合作,感兴趣的同学可以搜一下,每个学术平台免费查重优惠也是不一样,接下来我们逐步一一列举上面所提的查重软件具体情况:
知网查重
中国知网,始建于1999年6月,是中国核工业集团资本控股有限公司控股的同方股份有限公司旗下的学术平台。知网是国家知识基础设施(National Knowledge Infrastructure,NKI)的概念,由世界银行于1998年提出。CNKI工程是以实现全社会知识资源传播共享与增值利用为目标的信息化建设项目。
维普查重
维普论文检测系统,由重庆泛语科技有限公司自主研发,采用先进的海量论文动态语义跨域识别加指纹比对技术,通过运用云检测服务部署使其能够快捷、稳定、准确地检测到文章中存在的抄袭和不当引用现象,实现了对学术不端行为的检测服务。
万方查重
万方查重是北京万方数据股份有限公司旗下唯一独立运营的产品。万方查重致力于提供多样化的科技信息服务。公司以客户为导向,依托强大的数据采集能力,应用先进的信息处理技术和检索技术,为科技界、企业界和政府部门提供高质量的信息资源产品。并陆续推出万方查重、万方毕业论文管理系统、万方VR虚拟教育平台等一系列产品。
PaperFree
PaperFree是中英文及多语种论文相似度检测系统,特色机器人降重、在线改重功能,可以实现自动降低文章相似比例,并且在同一界面上一边修改一边检测,即时反馈查重结果,使用户体验、查重效率翻倍。PaperFree为用户人性化地完美实现了“首次免费论文检测―高效在线改重―智能机器人降重―全面再次论文检测―顺利通过论文检测“的整个全过程。
PaperPass
PaperPass是全球首个中文文献相似度比对系统,已经发展成为一个中文原创性检查和预防剽窃的在线网站。一直致力于学术论文的检测。
PaperTime
PaperTime是在“教育大数据联盟平台”的基础上,优先获取教育数据资源,采用多级指纹对比技术及深度语义识别技术,实现“实时查重、在线修改、同步降重”一步到位。
Paperok
PaperOK论文查重,基于大数据海量学术文献资源及互联网资源,坚持客观、公正、精准、全面的原则,对学术不端行为进行管理,为用户提供客观详实的查重报告,为出版、科研、学术等提供支持!
淘宝搜查重,买一万方或者维普比较便宜
可以运用PaperPass论文重复率检测软件检测论文重复率。
降低论文的重复率有两种,分别是人工降重方法和机器人降重方法。
人工降重方法又分为两种:
1、将重复的语句用自己的语言进行解释。
2、把论文机翻成英文再机翻回中文,然后理清逻辑、修改语病、通顺上下文。
机器降重的方法:
1、机器虽不能完全取代人工,但在使用上,其较人工方法更为快捷简便这点是毋庸置疑的。机器智能降重,其通过大量学术论文数据语料训练,能够快捷智能地将原有重复率高的语句进行替换,并搭载于PaperTime查重软件上,实现了边查重边降重的功能,大大节省了用户的时间成本。
2、且机器降重效率高、速度快,几万字的相似内容不超过10秒就可以降重完成,真正意义上达到了快速降低论文重复率的要求。
3、人工智能并不能完全取代人工,因此机器人降重也不是万能的。机器人降重后有些语句还需人工进行再调整,这样才能够保障论文逻辑通顺。在进行机器人降重后千万要自己再顺一遍文章结构,以免出现纰漏以至于无法毕业。
降低论文重复率的方法:
1、运用自己的语句进行解释。
这种方法最为老实也最有底气,毕竟是自己真刀真枪写出来的。这种方法遇到前人写过很多遍了的论题就会被克得死死的,因为能想得到的句子,再怎么白话和通俗都有可能已经被他人写过,查重降重了无数次,重复率依然高得让人头疼。2、把论文翻译成英文再机翻译回中文,然后理清逻辑、修改语病、通顺上下文。
写邦科技于2017年自主研发了线上自动降重工具——机器人智能降重,其通过大量学术论文数据语料训练,能够快捷智能地将原有重复率高的语句进行替换,并搭载于PaperTime查重软件上,实现了边查重边降重的功能,大大节省了用户的时间成本。
PaperTime(查重软件)--降低论文重复率
知网查重需要先进入中国知网,之后进入查重界面,之后输入题目和学科方向即可。
首先,打开浏览器,搜索“中国知网”,进入知网查重界面。选择对应的知网查重系统,按照提示,输入论文标题,作者姓名,并选择学科方向,选择要检测的文档,提交检测。
如果研究生期间发表过论文,则作者栏一定要填写第一作者姓名,系统会自动排出作者本人已发表论文的重合。亲测10-60分钟出检测结果,下载查重报告单。报告单一般有网页或PDF两种格式,系统随机下载。
报告单上的总文字复制比就是检测结果,学校就是看这个数字。正规查重入口的报告单,报告单左上角的编号,是可以在知网上面验证真伪的,验证会显示准确的系统类型、论文查重查重时间和查重结果。看到这,相信大家都对知网检测怎么查重有了了解吧。
中国知网自己查重的方法如下:
电脑:华为MateBook。
系统:Windows10。
软件:谷歌浏览器。
1、打开电脑的浏览器,百度搜索“中国知网论文查重检测系统入口”。
2、点击进入到对应的官方网站,注意需要是知网的查重网站。
3、在官网首页,选择顶部页签中的“论文查重入口”选项。
4、在下拉选项中,点击选择本科论文检测或者研究生论文检测。
5、进入检测系统详情页后,点击“立即检测”按钮,进入检测流程。
6、填写好论文信息,并上传论文;支付费用后即可进行检测。
查重服务
2022年6月12日凌晨,同方知网(北京)技术有限公司在中国知网官方网站以及中国知网微信公众号发布公告:即日起,中国知网向个人用户直接提供查重服务。
知网目前只有通过学校发布的账号和密码登录才可以进行免费查重。
学生进入校图书馆或者校内网,找到知网入口,根据提示输入正确的作者名字和论文标题,再上传论文查重,最后等待结果。本科论文提交到pmlc系统,硕博论文提交到进行查重检测,于提交后1-3小时会得到查重结果。很多高校都可以免费提供学生1-3次免费知网查重的机会,每个同学都会得到相应的账号密码。
具体步骤如下:
第一步:进入知网查重首页,选择用户登录,输入学校提供的账号和密码。
第二步:选择知网查重系统。用户在百度浏览器中输入,进入知网查重官方网站,在查重首页中用户点击下图所示的地方,随后用户需要根据自己的论文特性确定选择一个合适的知网查重系统。
第三步:上传论文。
以本科论文上传为例,用户进入查重系统中后,需要如下图所示将每一个部分填写完整,并且用户需要注意上传论文文件的大小不可超过30M,论文字符数不可超过6万字符,否则将无法正确上传。全部输入完毕后,用户点击提交检测按钮即可。
第四步:下载知网查重报告单。
上传完毕后,用户需要等待30分钟左右(高峰时期可能要排队一至两小时),等待查重完毕后,用户需要按照如下图所示,点击选择下载检测报告,输入订单号或者预留的手机号码,点击查询报告按钮,在下方若显示检测完成,用户即可点击下载按钮,检测报告为压缩包,解压后用即可正常打开。
在百度上搜索“中国学位学术不端文献检测系统-CNK查重入口”。
2、选择“选择查重系统”。
3、以“大学生本科学位论文查重”为例。然后点击“立即查询”。
4、再选择“立即查询”。
5、选择“论文标题,论文作者”输入相关的信息。
6、选择“属性分类”以本科论文为例子。
7、选择“毕业论文的word文档”上传。选择支付方式,输入手机号码,然后点击“提交检查”就可以查询论文的重复率了。