首页 > 学术论文知识库 > 关于芯片的毕业论文

关于芯片的毕业论文

发布时间:

关于芯片的毕业论文

数控技术发展趋势——智能化数控系统 1 国内外数控系统发展概况 随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行研究开发,提出了全新的制造模式。在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。目前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM与数控系统集成为一体,机床联网,实现了中央集中控制的群控加工。 长期以来,我国的数控系统为传统的封闭式体系结构,CNC只能作为非智能的机床运动控制器。加工过程变量根据经验以固定参数形式事先设定,加工程序在实际加工前用手工方式或通过CAD/CAM及自动编程系统进行编制。CAD/CAM和CNC之间没有反馈控制环节,整个制造过程中CNC只是一个封闭式的开环执行机构。在复杂环境以及多变条件下,加工过程中的刀具组合、工件材料、主轴转速、进给速率、刀具轨迹、切削深度、步长、加工余量等加工参数,无法在现场环境下根据外部干扰和随机因素实时动态调整,更无法通过反馈控制环节随机修正CAD/CAM中的设定量,因而影响CNC的工作效率和产品加工质量。由此可见,传统CNC系统的这种固定程序控制模式和封闭式体系结构,限制了CNC向多变量智能化控制发展,已不适应日益复杂的制造过程,因此,对数控技术实行变革势在必行。 2 数控技术发展趋势 性能发展方向 (1)高速高精高效化 速度、精度和效率是机械制造技术的关键性能指标。由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高。 (2)柔性化 包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大,可裁剪性强,便于满足不同用户的需求;群控系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。 (3)工艺复合性和多轴化 以减少工序、辅助时间为主要目的的复合加工,正朝着多轴、多系列控制功能方向发展。数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。数控技术轴,西门子880系统控制轴数可达24轴。 (4)实时智能化 早期的实时系统通常针对相对简单的理想环境,其作用是如何调度任务,以确保任务在规定期限内完成。而人工智能则试图用计算模型实现人类的各种智能行为。科学技术发展到今天,实时系统和人工智能相互结合,人工智能正向着具有实时响应的、更现实的领域发展,而实时系统也朝着具有智能行为的、更加复杂的应用发展,由此产生了实时智能控制这一新的领域。在数控技术领域,实时智能控制的研究和应用正沿着几个主要分支发展:自适应控制、模糊控制、神经网络控制、专家控制、学习控制、前馈控制等。例如在数控系统中配备编程专家系统、故障诊断专家系统、参数自动设定和刀具自动管理及补偿等自适应调节系统,在高速加工时的综合运动控制中引入提前预测和预算功能、动态前馈功能,在压力、温度、位置、速度控制等方面采用模糊控制,使数控系统的控制性能大大提高,从而达到最佳控制的目的。

这有一系列的毕业论文qq310852504

编码电子锁的设计与制作论文 随着社会物质财富的日益增长,安全防盗已成为社会问题。而锁自古以来就是把守门户的铁将军,人们对它要求甚高,既要安全可靠地防盗,又要使用方便,这也是制锁者长期以来研制的主题。目前国内,大部分人使用的还是传统的机械锁。然而,眼下假冒伪劣的机械锁泛滥成灾,互开率非常之高。所谓互开率,是各种锁具的一个技术质量标准,也就是1把钥匙能开几把锁的比率。经国家工商局、国家内贸局、中国消协等部门对锁具市场的调查,发现个别产品的互开率居然超标26倍。弹子锁质量好坏主要取决于弹子数量的多少以及弹子的大小,而弹子的多少和大小受一定条件的限制。此外,即使是一把质量过关的机械锁,通过急开锁,甚至可以在不损坏锁的前提下将锁打开,提供了发展的空间。 电子锁是第三代计算机防盗报警器的核心组成部分,用于识别用户身份的合法性。它有不少优点。例如保密性强,防盗性能好可以不需要钥匙,只要记住开锁的密码和方法,便可开锁,即方便又可避免因丢失钥匙带来的烦恼和损失。如果密码泄露,主人可以比较方便地设置新的开锁密码,不会造成损失,此外,编码电子锁将电子门铃和防盗报警与电子锁合为一体,实现了一物多用。由于以上诸多优点,编码电子锁能够广泛地应用于超市、住家、办公单位等许多场所。 1 系统方案选择 本次设计中分析了两种方案,一种是中规模集成电路控制的方案,另一种是单片机控制的方案。两中方案各有各的优缺点,通过以下两个方案的比较选择设计了其中一个方案。 1.1 中规模集成电路控制 方案一:采用集成电路控制。 编码电子锁电路分为编码电路、控制电路、复位电路、解码电路、防盗报警电路、门铃电路。电子锁主要由输入元件、电路(包括电源)以及锁体三部分组成,后者包括电磁线圈、锁拴、弹簧和锁柜等。当电磁线圈中有一定的电流通过时,磁力吸动锁栓,锁便打开。用发光二极管代表电磁线圈,当发光二极管为亮状态时,代表电子锁被打开。每来1个输入时钟,编码电路的相应状态就向前前进一步。在这个操作过程中,如果按照规定的代码顺序按动编码按键,编码电路的输出就跟随这个代码的信息。正确输入编码按键的数字,控制电路通过整形供给编码电路时钟。一直按规定的编码顺序操作完,则解码电路驱动开锁电路把锁打开。在操作过程中,如果没有按照规定代码顺序按下数字键或按动了其他键,控制电路将驱动防盗报警电路产生报警信号。方案二:采用一种是用以at89s51为核心的单片机控制方案。利用单片机灵活的编程设计和丰富的io端口,及其控制的准确性,不但能实现基本的密码锁功能,还能添加调电存储、声光提示甚至添加遥控控制功能。 电子密码的硬件以单片机AT89C51 为核心。AT89C51 是一种带4k 字节闪烁可编程、可擦除只读,存储器FPEROM(Falsh Programmable and ErasableRead Only Memory)的低电压、高性能CMOS 8 位微处理器。其外接12 个按钮组成的3×4 键盘,通过4511 和7406(或7407)等驱动电路与单片机相连,以实现密码等的显示功能;利用串行EαPROM 存储器AT93C46 实现密码有效的永久保存。电子密码锁由键盘输入的识别、4位LED的显示、密码的比较、修改、存储、AT93C46 的读取与写入、报警和开锁控制电平的输出。根据框图,结合硬件结构,可以将键盘输入的识别用来作为系统的监控程序(主程序),用显示程序来延时,不断查询键盘。如果有键按下,就得到相应的键值。结合当前系统所处的状态,调用不同的操作模块,实现相应的功能。而执行模块主要有数字输入模块、确定键模块、修改键模块及显示模块。 方案比较 设计本课题时构思了两种方案:方案一是用锁存器74LS74、74LS00、74LS20和555基集成块构成的数字逻辑电路控制;方案二是用以AT89C51为核心的单片机控制。考虑到编码电子锁制作成本低,设计要求少,易实现控制要求,而单片机方案原理的复杂,调试较为繁琐,本人对数字电路基础较熟悉,有利于研究该课题。所以采用了方案一。 因此对该课题的研究具有实际应用价值。 在指导老师、同学和实习单位同事的帮助下,我顺利地完成了毕业论文。使我从中掌握了查阅资料的方法和分析问题的能力。 毕业论文的顺利完成,离不开各位同学、同学和朋友的关心和帮助。在整个的毕业论文学写作中,各位老师、同学和朋友积极的帮助我和提供有利于论文写作及毕业设计的建议和意见,在他们的帮助下,论文得于不断的完善,最终帮助完成了整个毕业论文和设计。 感谢在大学期间所有传授我知识的老师,是你们的悉心教导使我有了良好的专业课知识,这也是论文得以完成的基础。

将单片机设计过程进行详细说明,芯片、元器件摘有用的部分即可。

关于芯片论文范文资料

通信技术论文范文篇二 浅析量子通信技术 【摘要】量子通信作为既新鲜又古老的话题,它具有严格的信息传输特性,目前已经取得突破性进展,被通信领域和官方机构广泛关注。本文结合量子,对量子通信技术以及发展进行了简单的探讨。 【关键词】量子;通信;技术;发展 对量子信息进行研究是将量子力学作为研究基础,根据量子并行、纠缠以及不可克隆特性,探索量子编码、计算、传输的可能性,以新途径、思路、概念打破原有的芯片极限。从本质来说:量子信息是在量子物理观念上引发的效应。它的优势完全来源于量子并行,量子纠缠中的相干叠加为量子通讯提供了依据,量子密码更多的取决于波包塌缩。理论上,量子通信能够实现通信过程,最初是通过光纤实现的,由于光纤会受到自身与地理条件限制,不能实现远距离通信,所以不利于全球化。到1993年,隐形传输方式被提出,通过创建脱离实物的量子通信,用量子态进行信息传输,这就是原则上不能破译的技术。但是,我们应该看到,受环境噪声影响,量子纠缠会随着传输距离的拉长效果变差。 一、量子通信技术 (一)量子通信定义 到目前为止,量子通信依然没有准确的定义。从物力角度来看,它可以被理解为物力权限下,通过量子效应进行性能较高的通信;从信息学来看,量子通信是在量子力学原理以及量子隐形传输中的特有属性,或者利用量子测量完成信息传输的过程。 从量子基本理论来看,量子态是质子、中子、原子等粒子的具体状态,可以代表粒子旋转、能量、磁场和物理特性,它包含量子测不准原理和量子纠缠,同时也是现代物理学的重点。量子纠缠是来源一致的一对微观粒子在量子力学中的纠缠关系,同时这也是通过量子进行密码传递的基础。Heisenberg测不准原理作为力学基本原理,是同一时刻用相同精度对量子动量以及位置的测量,但是只能精确测定其中的一样结果。 (二)量子通信原理 量子通信素来具有速度快、容量大、保密性好等特征,它的过程就是量子力学原理的展现。从最典型的通信系统来说具体包含:量子态、量子测量容器与通道,拥有量子效应的有:原子、电子、光子等,它们都可以作为量子通信的信号。在这过程中,由于光信号拥有一定的传输性,所以常说的量子通信都是量子光通信。分发单光子作为实施量子通信空间的依据,利用空间技术能够实现空间量子的全球化通信,并且克服空间链路造成的距离局限。 利用纠缠量子中的隐形量子传输技术作为未来量子通信的核心,它的工作原理是:利用量子力学,由两个光子构成纠缠光子,不管它们在宇宙中距离多远,都不能分割状态。如果只是单独测量一个光子情况,可能会得到完全随机的测量结果;如果利用海森堡的测不准原理进行测量,只要测量一个光子状态,纵使它已经发生变化,另一个光子也会出现类似的变化,也就是塌缩。根据这一研究成果,Alice利用随机比特,随机转换已有的量子传输状态,在多次传输中,接受者利用量子信道接收;在对每个光子进行测量时,同时也随机改变了自己的基,一旦两人的基一样,一对互补随机数也就产生。如果此时窃听者窃听,就会破坏纠缠光子对,Alice与Bob也就发觉,所以运用这种方式进行通信是安全的。 (三)量子密码技术 从Heisenberg测不准原理我们可以知道,窃听不可能得到有效信息,与此同时,窃听量子信号也将会留下痕迹,让通信方察觉。密码技术通过这一原理判别是否存在有人窃取密码信息,保障密码安全。而密钥分配的基本原理则来源于偏振,在任意时刻,光子的偏振方向都拥有一定的随机性,所以需要在纠缠光子间分设偏振片。如果光子偏振片与偏振方向夹角较小时,通过滤光器偏振的几率很大,反之偏小。尤其是夹角为90度时,概率为0;夹角为45度时,概率是,夹角是0度时,概率就是1;然后利用公开渠道告诉对方旋转方式,将检测到的光子标记为1,没有检测到的填写0,而双方都能记录的二进制数列就是密码。对于半路监听的情况,在设置偏振片的同时,偏振方向的改变,这样就会让接受者与发送者数列出现差距。 (四)量子通信的安全性 从典型的数字通信来说:对信息逐比特,并且完全加密保护,这才是实质上的安全通信。但是它不能完全保障信息安全,在长度有限的密文理论中,经不住穷举法影响。同时,伪随机码的周期性,在重复使用密钥时,理论上能够被解码,只是周期越长,解码破译难度就会越大。如果将长度有限的随机码视为密钥,长期使用虽然也会具有周期特征,但是不能确保安全性。 从传统的通信保密系统来看,使用的是线路加密与终端加密整合的方式对其保护。电话保密网,是在话音终端上利用信息通信进行加密保护,而工作密钥则是伪随机码。 二、量子通信应用与发展 和传统通信相比,量子通信具有很多优势,它具有良好的抗干扰能力,并且不需要传统信道,量子密码安全性很高,一般不能被破译,线路时延接近0,所以具有很快的传输速度。目前,量子通信已经引起很多军方和国家政府的关注。因为它能建立起无法破译的系统,所以一直是日本、欧盟、美国科研机构发展与研究的内容。 在城域通信分发与生成系统中,通过互联量子路由器,不仅能为任意量子密码机构成量子密码,还能为成对通信保密机利用,它既能用于逐比特加密,也能非实时应用。在严格的专网安全通信中,通过以量子分发系统和密钥为支撑,在城域范畴,任何两个用户都能实现逐比特密钥量子加密通信,最后形成安全性有保障的通信系统。在广域高的通信网络中,受传输信道中的长度限制,它不可能直接创建出广域的通信网络。如果分段利用量子密钥进行实时加密,就能形成安全级别较高的广域通信。它的缺点是,不能全程端与端的加密,加密节点信息需要落地,所以存在安全隐患。目前,随着空间光信道量子通信的成熟,在天基平台建立好后,就能实施范围覆盖,从而拓展量子信道传输。在这过程中,一旦量子中继与存储取得突破,就能进一步拉长量子信道的输送距离,并且运用到更宽的领域。例如:在�潜安全系统中,深海潜艇与岸基指挥一直是公认的世界难题,只有运用甚长波进行系统通信,才能实现几百米水下通信,如果只是使用传统的加密方式,很难保障安全性,而利用量子隐形和存储将成为开辟潜通的新途径。 三、结束语 量子技术的应用与发展,作为现代科学与物理学的进步标志之一,它对人类发展以及科学建设都具有重要作用。因此,在实际工作中,必须充分利用通信技术,整合国内外发展经验,从各方面推进量子通信技术发展。 参考文献 [1]徐启建,金鑫,徐晓帆等.量子通信技术发展现状及应用前景分析[J].中国电子科学研究院学报,2009,4(5):491-497. [2]徐兵杰,刘文林,毛钧庆等.量子通信技术发展现状及面临的问题研究[J].通信技术,2014(5):463-468. [3]刘阳,缪蔚,殷浩等.通信保密技术的革命――量子保密通信技术综述[J].中国电子科学研究院学报,2012, 7(5):459-465. 看了“通信技术论文范文”的人还看: 1. 大学通信技术论文范文 2. 通信技术毕业论文范文 3. 通信技术论文范文 4. 关于通信工程论文范文 5. 大学通信技术论文范文(2)

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装 70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 1.适合PCB的穿孔安装; 2.比TO型封装(图1)易于对PCB布线; 3.操作方便。 DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。 衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。 Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装 80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。 以焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 1.适合用SMT表面安装技术在PCB上安装布线; 2.封装外形尺寸小,寄生参数减小,适合高频应用; 3.操作方便; 4.可靠性高。 在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装 90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。 BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: 引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 2.虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 3.厚度比QFP减少1/2以上,重量减轻3/4以上; 4.寄生参数减小,信号传输延迟小,使用频率大大提高; 5.组装可用共面焊接,可靠性高; 封装仍与QFP、PGA一样,占用基板面积过大; Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术 BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。 1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 1.满足了LSI芯片引出脚不断增加的需要; 2.解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 3.封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。 曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 1.封装延迟时间缩小,易于实现组件高速化; 2.缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 3.可靠性大大提高。 随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

随着人们对计算机紧凑性设计的要求越来越高,计算机的CPU芯片也在朝着高度集成的方向不断发展,由此造成其在性能方面对温度也更加敏感,其散热技术也成为了相关领域的研究 热点 。下面是我为大家推荐的 cpu 对计算机影响论文,供大家参考。

cpu对计算机影响论文 范文 一:计算机CPU论文

摘要: CPU 是计算机进行运算的核心, 主要性能指标有字长、频率、高速缓存、前端总线频率、超线程技术的应用、支持的扩展指令集等对整个计算机的性能起着至关重要的作用。在计算机的使用中常见的CPU 超频故障、计算机感染病毒使CPU 性能大幅度下降,偶伴随 死机 等现象, 逐步掌握CPU 主要性能与故障的排除技巧, 达到举一反三的效果。

关键词: CPU; 性能指标; 高速缓存; 显示器 黑屏; 故障排除

1 计算机CPU 的主要性能指标

Central Processing Unit, CPU 通常也称“微处理器”或“中央处理器”, 是计算机进行运算的核心, 在计算机系统中相当于“大脑”,主要负责计算机的数据运算和发出计算机的控制指令, 是控制计算机中其他设备运行的“总指挥”。在计算机的发展过程中, CPU 技术的发展一直是计算机技术发展的重点, 在计算机的使用中CPU 的故障排除也是一个难点, 有待我们认真地研究, 以加深对CPU的了解, 逐步掌握CPU 常见故障的排除 方法 与技巧, 配合CPU 工作, 协调CPU 的处理速度, 在使用中达到举一反三的效果。

CPU“字长”是表示运算器性能的主要技术指标:在

计算机技术中, 把CPU 在单位时间内一次处理的二进制数的位数称为“字长”。一般情况下, 把单位时间内能处理为8 位数据的CPU 叫8 位CPU。同理, 64 位的CPU 在单位时间内能处理字长为64 位的二进制数据。字长是表示运算器性能的主要技术指标,通常等于CPU 数据总线的宽度。CPU 字长越长, 运算精度越高, 信息处理速度越快, CPU 性能也就越高。

CPU 的频率与CPU 的外频和倍频的关系:CPU 的频率是指计算机运行时的工作频率, 也称为“主频”或“时钟频率”。CPU 的频率表示CPU 内部数字脉冲信号振荡的速度, 代表了CPU 的实际运算速度, 单位是Hz。CPU 的频率越高, 在一个时钟周期内所能完成的指令数也就越多, CPU 的运算速度也就越快。

倍频越高, CPU 的频率就越高,CPU 实际运行的频率与CPU 的外频和倍频有关, CPU 的实际频率=外频!倍频。外频即CPU 的基准频率, 是CPU 与主板之间同步运行的速度。外频速度越高, CPU 就可以同时接受更多来自外围设备的数据, 从而使整个系统的速度进一步提高。倍频是CPU 运行频率与系统外频之间差距的参数, 也称为“倍频系数”, 通常简称为“倍频”。在相同的外频下, 倍频越高, CPU 的频率就越高。

主频越高, CPU 的速度也就越快,当我们使用CPU 时, 通常会说到“奔腾Ⅲ 600”、“奔腾4 ”等等, 其实, 这些型号里面的数字“600”和“”就是指CPU 的主频。CPU 的主频一般以MHz 为单位, 通常所说的“奔腾Ⅲ600”中的“600”实际上就是指该CPU 的主频是600MHz。但随着CPU 主频的提高, 一般以GHz( 1GHz=1000MHz) 为单位, 如“奔腾4 ”中的 即指该CPU 的工作频率是, 即3000MHz。一般说来,一个时钟周期完成的指令数是固定的, 因此主频越高, CPU 的速度也就越快。

缓存容量越大, 性能也就越高:

缓存(Cache) 的作用是为CPU 和内存进行数据

交换时提供一个高速的数据缓冲区。当CPU 要读取数据时, 首先会在缓存中寻找, 如果找到了则直接从缓存中读取, 如果在缓存中未能找到, 那么CPU 就从主内存中读取数据。CPU 缓存一般分为L1 高速缓存和L2 高速缓存。

一级高速缓存与二级高速缓存对CPU 的性能影响L1 高速缓存也称为一级高速缓存( L1Cache) 用于暂存部分指令和数据, 以使CPU 能迅速地得到所需要的数据。L1 高速缓存与CPU 同步运行, 其缓存容量大小对CPU 的性能影响较大。__L2 高速缓存也称为二级高速缓存( L2Cache) 的容量和频率对CPU 的性能影响也较大, 其作用就是协调

CPU 的运行速度与内存存取速度之间的差异。L2 高速缓存是CPU 晶体管总数中占得最多得一部分, 由于L2 高速缓存得成本很高, 因此L2 高速缓存得容量大小一般用来作为高端和低端CPU 产品得分界标准。目前CPU 的L2 高速缓存有低至64KB 的, 也有高达4MB 的。

前端总线频率比外频更具代表性:前端总线频率是AMD 公司在推出K7CPU 时提出的概念, 一直以来很多人都误认为这个名词是外频的一个别称。其实, 通常所说的外频是指CPU 与主板的连接速度, 这个概念建立在数字脉冲信号振荡速度的基础之上, 而前端总线频率指的是数据传输的实际速度, 即每秒钟CPU 可以接收的数据传输量。例如100MHz 外频是指数字脉冲信号在每秒钟振荡1000 万次, 而1001MHz 前端总线频率则是指CPU 每秒钟可接受的数据传输量是100MHz!64bit/8bit/Byte=800MB。就处理器速度而言, 前端总线比外频更具代表性。

CPU 的制造工艺直接关系到CPU 的电气性能:

CPU 在更高的频率下工作,线路宽度越小, CPU 的功耗和发热量就越低目前Inter 公司的主流产品的制造工艺已经达到 m 级别。由于CPU 制造完成后, 是一块不到1cm2 的硅晶片( 或集成电路) , 还要对其进行封装, 并安装引脚( 或称为“针”) 后才能插到主板上、通常所说的Socket478 和Socket939 中的数值的就是指该CPU 的引脚数, CPU 的封装一般有陶瓷封装和树脂封装两种。

超线程技术的应用超线程(Hyper- Threading,HT) 是Inter 公司为Pentium4 专门设计的一项技术。超线程是一种同步多线执行技术, 一款应用超线程技术的IntelCPU 可以在逻辑上被模拟成两个任务。当计算机系统应用超线程技术后, 可使整机性能提高25%以上。

支持的扩展指令集对提高CPU 的效率具有重要作用:指令集是CPU 用来计算和控制系统的命令, 是与硬件电路相配合的一系列指令。指令集是评价CPU 性能的重要指标之一。目前指令集有Intel 公司的MMX、SSE、SSE2、SSE3 和AMD 公司的“3DNow! ”等。MMX(Multi Media Extensions,多媒体扩展)指令集由Intel 公司开发, 包括57 条多媒体指令, 通常这些指令可以同时处理多个数据, 提高CPU 处理图形、视频和音频的能力。SSE(Streaming SIMDExtensions,单指令多数据流扩展)指令集是MMX指令集的扩展, 是Intel 公司在Pentium3 处理器中开始使用的。SSE2 支持双精度浮点数的SIMD 处理, 用在64 位CPU 中。SSE3 是Intel 公司在最新的Pentium 4 Prescott 处理器中为了增强Pentium 4 CPU 在多媒体方面的性能二新增加的一组指令集合, 有助于增强Intel CPU 的超线程功能。“3DNow! ”指令集广泛

应用于AMD 公司的K6- 2,K6- 3 以及Athlon( k7) 处理器中。在软件的配合下, 可以大幅度提高3D 处理性能。“3Dnow! ”指令集是最早的三维指令集。

2 计算机使用中CPU 常见故障的排除

故障现象:一般说来, CPU 是不容易出现故障的, 但由于超频或者电压工作不稳定和CPU 的制造工艺的不同等原因, 会导致CPU 不能正常工作, 显示器突然黑屏, 重启后无效, 更严重者会烧坏CPU。(1)CPU 超频是 DIY 族最喜欢干的事情, 有的CPU 本身不具备超频能力却硬要超频, 有的CPU 超频的余量很小, 却让它超出额定频率较大的范围工作, 其结果将导致电脑工作不正常, 经常出现死机现象。因为CPU 超频使用, 而且是硬超, 有可能是超频不稳定引起的故障。如开机后用手摸一下CPU, 发现非常烫, 则故障就可能在此。解决的方法是: 用户可以找到CPU 的外频与倍频跳线, 逐步降频后, 启动电源, 系统恢复正常, 显示器也就有了显示。也有可能是过度超频之后, 电脑启动时可能出现散热风扇转动正常, 但硬盘指示灯只亮了一下便没有反应了, 显示器也维持待机状态的故障。由于此时不能进入 BIOS 设置选项, 因此只能给CPU 降频。具体方法是打开机箱并在主板上找到给CMOS 放电的跳线, 给CMOS放电后重启系统即可。值得注意的是内存大小、硬盘速度、显卡速度,

特别是CPU 的性能指标, 对整个计算机的性能无不起着至关重要的作用, 因此盲目追求CPU 一级高速缓存与二级高速缓存、前端总线频率的高速并不可取。(2) 电压不正常导致CPU 烧坏。常见的故障现象是开机后黑屏, 只听到CPU 风扇在转动, 没有开机自检。解决方法: 根据故障现象可以排除电源的故障, 开机后风扇在转动, 说明计算机是通电的。但是不能自检, 也就不能听到“滴”的一声响, 此时怀疑是主板或CPU 的故障, 初步判断后, 采用替换法进行确认。首先找一台同等配置的好的计算机, 把此台计算机的CPU 拆下, 换到有故障的计算机上, 开机后如果能启动并正常进入系统, 说明该台计算机的故障就是CPU 有问题, 仔细查看CPU,发现针角处有发黑的地方, 说明是由于电压不稳定导致CPU 被烧坏。

计算机感染病毒, CPU 性能大幅度下降, 偶伴随死

机现象:(1)该故障原因可能是感染了病毒, 或磁盘碎片过多或CPU 温度过高。解决方法是首先可以使用杀毒软件查杀病毒, 然后使用Windows 附带的“磁盘碎片整理”程序进行整理。如果还不能解决问题, 则打开机箱, 查看CPU 散热器的风扇通电后是否转动, 如果不转动, 则更换新散热器即可。(2)蠕虫病毒发作使CPU 占用率为何高达100%。故障现象: 即开机使用一段时间后, 硬盘指示灯不停地闪, 同时

系统运行速度变得非常慢, “任务管理器”窗口中显示CPU 地占用率100%。只有重新启动才能继续使用。但过一段时间后又是如此。从故障描述可知, 计算机系统感染了某种蠕虫病毒。在正常情况下, 在不运行大型的程序时, CPU 在瞬间的占用率不可能为100%。而蠕虫病毒发作的时候就会将剩余的系统资源占满。这时, 用户可以在“任务管理器”窗口中查看哪个程序占用的CPU 资源最多, 如果是一个陌生的程序, 建议用户使用杀毒软件( 最好使用最新的杀毒库) 对系统进行彻底的检查。如果还无法解决该问题,最好重新安装 操作系统 , 并且安装病毒防火墙。这样, 能彻底解决问题。

CPU 风扇不转导致计算机死机:故障现象: 一台计

算机开机进入系统后不久就死机, 重新启动计算机后故障依旧。解决方法: 打开机箱, 查看机箱内各设备的运行情况, 发现CPU 风扇转动的很慢, 处于似转非转的状态, 由此想到造成重启的原因可能是由于CPU 风扇不能正常运转而导致CPU 无法散热, 从而使CPU 温度急剧上升, 最后出现死机。因为是突然黑屏, 可能是硬件有松动而引起接触不良。可打开机箱把硬件重新插一遍后开机, 有可能是显卡有问题, 因为从显示器的指示灯来判断无信号输出, 使用“替换法”检查, 显卡没问题, 那么此时有可能是显示器有故障,

使用“替换法”再检查, 同样没有发现问题, 接着检查CPU, 发现CPU 的针脚有点发黑和绿斑, 这是生锈的迹象。看来问题就在此处, 因为制冷片有结露的现象, 一定是制冷片的表面温度过低而结露, 导致CPU 长期处于潮湿的环境中, 日积月累, 就会产生太多锈斑, 造成接触不良, 从而发生此故障。找到问题的所在点后, 要拆掉CPU 风扇, 给风扇添加润滑油并清理风扇上的灰尘, 再重新安装CPU 风扇。开机后CPU 风扇转动正常, 死机现象也就消除了。还可以取出CPU, 用橡皮仔细地把每一个针脚都擦一遍, 然后把散热片上的制冷片取下, 清洁干净, 最后装好CPU 和制冷片开机, 即可正常启动。

计算机由于各种原因总会出现一些故障。特别当遇到CPU 常见故障时, 我们应该对CPU 的主要性能指标有充分的了解, 分析故障原因, 掌握常用的排除方法与技巧, 避免CPU 故障造成计算机黑屏、死机等麻烦。

参考文献:

[1] 熊巧玲,吕良燕,高明伟.电脑组装与维护技能实训

[M].北京:科学出版社,2007.

[2] 谭贤.电脑组装、维护与故障排除[M].北京:机械工业出版社,2007.

[3] 网冠科技编著.电脑急救、备份还原、BIOS、注册表设计[M].北京:机械工业出版社,2007.

[4] 张景生.台式计算机使用与维修[M].北京:国防工业出版社,2007.[5] __功、修红海.计算机组装与维护[M].北京:中华工商联合出版社,2007.

cpu对计算机影响论文范文二:计算机组成原理——CPU 论文

摘 要 CPU是计算机进行运算的核心,其重要性相当于人体的大脑,起着至关重要的作用。CPU的主要性能指标有字长、频率、高速缓存、前端总线频率、超线程技术的应用、支持的扩展指令集等等,对整个计算机的性能起着至关重要的作用。要从了解CPU的发展历程,运行原理以及故障排除等多方面了解CPU,从而达到对CPU的全面认识。

关健词 CPU 历史 工作原理 故障排除

The priciple of the Computer Compoment--CPU

Wu Min

Abstract CPU is the core of computer operations, its importance is equivalent to the human brain, plays a vital role in.

The main properties of CPU index word length, frequency, cache, FSB, hyper threading technology, support the instruction set extensions on the whole computer plays an important role in the performance. To understand the development history of CPU, operation principle and troubleshooting to know more about CPU, to achieve a comprehensive understanding of CPU.

Keywords CPU,History, Working priciple , Troubleshooting

引言

CPU是Central Processing Unit(中央微 处理器)的缩写,又称为微处理器。随着网络时代的到来,网络通信、信息安全和信息家电产品将越来越普及,而CPU正是所有这些信息产品中必不可少的部件,CPU主要由运算器和控制器组成,是微型计算机硬件系统中的核心部件,起着控制整个微型计算机系统的作用。

CPU性能的高低通常决定了一台计算机的档次。

世界上生产CPU芯片主要有Intel和AMD两家公司。Intel公司生产的CPU始终占有相当大的市场。目前,Intel公司生产的CPU主要有赛扬系列、奔腾系列、酷睿系列等。AMD公司的CPU占有相当的市场份额。AMD公司生产的CPU主要有闪龙系列、速龙系列等。

协调工作,决定了计算机的整体性能。CPU主要由运算器、控制器、寄存器组和内部总线等构成。寄存器组用于在指令执行过后存放操作数和中间数据,由运算器完成指令所规定的运算及操作。

CPU的发展非常迅速,个人电脑从8088(XT)发展到现在的Pentium 4时代,只经过了不到二十年的时间。

1971 Intel 4004,世界上第一款微处理器 1974 Intel 8008,第一个8位的微处理器; 1974 Intel 8080,第一个真正的微处理器; 1978 Intel 8086,16位微处理器; Intel 80186; 1982 Intel 80286;

1985 Intel 80386,新一代32位核心微处理器; 1989 Intel 80486; 1993 Pentium(奔腾);

从生产技术来说,最初的8088集成了29000个晶体管,而PentiumⅢ的集成度超过了2810万个晶体管;CPU的运行速度,以MIPS(百万个指令每秒)为单位,8088是,到高能奔腾时已超过了1000MIPS。

1 CPU的简介和历史发展

CPU的外部组成:控制单元,存储单元(寄存器,缓存),逻辑运算单元。

CPU的外部组成:芯片,金属壳(保护CPU,增加散热面积),引脚(固定CPU,连通电路)。

CPU是计算机的核心部件,处理计算机中的所有数据,使计算机完成各种功能,并使各部件

CPU从最初发展至今期间,按照其处理信息的字长,CPU可以分为:4位微处理器、8位微处理器、16位微处理器、32位微处理器以64位微处理器,基本上可以说个人电脑的发展是随着CPU的发展而前进的。

1971年世界第一台微处理器Inter的4004出现,内部集成2300个晶体管;1978年Inter16位处理器8086和与之配合的数学协处理器8087同时推出;1979年Inter8088推出,内含27000个晶体管,外部数据总线减少为8位,也首次运用于IBM PC中,预示微机时代即将来临.1982年Inter又推出了16位的80286,内部晶体管万个,时频由最初的6MHZ升为20MHZ;1985年32位处理器80386推出,时频达到以上;1989年集成120万晶体管的80486出现,时频90MHZ,性能比386提高了4倍;1993年奔腾时代来临,奔腾1,世界上第一台586级处理器,310万晶体管,时频200MHZ;1996年奔腾Pro,550万晶体管,处理速度是一代的2倍;同时第一次采用2级内存,同年奔腾MMX推出,L1缓存加倍;1997年,奔腾Pro与MMX结合,奔腾2出现,性能大大提高;1998年奔腾3出现,一级缓存2KB,二级缓存512KB,安全性能大大提高;2000年奔腾4推出,主频超过.之后又出了双核,四核...Inter处理器的发展就代表了CPU的发展,其中不乏其他公司产品,如AMD等

2 CPU的运行原理及过程

CPU的运行原理

CPU的主要运作原理,不论其外观,都是执行储存于被称为程序里的一系列指令。在此讨论的是遵循普遍的冯·诺伊曼结构(von Neumann architecture)设计的装置。程序以一系列数字储存在计算机存储器中。差不多所有的冯·诺伊曼CPU 的运作原理可分为四个阶段: 提取、解码、执行和写回。

第一阶段,提取,从程序存储器中检索指令(为数值或一系列数值)。由程序计数器指定程序存储器的位置,程序计数器保存供识别目前程序位置的数值。换言之,程序计数器记录了CPU在目前程序里的踪迹。提取指令之后,PC根据指令式长度增加存储器单元[iwordlength]。指令的提取常常必须从相对较慢的存储器查找,导致CPU等候指令的送入。这个问题主要被论及在现代处理器的高速缓存和管线化架构。

CPU根据从存储器提取到的指令来决定其执行行为。在解码阶段,指令被拆解为有意义的片断。根据CPU的指令集架构(ISA)定义将数值解译为指令[isa]。一部分的指令数值为运算码,其指示要进行哪些运算。 其它 的数值通常供给指令必要的信息,诸如一个加法运算的运算目标。这样的运算目标也许提供一个常数值(即立即值),或是一个空间的寻址值:暂存器或存储器地址,以寻址模式决定。在旧的设计中,CPU里的指令解码部分是无法改变的硬体装置。不过在众多抽象且复杂的CPU和ISA中,一个微程序时常用来帮助转换指令为各种形态的讯号。这些微程序在已成品的CPU 中往往可以重写,方便变更解码指令。

在提取和解码阶段之后,接着进入执行阶段。该阶段中,连接到各种能够进行所需运算 的CPU部件。例如要求一个加法运算,算术逻辑单元将会连接到一组输入和一组输出。输入提供了要相加的数值,而且在输出将含有总和结果。ALU内含电路系统,以于输出端完成简单的普通运算和逻辑运算(比如加法和位运算)。如果加法运算产生一个对该CPU处理而言过大的结果,在标志暂存器里,溢出标志可能会被设置。

最终阶段,写回。以一定格式将执行阶段的

结果简单的写回。运算结果极常被写进CPU内部的暂存器,以供随后指令快速访问。在其它案例中,运算结果可能写进速度较慢,但容量较大且较便宜的主存。某些类型的指令会操作程序计数器,而不直接产生结果数据。这些一般称作“跳转”并在程序中带来循环行为、条件性执行(透过条件跳转)和函数[jumps]。许多指令也会改变标志暂存器的状态位。这些标志可用来影响程序行为,缘由于它们时常显出各种运算结果。例如,以一个“比较”指令判断两个值的大小,根据比较结果在标志暂存器上设置一个数值。这个标志可借由随后的跳转指令来决定程序动向。

在执行指令并写回结果数据之后,程序计数器的值会递增,反复整个过程,下一个指令周期正常的提取下一个顺序指令。如果完成的是跳转指令,程序计数器将会修改成跳转到的指令地址,且程序继续正常执行。许多复杂的CPU可以一次提取多个指令、解码,并且同时执行。这个部分一般涉及“经典RISC管线”,那些实际上是在众多使用简单CPU的电子装置中快速普及(常称为单片机)。

CPU 数字表示方法是一个设计上的选择,这个选择影响了设备的工作方式。一些早期的数字计算机内部使用电气模型来表示通用的十进制(基于10 进位)数位系统数字。还有一些罕见的计算机使用三进制表示数字。几乎所有的现代的CPU 使用二进制系统来表示数字,这样数字可以用具有两个值的物理量来表示,例如高低电平[binaryvoltage]等等。

与数表示相关的是一个CPU可以表示的数的大小和精度,在二进制CPU 情形下,一个位(bit)指的是CPU处理的数中的一个有意义的位,CPU用来表示数的位数量常常被称作“字长”, “位宽”, “数据通路宽度”或者当严格地涉及到整数(与此相对的是浮点数)时称作“整数精度”、该数量因体系结构而异,且常常在完全相同的CPU的不同部件中也有所不同。 实际上,整数精度在CPU可执行的软件所能利用的整数取值范围上设置了硬件限制。整数精度也可影响到CPU可寻址(寻址)的内存数量。譬如,如果二进制的CPU使用32位来表示内存地址,而每一个内存地址代表一个八位组,CPU 可定位的容量便是232个位组或4GB。以上是简单描述的CPU地址空间,通常实际的CPU 设计使用更为复杂的寻址方法,例如为了以同样的整数精度寻址更多的内存而使用分页技术。

2更高的整数精度需要更多线路以支持更多的数字位,也因此结构更复杂、更巨大、更花 费能源,也通常更昂贵。因此尽管市面上有许多更高精准度的CPU如 16、32、64甚至128位,但依然可见应用软件执行在4或8位的单片机上。越简单的单片机通常较便宜,花费较少能源,也因此产生较少热量。这些都是设计电子设备的主要考量。

CPU的运行过程

数据从输入设备流经内存,等待CPU的处理,这些将要处理的信息是按字节存储的,也就是以8位二进制数或8比特为1个单元存储,这些信息可以是数据或指令。数据可以是二进制表示的字符、数字或颜色等等。而指令告诉CPU对数据执行哪些操作,比如完成加法、减法或移位运算。 假设在内存中的数据是最简单的原始数据。首先,指令指针(Instruction Pointer)会通知CPU,将要执行的指令放置在内存中的存储位置。因为内存中的每个存储单元都有编号(称为地址),可以根据这些地址把数据取出,通过地址总线送到控制单元中,指令译码器从指令寄存器IR中拿来指令,翻译成CPU可以执行的形式,然后决定完成该指令需要哪些必要的操作,它将告诉算术逻辑单元(ALU)什么时候计算,告诉指令读取器什么时候获取数值,告诉指令译码器什么时候翻译指令等等。假如数据被送往算术逻辑单元,数据将会执行指令中规定的算术运算和其他各种运算。当数据处理完毕后,将回到寄存器中,通过不同的指令将数据继续运行或者通过DB总线送到数据缓存器中。基本上,CPU就是这样去执行读出数据、处理数据和往内存写数据3项基本工作。但在通常情况下,一条指令可以包含按明确顺序执行的许多操作,CPU的工作就是执行这些指令,完成一条指令后,CPU的控制单元又将告诉指令读取器从内存中读取下一条指令来执行。这个过程不断快速地重复,快速地执行一条又一条指令,产生你在显示器上所看到的结果。在处理这么多指令和数据的同时,由于数据转移时差和CPU处理时差,肯定会出现混乱处理的情况。为了保证每个操作准时发生,CPU需要一个时钟,时钟控制着CPU所执行的每一个动作。时钟就像一个节拍器,它不停地发出脉冲,决定CPU的步调和处理时间。

参考文献:

《电子计算机组成原理》 蒋本珊 北京理工大学

《计算机组成原理》第二版,唐朔飞 编著,高等 教育 出版社,

《计算机导玉龙论》作者:王 电子工业出版社 《计算机科学导论》作者:王志强 机械工业出版社 《微型计算机原理与应用》肖金立 编著,电子工业出版社,2003-1

关于芯片发展的外国文献论文

计算机的关键技术继续发展 未来的计算机技术将向超高速、超小型、平行处理、智能化的方向发展。尽管受到物理极限的约束,采用硅芯片的计算机的核心部件CPU的性能还会持续增长。作为Moore定律驱动下成功企业的典范Inter预计2001年推出1亿个晶体管的微处理器,并预计在2010年推出集成10亿个晶体管的微处理器,其性能为10万MIPS(1000亿条指令/秒)。而每秒100万亿次的超级计算机将出现在本世纪初出现。超高速计算机将采用平行处理技术,使计算机系统同时执行多条指令或同时对多个数据进行处理,这是改进计算机结构、提高计算机运行速度的关键技术。 同时计算机将具备更多的智能成分,它将具有多种感知能力、一定的思考与判断能力及一定的自然语言能力。除了提供自然的输入手段(如语音输入、手写输入)外,让人能产生身临其境感觉的各种交互设备已经出现,虚拟现实技术是这一领域发展的集中体现。 传统的磁存储、光盘存储容量继续攀升,新的海量存储技术趋于成熟,新型的存储器每立方厘米存储容量可达10TB(以一本书30万字计,它可存储约1500万本书)。信息的永久存储也将成为现实,千年存储器正在研制中,这样的存储器可以抗干扰、抗高温、防震、防水、防腐蚀。如是,今日的大量文献可以原汁原味保存、并流芳百世。 新型计算机系统不断涌现 硅芯片技术的高速发展同时也意味着硅技术越来越近其物理极限,为此,世界各国的研究人员正在加紧研究开发新型计算机,计算机从体系结构的变革到器件与技术革命都要产生一次量的乃至质的飞跃。新型的量子计算机、光子计算机、生物计算机、纳米计算机等将会在21世纪走进我们的生活,遍布各个领域。 量子计算机 量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开与关的状态,利用激光脉冲来改变分子的状态,使信息沿着聚合物移动,从而进行运算。 量子计算机中数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前个人计算机的PentiumⅢ晶片快10亿倍。目前正在开发中的量子计算机有3种类型:核磁共振(NMR)量子计算机、硅基半导体量子计算机、离子阱量子计算机。预计2030年将普及量子计算机。 光子计算机 光子计算机即全光数字计算机,以光子代替电子,光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算。 与电子计算机相比,光计算机的“无导线计算机”信息传递平行通道密度极大。一枚直径5分硬币大小的棱镜,它的通过能力超过全世界现有电话电缆的许多倍。光的并行、高速,天然地决定了光计算机的并行处理能力很强,具有超高速运算速度。超高速电子计算机只能在低温下工作,而光计算机在室温下即可开展工作。光计算机还具有与人脑相似的容错性。系统中某一元件损坏或出错时,并不影响最终的计算结果。 目前,世界上第一台光计算机已由欧共体的英国、法国、比利时、德国、意大利的70多名科学家研制成功,其运算速度比电子计算机快1000倍。科学家们预计,光计算机的进一步研制将成为21世纪高科技课题之一。 生物计算机(分子计算机) 生物计算机的运算过程就是蛋白质分子与周围物理化学介质的相互作用过程。计算机的转换开关由酶来充当,而程序则在酶合成系统本身和蛋白质的结构中极其明显地表示出来。 20世纪70年代,人们发现脱氧核糖核酸(DNA)处于不同状态时可以代表信息的有或无。DNA分子中的遗传密码相当于存储的数据,DNA分子间通过生化反应,从一种基因代玛转变为另一种基因代码。反应前的基因代码相当于输入数据,反应后的基因代码相当于输出数据。如果能控制这一反应过程,那么就可以制作成功DNA计算机。 蛋白质分子比硅晶片上电子元件要小得多,彼此相距甚近,生物计算机完成一项运算,所需的时间仅为10微微秒,比人的思维速度快100万倍。DNA分子计算机具有惊人的存贮容量,1立方米的DNA溶液,可存储1万亿亿的二进制数据。DNA计算机消耗的能量非常小,只有电子计算机的十亿分之一。由于生物芯片的原材料是蛋白质分子,所以生物计算机既有自我修复的功能,又可直接与生物活体相联。预计10~20年后,DNA计算机将进入实用阶段。 纳米计算机 “纳米”是一个计量单位,一个纳米等于10[-9]米,大约是氢原子直径的10倍。纳米技术是从80年代初迅速发展起来的新的前沿科研领域,最终目标是人类按照自己的意志直接操纵单个原子,制造出具有特定功能的产品。 现在纳米技术正从MEMS(微电子机械系统)起步,把传感器、电动机和各种处理器都放在一个硅芯片上而构成一个系统。应用纳米技术研制的计算机内存芯片,其体积不过数百个原子大小,相当于人的头发丝直径的千分之一。纳米计算机不仅几乎不需要耗费任何能源,而且其性能要比今天的计算机强大许多倍。 目前,纳米计算机的成功研制已有一些鼓舞人心的消息,惠普实验室的科研人员已开始应用纳米技术研制芯片,一旦他们的研究获得成功,将为其他缩微计算机元件的研制和生产铺平道路。 互联网络继续蔓延与提升 今天人们谈到计算机必然地和网络联系起来,一方面孤立的未加入网络的计算机越来越难以见到,另一方面计算机的概念也被网络所扩展。二十世纪九十年代兴起的Internet在过去如火如荼地发展,其影响之广、普及之快是前所未有的。从没有一种技术能像Internet一样,剧烈地改变着我们的学习、生活和习惯方式。全世界几乎所有国家都有计算机网络直接或间接地与Internet相连,使之成为一个全球范围的计算机互联网络。人们可以通过Internet与世界各地的其它用户自由地进行通信,可从Internet中获得各种信息。 回顾一下我国互联网络的发展,就可以感受到互联网普及之快。近三年中国互联网络信息中心(CNNIC)对我国互联网络状况的调查表明我国的Internet发展呈现爆炸式增长,2000年1月我国上网计算机数为350万台,2001年的统计数为892万台,翻一番多;2000年1月我国上网用户人数890万;2001年1月的统计数为2250万人,接近于3倍;2000年1月CN下注册的域名数为48575,2001年1月的统计数为122099个,接近于3倍;国际线路的总容量目前达2799M,8倍于2000年1月的351M。 人们已充分领略到网络的魅力,Internet大大缩小了时空界限,通过网络人们可以共享计算机硬件资源、软件资源和信息资源。“网络就是计算机”的概念被事实一再证明,被世人逐步接受。 在未来10年内,建立透明的全光网络势在必行,互联网的传输速率将提高100倍。在Internet上进行医疗诊断、远程教学、电子商务、视频会议、视频图书馆等将得以普及。同时,无线网络的构建将成为众多公司竞争的主战场,未来我们可以通过无线接入随时随地连接到Internet上,进行交流、获取信息、观看电视节目。 移动计算技术与系统 随着因特网的迅猛发展和广泛应用、无线移动通信技术的成熟以及计算机处理能力的不断提高,新的业务和应用不断涌现。移动计算正是为提高工作效率和随时能够交换和处理信息所提出,业已成为产业发展的重要方向。 移动计算包括三个要素:通信、计算和移动。这三个方面既相互独立又相互联系。移动计算概念提出之前,人们对它们的研究已经很长时间了,移动计算是第一次把它们结合起来进行研究。它们可以相互转化,例如,通信系统的容量可以通过计算处理(信源压缩,信道编码,缓存,预取)得到提高。 移动性可以给计算和通信带来新的应用,但同时也带来了许多问题。最大的问题就是如何面对无线移动环境带来的挑战。在无线移动环境中,信号要受到各种各样的干扰和衰落的影响,会有多径和移动,给信号带来时域和频域弥散、频带资源受限、较大的传输时延等等问题。这样一个环境下,引出了很多在移动通信网络和计算机网络中未遇到的问题。第一,信道可靠性问题和系统配置问题。有限的无线带宽、恶劣的通信环境使各种应用必须建立在一个不可靠的、可能断开的物理连接上。在移动计算网络环境下,移动终端位置的移动要求系统能够实时进行配置和更新。第二,为了真正实现在移动中进行各种计算,必须要对宽带数据业务进行支持。第三,如何将现有的主要针对话音业务的移动管理技术拓展到宽带数据业务。第四,如何把一些在固定计算网络中的成熟技术移植到移动计算网络中。 面向全球网络化应用的各类新型微机和信息终端产品将成为主要产品。便携计算机、数字基因计算机、移动手机和终端产品,以及各种手持式个人信息终端产品,将把移动计算与数字通信融合为一体,手机将被嵌入高性能芯片和软件,依据标准的无限通信协议(如蓝牙)上网,观看电视、收听广播。在Internet上成长起来的新一代自然不会把汽车仅作为代步工具,汽车将向用户提供上网、办公、家庭娱乐等功能,成为车轮上的信息平台。 跨入新世纪的门槛,畅想未来之时,我们不妨回顾本世纪人们对计算机的认识。1943年IBM总裁Thomas Wason说“我认为全世界市场的计算机需求量约为五台”。1957年美国PrenticeHall的编辑撰文“我走遍了这个国家并和许多最优秀的人们交谈过,我可以确信数据处理热不会热过今年”。1968年IBM的高级计算机系统工程师的微晶片上注解“但是……它究竟有什么用呢?”。1977年数字设备公司的创始人和总裁Ken Olson说“任何人都没有理由在家里放一台计算机”。愿我们的所言也将被证明是肤浅的、保守的。 水利水电工程地质计算机应用技术协作网(以下简称“协作网”)这个“学术技术交流组织”以及她这几年来开展的一系列卓有成效的工作,已经得到了各级领导的肯定和广大工程地质工作者的认可。在协作网即将正式成立和全国第三次水利水电工程地质计算机应用技术交流会即将召开之际,作为协作网的发起者和组织者,系统地对我们以及一切关心和爱护协作网的朋友们共同倾注了大量激情、精力和时间的工程地质计算机应用工作进行总结,是十分有意义的。今后的工作如何开展,协作网如何运作,专业软件向何处去,如何应用计算机技术去推动工程地质专业学科的发展,所有这些,不但是我们关注的焦点,也是每个网员都应该认真关心和思考的问题。我们在积极探索协作网的定位的同时,更在严肃认真地思考协作网的任务、宗旨和目标,此文旨在阐明我们的一些看法,与大家共同探讨。 计算机技术的发展让人们始料不及,Internet的辉煌令世人惊叹不已。有史以来,从来就没有一种技术能象计算机技术这样日新月异;数千年的人类文明史,唯有今天的Internet深刻地改变着整个世界。信息社会概念新颖的服务意识,获取信息同时又提供信息的互助观念,既是竞争对手又是合作伙伴的业界思想,自由软件公开源程序代码的业界潮流,敢于挣脱旧的阻碍生产力发展的条条框框又勇于创新的时代精神,是计算机业界和Internet所独有的,也是计算机和Internet改变世界的精髓。我们认为,协作网不单纯是一个技术学术交流组织,它不同于其它学术团体,而是融入了信息社会全新的思想、观念和精神,顺应信息社会的世界潮流,是对传统计算机应用概念的一种新的诠释,是信息社会计算机与专业应用相结合的一种新的模式。 1 过去的启示 从八十年代开始,水利水电系统内各单位相继成立了计算机处室,以此来开展本单位的计算机应用工作。时至今日,一些单位的计算机处室相继解散,总院也没有再保留计算机处。这种现象说明了什么问题?过去的那套开展计算机应用工作的思路和管理办法是否符合计算机技术的特点?是否适应计算机应用技术的发展?问题出在哪里?应该进行怎样的改革?这些都是值得我们认真探讨的问题。 多年以来,我们对于开展计算机应用工作的习惯做法是采用科技项目的管理方式,即投入一部分经费,进行一些专业软件的开发。这种管理方式在计算机应用初期有其优越性,但随着时代的进步,这种管理模式越来越与现实不相适应,其原因就是对“软件”这一计算机应用的核心部件不理解,或者说产生了认识上的偏差。软件就象一个人一样,要经历出生、成长、成熟到死亡的各个阶段,称为软件的生命周期。在软件的整个生命周期中,包括系统分析阶段、开发阶段、应用与推广阶段和维护与完善阶段。其中前两个阶段只占整个生命周期的很小一部分,而后两个阶段则是一个互动的过程,即互相推动发展的过程。我们传统的工作方式的弊病主要表现在:一是只对软件开发阶段进行管理,也就是说只关心软件的出生,不关心软件的成长,致使一些软件开发出来,由于得不到发展而夭折;二是计算机应用工作独立于各专业处,造成开发与专业应用严重脱节,更谈不上推广应用。这些恐怕就是专业软件发展缓慢的根本原因,也是计算机应用推广工作的困难所在。 各专业的计算机应用工作的关键在于开发和使用针对性很强的专业性应用软件。这种应用软件不同于其他科技产品,影响其发展的因素很多,包括领导的重视,单位的财力,计算机支撑软件平台的选择,使用人员的素质等等。因此,计算机应用工作的内容决不是仅仅对软件开发阶段进行管理,还涉及到很多社会问题,是一个复杂的系统工程。既要对专业需求进行调查,对开发过程进行跟踪管理,又要对开发出的软件进行市场宣传、推广和服务,以及制定相应的行业标准等等。由于计算机技术的应用不仅带来专业技术的进步和发展,更带来观念的转变与更新。因此,会在不同程度上与现行的技术与管理模式发生冲突,产生矛盾,所以要进行广泛探讨,并考虑进行相应的改革。 2 协作网的由来 工程地质勘测的计算机应用工作多年来没有得到应有的重视,在行业中处于落后的状态,这是我们一直非常关注的问题。1995年初,我们开始尝试由专业处自己来抓这项工作(早在70年代电力行业就已开展这方面的工作,并且卓有成效)。我们对水利水电各勘测单位的软件开发情况及开发人员状况作了一个调查,对反馈的信息进行了分析整理,并对几个勘测单位进行了实地考查。通过调查研究,我们感到勘测专业由于交流甚少,应用软件大多处于低水平的重复开发状况,造成人员和资金的浪费。因此打破各单位之间的封闭,建立良好的沟通渠道是当时急待解决的首要问题。在1995年10月召开的全国水利水电工程地质信息网学术大会上,我们首次提出了成立协作网的倡议,希望通过协作网这一组织形式来实现互相交流和推动计算机应用工作的开展。这一倡议得到了与会代表的肯定,大家认为这项工作十分必要、非常及时。接着在同年的11月份,我们在武汉召开了第二次水利水电工程地质计算机应用技术交流会,参加这次会议的主要是勘测专业的软件开发人员和使用人员。大家充分讨论了协作网对行业计算机应用工作和专业应用软件发展的意义,一致拥护组建协作网。1996年初,协作网筹建组正式成立,开始了我们这三年多来的筹建工作。 3 协作网的管理意义和实际效果 协作网运作实际上有其独特的管理意义。我们所说的“管理”具有自己的特色,既有行业管理的内涵,也包括协作网具体运作的方式,是打破旧的管理模式的一种尝试。协作网没有现成的管理模式可供使用,我们只有借鉴别人的经验并在实践中不断摸索。我们搜集外系统的相关计算机应用的先进成果,把它引入水利水电勘测行业,并把行业内的计算机应用经验进行推广和交流,以此来推动勘测行业计算机应用工作的进步。我们的主要工作之一就是通过《工程地质计算机应用》网刊的出版,来团结全体网员,达到交流与合作的目的,实践证明效果是好的。网刊既是网员们交流的场所,又是我们进行计算机应用工作舆论宣传的工具。借鉴计算机业界的新观念、新思想和几年来的实践与摸索,我们逐步形成了对本行业计算机应用工作的管理思路,通过与网员的交流得到了大家的认同。 我们的主要观点包括: (1)抓标准软件、基础软件的开发,这是软件发展的根基。只有具备了开发层次比较高,应用、维护、拓展都比较好的标准软件和基础软件,才能使专业计算机应用软件开发有序、高速发展,这个道理就象盖高楼大厦必须要有牢固的地基一样。 (2)对软件不搞鉴定。计算机业界早就不再进行所谓的软件鉴定。因为软件开发出来,自身难免存在一些问题,需要进行大量的应用测试,不断进行修正和完善。而我们行业的软件起步较晚,需完善的地方很多。如果不广泛地进行交流和应用,由用户来发现问题和进行评价,形式上的鉴定只能是纸上谈兵。 (3)积极倡导各单位之间的交流与合作,以交流促发展,大力倡导自由软件这一时代潮流的产物。当今计算机界对自由软件Linux的推崇,正说明自由软件在计算机界具有特殊的生命力。自由软件精神对专业软件的发展将会产生不可估量的影响。 (4)协作网是一个自愿联合组织,她所体现的是信息社会的精神。工业社会强调的是竞争,最终导致分裂和封闭;而信息社会强调的是合作与互助,强调的是团队精神。互联网的飞速发展,加速了社会的信息化进程,现在,网络上的交流完全不分国界,没有地域的限制,网络将自己的触角伸向世界的每一个角落,网络生活每天都在创造奇迹。求医、求学、求助、求职…,从中我们看到了人类互助的愿望借助网络这一桥梁得到了充分的体现,网络实现了人们过去想做而做不到的事。协作网正是顺应了这一时代潮流,把所有关心专业软件发展的人,包括软件开发人员、使用人员、部门领导、大学教授以及软件开发商等等联系在一起,通过信息的广泛交流,调动各方的积极性,建立起互惠互利的合作关系,充分发挥各方优势,互助互补,这也是通过协作网进行管理的意义。 (5)在运作机制上,采取自愿入网的原则,而不使用行政手段。因为没有大量的经费作后盾,我们必须靠优质的服务和求真务实的精神来赢得网员们的支持。协作网是为了把所有关心专业软件发展的人联系在一起,因此网员并不局限于本系统的单位和个人,这也体现了协作网的开放意识。 (6) 在Internet上建立工程地质计算机应用主页,使得信息的交换更为自由快捷,软件交流更为方便灵活。主页吸引了更多的计算机应用爱好者,拓展了交流范围,并起到了宣传作用,利用现代化的通信手段进行交流是我们始终追求的目标。 通过这三年多的努力,协作网的工作得到了各方的肯定,确立了在全国工程地质界的位置,为水利水电行业赢得了很好的声誉。不论是工程地质界的老前辈,还是新一代年轻的地质工作者都高度评价了这项工作对专业学科进步与发展的意义。 从实际效果来看,信息交流的结果同时带动了专业软件的开发和应用工作。一些软件开发较好的单位通过协作网大力宣传他们的软件,赢得了更多的用户,从而带动了软件的完善与推广工作;许多过去计算机应用工作比较落后的勘测院通过引进软件、学习外单位的先进经验,提高了自己的应用水平,在工作中尝到了甜头;一些计算机爱好者通过交流经验,交流自由软件,互相学习,共同提高;一些勘测部门的领导对计算机有了更深的认识;大学教授们也找到了发挥自己特长的空间;特别值得一提的是网刊中的一些介绍软件使用经验的文章解决了许多单位的具体应用问题…。这些都充分显示出信息的作用是威力无穷的,这是过去计划体制下用多少钱也无法办到的.而我们抓住了信息这一环节,真正改变了计算机应用工作的管理模式,使软件的开发和应用有机地结合起来,适应了信息技术的发展要求。 协作网的另一实际效果还在于她发挥了很好的宣传鼓动作用。她的凝聚力表现在将过去分散的个体有机地连接在一起。她的尊重人才、鼓励创新、倡导合作的思想极大地调动了技术人员的积极性,使人才的创造热情有了发挥的空间。人们逐渐抛弃了过去封闭的意识,开始意识到合作的意义,开始走出个人的圈子,进行更广泛的交流,纷纷拿出自己多年的成果与大家共同分享。网员们的支持、理解和热情,使我们对这项工作的前景充满信心。 协作网的工作效果为我们展示出现代管理的深层次意义,这也是我们行业管理部门进行改革的一大课题。在过去计划体制下,所谓管理多是针对人财物的管理,实际上只有“管”,而没有“理”。而在计划体制逐步削弱的今天,管理部门逐渐丧失了人财物支配权的情况下,是不是就不再需要进行行业管理?答案应该是否定的!任何时候、任何情况下管理都是必不可少的,只是管理的内容、管理的方式有所不同,管理对事物的发展始终起着举足轻重的作用。在当今的改革大潮中,我们是做时代的弄潮儿?还是被社会所淘汰?如果我们总是抱着固有的旧观念不思进取,必然是逆水行舟,不进则退。当前,我们正处于工业社会向信息社会转变的发展时期,新观念、新技术层出不穷,给社会的方方面面带来极大的冲击,信息的作用也变得越来越重要,信息服务将是新时期行业管理工作的一个主要内容。我们必须转变观念,以新的姿态来迎接信息社会的挑战。协作网将始终不渝地坚持全新的理念,本着求真务实的精神,为领导提供决策支持、为基层提供信息服务,尽我们应尽的责任和义务。 4 协作网的发展前景 在水利总院、水电总院领导的大力支持下,协作网将于今年10月正式成立,这必将大大推动协作网的工作向前发展。在过去三年多的筹建工作中,协作网主要起到了沟通信息的作用。随着协作网的正式成立,我们希望吸引更多的计算机应用爱好者加入进来,本着互助、奉献、实现自我的精神来共同发展,协作网始终为每一个有识之士尽力创造施展才华的空间;协作网除了作好宣传推广工作外,还要深入到应用软件的开发中去,加快专业软件的标准化进程,今后将更加积极寻求形式多样的合作方式,致力于开发本行业自已的高科技产品。丰富和完善工程地质主页,以更新、更吸引人的内容迎接各位网友的到来。加快行业内信息交流的网络化进程。在此,我们想进一步强调,协作网为每个网员提供了一个可以自由驰骋的大舞台,你可以尝试自己想做的每一件事,你的每一个想法都可以在网上或通过网刊发布,你可以宣传自己的软件,发表自己对软件的意见和建议,谈自己的新思想、新认识、新观点,为大家提供一些有用的信息与经验,寻求合作,提出自己急待解决的问题…,总之,让各种信息借助网络以最快的速度传播到每一个网员,使网员们能够进行更广泛的互助与交流。 当然,这些美好愿望的实现还要靠全体网员以及所有关心协作网的朋友们的共同努力。我们欢迎更多的单位和个人加入到协作网中,我们也非常欢迎计算机软件公司把他们先进的技术带给我们,让我们为提高勘测行业的计算机应用水平而共同努力。

对当前多媒体《计算机应用》CAI系统的设计与实现分析摘要:本文介绍了在校园网上针对《计算机应用》课程,开展多媒体CAI系统的设计方法。阐明了计算机对文本、图像、动画、视频和音频等多媒体信息的综合处理方法,对当前的教学改革具有一定的现实意义。 关键词: CAI;Authorware;校园网;多媒体 1 引言 随着计算机网络技术的发展及迅速普及,校园网越来越显示出其巨大作用。怎样更有效地利用校园网服务于教学,是每一个建立校园网的学校迫切需要解决的问题。同时,随着教育改革的深入,学校招生规模的扩大,热门专业师资的紧缺,建立基于校园网的CAI系统,是完全必要的。 CAI,即计算机辅助教学。它是利用计算机将文字、图形、图像、动画、声音等有机地结合起来,在各种媒体间利用特定的结构建立逻辑连接,集成为具有交互能力的信息系统。在校园网上,建立起网络虚拟教室,制作CAI课件,实现教师授课的影像与电子讲义同步播放,学生可以在不同的地点反复收看教师的讲课实况。它突破了传统教学的时空限制,凭借其数字化、多媒体、信息量大、交互性强的特点,为学生自学与复习提供了一个有效途径。 《计算机应用》是一门专业基础课,中专、高职院都要进行省过级考试,大学也要进行全国的过级考试,许多学校的大部分专业的学生都要学习这一门课程。其内容涉及的范围广,上机练习多。如果只用“口水+粉笔”来进行教学,或只在机房中的计算机上乱操作一成,是很难达到过级要求的。学生多,计算机专业教师少,势必增加教师的负担,那么,制作多媒体《计算机应用》CAI课件发布于校园网上,这是学好这门功课,提高计算机过级率的一个切实可行的办法。 2 系统特点 (1)共享性。本教学软件是在校园网的多媒体教学系统上开发的,凡是网络用户都可点播。 (2)交互性。本教学软件设计了良好的用户界面,采用多媒体交互模型开发,可以自动演示;也可以控制程序单步执行;可以返回上一步执行或重复当前步骤。因此,学习进度、学习内容、学习方式由学生自由选择,还可以通过网络软件所设置的BBS论坛与教师进行交流,与同学相互探讨。 (3生动性。系统采用了动态图形和声音同步解说,将教师影像和教师的电子讲义同步播放,充分利用文本、图形、图像、动画、声音等多媒体手段,使教学活动生动有趣。再通过练习、习题、测试、过级的层次性,不断激发学生的进取精神和求知欲。 (4)开放性。系统设计坚持人性化的原则,用户只需通过操作鼠标就可以进入多媒体课件的各章节,随心怕欲地选择需要学习的知识点。同时,CAI课件还可以不断添加新内容,增加题库和知识点等,使内容不断丰富。 3 软件组成 一般多媒体程序的深度不会超过三层,否则不利于程序开发,也不利于用户浏览使用,本软件只建立了两层结构,第一层由四个大单元组成。四个大单元分别为:基础篇、练习篇、测试篇、过级篇。第二层由多个小单元组成,其中基础篇、实践篇、测试篇根据《计算机应用》教材内容按章节进行编排讲解;过级篇根据学校对各种层次学生的要求进行选择,整个软件结构清晰,便于各种学习层次的学生学习。 金字塔型整体框架 基础篇是:介绍本章的基本概念、基本理论、及基本操作等知识,高职生与中职生可以选学有关内容。 实践篇是:对每一章的相关内容进行实验操作。无论是中职教材还是高职教材都安排了一些实验,这里安排了20个实验供学生使用。 测试篇是:对教材的每一章习题进行解答,并建有动态试题库让学生进行在线自我测试。学生可以知道自己对每一章内容的掌握程度。 过级篇是:由于各省市教育行政管理部门都有自己的过级要求,根据中职与高职各要求的不同,设计了各类过级考试模拟试题,用以检验学生自己的水平。 4 多媒体制作 本软件采用作为多媒体软件开发平台,是由Macromedia新推出的功能非常强大的多媒体制作软件,是目前多媒体软件开发中最流行的开放式开发平台,其主要功能和特点包括:基于流程式的创作方式,提供有关图、文、动画的直接创作处理能力,具有多种交互作用的功能,具有动态链接功能,提供库和模块功能,提供多平台及网络支持等,利用Authorware提供的ShockWave技术可以将作品分段和压缩,这样可直接将作品发布到网上去。因此,Authorware在多媒体软件制作方面有着广泛的应用。 软件中声音的处理 本软件声音为教师讲课时的声音录制而成,声音的录入使用WIN98下的录音机,由麦克风输入的话音经声音技术处理后与背景MIDI音乐合成,网上播放的背景音乐是可选的。 声音的播放采用VB的多媒体控制部件MCI和API函数,使用MCI控件时需要将两个高级接口函数声明: Declare Function Mciexecute Lib “mmsystem”(Byval mci_command As string) As Integer Declare Function Mcisendstring Lib “mmsystem” (Byval mci_command As string,Byval handle As Integer As Integer)As long 这两条语句可以在/WINAPI/中找到,然后利用copy+paste加入程序即可。 在使用多媒体软件播放系统进行声音播放时,的声音图标不支持MIDI音乐播放,可以通过MCISend和MCIExecute函数送MCI命令来控制MIDI音乐的播放。 图像制作 利用扫描仪、数码像机制作的图片,通过photoshop、photostyle等图像处理软件进行图像的校正、调整、加工和转换得到所需的图片。 本软件在图像处理上除了传统的处理方法外,还利用了一些技巧:1)在扫描图片时根据实际所需图片大小决定扫描图片的尺寸,这样可以保证所需要使用的图片容量与清晰度最佳;2)采用位图方式来捕获屏幕图图像,先把获取的图像临时保存到内存里,然后把位图中的图像数据取出来进行处理;3)教学软件中的各类箭头、标注较多,直接在程序中绘制有困难,因此,软件中采用WORD得到图片,然后在“画笔”中进行修改。 动画制作 (1)采用3DMAX制作.AVI动画,然后在Video for windows 中采用VidEdit 进行修改编辑。 (2)直接现场录制教师讲课场景,通过屏幕图像压缩技术,转化为MPEG文件进行播放。为使用户方便视频观看,系统提供暂停、开始/继续、播放位置任意帧定位等技术 (3)通过编程实现一些简单的动画。 (4)利用Active X控件把.GIF画片加入工具箱,然后在程序中引用形成动画。 5 网络应用平台设计 本软件采用实现超文本结构,使用者可以根据自己的喜好选择学习内容和学习路径,使系统适应学生的学 习心理。为了使Authorware编写的软件在Internet上发布,先将Authorware设计的软件打包成.app文件格式,这种文件类型构成了可以发布到Internet上的MIME文件。 本软件采用Internet的client/server模式实现用户浏览,客户端软件通过TCP/IP网络协议和服务端软件通讯协同完成任务。由于需要同时传输音频流、视频流和屏幕图像流,这些媒体必须完成同步,我们使用RSTP作为控制协议,传输协议使用TCP,然后利用流中的时间作为参数,最终在客户端完成同步播放。 6 结束语 在校园网上,使用多媒体《计算机应用》教学CAI系统,将一种图、文、声像并茂的学习场景呈现在学生面前,充分激发学生的学习兴趣和提高学生的接收能力,利用好的学习手段达到一种很好的学习效果。不但《计算机应用》课程可以开发多媒体CAI系统,其它课程也可以进行研发。充分利用教学资源,研发大量的多媒体课件,当前的教学改革将会是一片阳光灿烂。 参考文献 [1]王纪成,赵军等。PC多媒体应用指南 北京:清华大学出版社。1999年 [2]郭启翔,温立,Authorware多媒体创作教程。广州:华南理工大学出版社,1996年 [3]邓宁丰,王伟等。Authorware 实用教程。北京:北京希望电子出版社2002仅供参考,请自借鉴希望对您有帮助

去google(谷歌)里面随便就找到了。

生于战火之中,黄令仪年幼立志报效国家

1936年黄令仪出生于广西南宁一个高级知识分子家庭,家境良好,父亲是广西博物馆创始人,学识渊博,母亲曾任职于广西化学研究馆,如果是处于和平年代,黄令仪一定会拥有一个非常幸福的童年, 然而20世纪30年代是一个动荡的年代,黄令仪出生时正值于抗日战争爆发初期。

随着战争范围的不断扩大,敌军逐渐深入腹地,无数中国家庭饱受战火的摧残,黄令仪的童年生活得并不安稳,为了躲避敌军的袭击,年幼的她时常跟随父母四处逃难,无情的战火夺去了无数人的生命,黄令仪曾亲眼看着自己的同胞被敌军的炮火击中,战争的残酷永远印刻在她的脑海中,这是一段不可磨灭的记忆。

抗日战争结束后,中国人民的生活逐渐平稳,生活水平也进一步提高,黄令仪也步入学校的大门, 她学习刻苦,成绩优秀,对数理化有着浓厚的兴趣,黄令仪曾在回忆录中写到正是由于新中国的成立,祖国经济水平的不断发展,她才能够在学校无忧无虑的学习,黄令仪对祖国的赤子之心促使她自小便树立起报效祖国的伟大理想

新中国成立初期,百废待兴,国家也重点培育 科技 人才,为高新技术产业的发展做准备。 1958年黄令仪以优异的成绩毕业于华中工学院,她的理科成绩备受老师的称赞,随后前往清华大学半导体专业深造,当时清华大学的半导体专业是祖国为了发展科学事业创立的新学科,广招各高校优秀毕业生。

1960年黄令仪在清华顺利完成学业,她对半导体的研究经过淬炼变得更加深入与透彻,扎实的学术功底和对梦想的追求令黄令仪有信心在半导体领域有所发展和突破。 随后她返回母校, 在教书育人的同时创建了国内首个半导体实验室, 虽然实验室的环境简陋,但是黄令仪和她的团队却充满着热情,最终半导体二极管被成功研制。

黄令仪在微电子领域超强的天赋受到国家的重视, 1962年黄令仪进入中科院计算所工作。1965年8月,计算机二所应运而生,这是中国第一个芯片研究团队, 才华横溢的黄令仪被委以重任,她负责研制半导体三极管,这对黄令仪来说是一个挑战也是一个考验,她斗志昂扬,每天都在试验室进行研究。

呕心沥血,成功研制出半导体三极管,随后步入艰难的芯片研发之旅

半导体三极管的研究难度要远远高于半导体二极管的研制,黄令仪没日没夜地奔赴在研究的最前线,她和团队坚定信心,立志要以最快的速度完成任务,最终在黄令仪的带领下,一年不到的时间半导体三极管成功问世, 1966年8月我国自行研制的空间计算机成功问世。

1973年中科院决定研制大型通用计算机,作为集成电路上的载体,芯片被广泛应用于各个领域,对国家 科技 发展有着重要的意义。 世界各国都对芯片的研究投入了大量的资金和力量,尤其是美国等发达国家,凭借着自身的优势在芯片领域不断突破,而有关于芯片的研发成果也属于机密。

黄令仪及其她的团队为了能够尽快研制出性能稳定的存储器,夜以继日地在实验室研究,当然黄令仪知道这是一项艰巨的任务,也是一项伟大的工程,她们在和时间赛跑,也是在和自己赛跑。为了祖国的荣誉,黄令仪带领团队一点一点地摸索,终于将存储器研制成功, 她们研制的芯片也即将到达世界先进水准,并在1978年赢得全国科学大会重大成果奖。

黄令仪跑赢了时间,却败给了现实,1984年,就在晶体管研发有所突破时,中科院却就研究大规模集成电路进行讨论 ,在会上黄令仪坚定地表明计算所的芯片研究工作至关重要, 然而会议最终的结果却是结束大规模集成电路项目,因为中科院经费紧张,无法支持芯片研究工作 ,黄令仪只能心痛的接受这个结果,那一天她失声痛哭,十几年的研究心血仿佛都失去了意义。

在上级的安排下,黄令仪及其团队成员服从安排,被调往其他部门工作,然而黄令仪的心中却依然记挂着中国的芯片发展。 1989年,50岁的黄令仪受邀去参加美国举办的国际芯片展览会,她看到很多国家的芯片被展示。

欧美国家的先进芯片几乎占据了全场的焦点,但却没有看到中国的芯片被展示出来,只看到几个来参观学习的国人,那一刻,黄令仪的内心无比触动, 因为她知道1963年我国集成电路研究水平几乎与国外同步,而现在却有着如此大的差距 ,自那一天起,黄令仪重燃斗志,决心设计出国产高水平芯片,为祖国的荣誉而战。

潜心研制芯片,加入“龙芯课题组”,研制真正中国芯

1990年,黄令仪潜心研制各种集成电路的方法,她带领团队研制出多种类型的芯片还获得了专利,并且在2000年德国纽伦堡举办的国际发明博览会上,中国芯片荣获银奖 ,这让她十分高兴,但是也引发了她更多地思考,黄令仪想要研究出实用性更强,技术水平更高的芯片。

个人的力量是有限的,团体的力量是强大的, 2002年,已经66岁的黄令仪见到了中科院计算所的教授胡伟武,也是龙芯总设计师,他毕业于中科大计算机系,对计算机有着浓厚的兴趣,同时他与黄令仪一样立志要做出真正的“中国芯”。

胡伟武最初想要进入中科院计算所的初心便是因为他听说计算所会研制计算机,但是等他进入的时候才发现,他没有赶上时代,计算所已经不造计算机了。可以说胡伟武错过了那个制造计算机的时代,但是他却等到了那个年代天才的科学家黄令仪。

当胡伟武听说黄令仪老师即将退休时,他毅然地邀请黄令仪进入“龙芯课题组”参与芯片研制工作 ,黄令仪也被胡伟武的信念所打动, 因为实现中国的“芯片自由”是她一直以来的梦想。

“龙芯课题组”于2001年在胡伟武的组织和筹办下成立,目的就是为了实现中国芯片的自主创新 ,加入 “龙芯课题组” 之后,黄令仪被这群有着伟大梦想和坚毅信念的年轻人所感染,一直以来,她都为曾经因经费中断而错过的芯片研制工作而遗憾,但是黄令仪坚信这一次她一定可以成功。

长期的高压工作让黄令仪的身体变得虚弱,然而黄令仪却时刻挂念着龙芯芯片的进程,忧心如焚,她毅然奔赴在研究的最前线,那一张纸枯燥的图纸,复杂的处理公式在她的眼中就是最好的镇定剂。

龙芯芯片相继问世,中国芯片技术稳步提升

2002年8月10日,“龙芯1号”研制成功,终结了中国计算机系列“无芯”的 历史 ,这让黄令仪无比开心,但是她深知与西方发达国家相比,这只是一个开始,为了能够让中国自主研发的芯片达到世界先进水平,黄令仪团队继续向前,开拓创新, 研制“龙芯2号”也已经提上日程。

2003年,就在黄令仪团队研制“龙芯2号”的初始阶段时,无情的“非典”爆发了 ,全世界人民都处于抗击非典的特殊时刻,国家的经济运行也受到影响,为了能够按时完成任务,黄令仪团队咬牙坚持。

2005年,“龙芯2号”研制成功,龙芯系列开创了我国计算机核心技术对外授权的先例,并取得了巨大的经济利益 ,这为龙芯后续的研发提供了强大的资金支持,也说明了龙芯系列在全球市场拥有一定的市场占有率。

相对于“龙芯1号”和“龙芯2号”的研发之路,“龙芯3号”的技术难度显著提升 ,历经多次失败。但是为了不让国外资本主义家垄断中国芯片市场,必须要研制出更高水平的芯片。

2018年,“龙芯3号”被研制成功,82岁的黄令仪证明了中国芯片技术更上一层楼 ,很好打开了中国的芯片市场,让我国节省了几万亿元向国外购买芯片的钱, 同时“龙芯3号”的诞生也给我国的高铁、北斗导航等保驾护航,让国产技术成为保护祖国的屏障,摆脱欧美等发达国家在芯片方面对我国的牵制。

芯片制造被誉为“现代经济的心脏”掌握芯片技术就把握了信息产业的脉搏, 黄令仪实现了她多年的心愿,进一步摆脱欧美等发达国家对中国芯片产业的控制,也证明了的中国科研实力。 2020年1月,黄令仪成为CCF夏培肃奖项的获得者 ,她的一生都在为我国芯片技术的发展而拼搏。

一块小小的芯片凝聚着中国最前沿的科研力量,中国的芯片发展之路虽然并不平坦,但在我国科学家的潜心努力下,已经逐渐赶上发达国家的制作水平,路在脚下,志在心中,年轻一代的科学家已经逐渐成长,未来中国芯的研发之路必将群英汇集,愈发璀璨。

这期内容就到这里结束了,关注本账号 ,继续带你观察这个光怪陆离的大千世界。

参考文献:

[1]《黄令仪:为“中国芯”倾尽一生》,时代邮刊,2021年3月16日.

[2]《提升国产芯片自主创新能力》,经济日报,2021年7月19日.

有关芯片制造的论文

因为在 科技 圈发生的各种问题,比如华为等企业被美国供断芯片,国内一度为芯片供应问题而一筹莫展,很多人也因此知道了芯片的重要性的世界芯片的格局。在芯片的制作方面,传统硅基芯片制造必定需要光刻机,纳米制程越小难度就越大,对光刻要求也就越高。虽然在高 科技 领域,我国已跻身前列,然而在芯片制造、光刻机等方面却是非常薄弱的,所以现在就因为光刻机的问题让中国芯片在制造上举步维艰。但是中国在世界上也不缺少顶尖 科技 ,其中一个就是量子技术,那么到底能不能利用量子技术直接让芯片的发展绕开光刻方面的封锁呢? 从理论上说,量子芯片是可以绕开传统硅基芯片制造必备的光刻机,量子芯片是将量子线路集成在基片上,通过量子碰撞技术以进行信息的处理和传输,制造方面完全用不到光刻机。 中国科研人员主导的国际团队在美国《科学进展》期刊上发表了一篇论文,论文中提到团队已经研发出了一种新型可编程光量子芯片,可实现多种图论问题的量子算法求解,这种新型可编程的光量子芯片,被外界看做是跳过光刻机的办法之一。该芯片采用硅基集成光学技术,通过微纳加工工艺在单个芯片上集成大量光量子器件,对实现量子信息的编码和量子算法的映射,具有高集成度、高稳定性、高精确度等优势。这种新型光量子芯片虽然也是采用微纳加工工艺,但主要是在单个芯片上集成大量光量子器件,由于生产原理上的不同,所以可以绕开光刻机的限制。 虽然量子技术取得了一定的成就,但到投入商业应用还需要走一段路。一旦量子芯片成功商用,量子芯片跳过光刻机,而不依赖它,芯片制造领域将迈进一个新的里程,那么光刻机对于我们来说也就不那么重要了,我们在芯片制造上也将告别过去被卡脖子的尴尬境况。

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装 70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 1.适合PCB的穿孔安装; 2.比TO型封装(图1)易于对PCB布线; 3.操作方便。 DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。 衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。 Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装 80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。 以焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 1.适合用SMT表面安装技术在PCB上安装布线; 2.封装外形尺寸小,寄生参数减小,适合高频应用; 3.操作方便; 4.可靠性高。 在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装 90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。 BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: 引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 2.虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 3.厚度比QFP减少1/2以上,重量减轻3/4以上; 4.寄生参数减小,信号传输延迟小,使用频率大大提高; 5.组装可用共面焊接,可靠性高; 封装仍与QFP、PGA一样,占用基板面积过大; Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术 BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。 1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 1.满足了LSI芯片引出脚不断增加的需要; 2.解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 3.封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。 曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 1.封装延迟时间缩小,易于实现组件高速化; 2.缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 3.可靠性大大提高。 随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

单片机毕业论文答辩陈述

难忘的大学生活将要结束,毕业生都要通过最后的毕业论文,毕业论文是一种有计划的检验大学学习成果的形式,那么毕业论文应该怎么写才合适呢?以下是我为大家收集的单片机毕业论文答辩陈述,仅供参考,希望能够帮助到大家。

单片机毕业论文答辩陈述

各位老师好!我叫刘天一,来自**,我的论文题目是《基于AVR单片机的GSM—R基站天线倾角测量系统》。在这里,请允许我向宁提纲老师的悉心指导表示深深的谢意,向各位老师不辞劳苦参加我的论文答辩表示衷心的感谢。

下面我将从论文的背景意义、结构内容、不足之处三个方面向各位老师作一大概介绍,恳请各位老师批评指导。

首先,在背景和意义上,移动通信网络建设初期,基站站间距大、数量少、站型也不大,并且频率资源相对比较丰富。在这一阶段的网络规划时很少对天线的倾角做详细的规划,基站功率常常以满功率发射。对于越区覆盖则主要通过增加邻区的办法予以解决。

但随着网络的迅速发展,城市中的基站越来越密集,在一个中等城市通常分布着数十个基站,在省会城市更是达到了数百个基站之多,并且基站的密度越来越高,站型也越来越大,如果对越区覆盖的问题仍然釆用老办法解决,那么网络质量将难以保证。因此有必要在规划阶段就对基站天线的倾角、基站静态发射功率等进行更加细化合理的规划,从而减轻优化阶段的工作量。

合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围,而且可以加强本基站覆盖区内的信号强度。通常天线下倾角的设定有两方面侧重,一方面侧重于干扰抑制,另一方面侧重于加强覆盖。这两方面侧重分别对应不同的下倾角算法。一般而言,对基站分布密集的地区应该侧重于考虑干扰抑制(大下倾角);而基站分布比较稀疏的地方则侧重于考虑加强覆盖(小下倾角)。

规划阶段进行的倾角设计,在实际施工过程中会出现一定的偏差,在使用的过程中,由于季节变化或风、雨、雪、温度、湿度等自然条件影响,基站天线倾角会发生变化,进而影响场强质量。而移动通信已经是人类日常生活中不可或缺的一部分,正常的通信离不开基站的建设与维护,因此,基站天线倾角的实时、精确测量就显得尤为重要了。但现阶段移动通信基站的天线方位角、下倾角等基本是依靠人工现场通过罗盘、坡度仪等仪器进行测量得到的,而且由于基站的数量巨大,因而测量耗费了大量的时间、人力、物力,并且存在较大的测量人员人身安全隐患。因此,实现一种省时、省力的自动化测量仪器是非常亟需的。

为此,拟研发GSM—R基站天线倾角测量系统,实现不登塔作业即可完成基站天线倾角的测量工作,并可对各基站测试点进行联网,实现对基站天线倾角的实时监测。本系统可以大大降低GSM—R系统现场维护作业的人身安全风险和作业难度、强度,具有很高的实用性和安全性。

其次,在结构内容上,论文主要对基站倾角测量系统进行设计,主要研宄内容为:

(1)根据控制要求,选用倾角测量模块;学会使用并通过使用手册深入学习其特性及原理。

(2)采用ATmegal62作为控制芯片,进行倾角测量系统的硬件电路设计。整个系统分为主板和从板,通过芯片内置的TWI串行总线传输接口进行通信,由主板将数据通过无线模块发送给手持终端。

(3)采用JZ863数传模块,将其与上位机控制芯片、下位机控制芯片的异步串行接收/发送器USART连接,进行上位机与下位机的无线数据通信。

(4)在硬件平台基础上根据模块化思想进行倾角测量系统的软件程序设计。

(5)在设计好的软硬件平台上进行相关实验,实现控制系统设计目标和要求。

本文各章节安排如下:

第1章“引言”,对倾角测量系统进行了简要概述,介绍了研宄背景,并对本文的内容作了简介。

第2章“倾角测量传感器”,主要分析了本系统比较重要的倾角测量模块的原理以及SCA100T—D01倾角测量芯片,对其各个引脚的功能以及通信协议等进行了阐述,为后面的具体实现打下了基础。

第3章“ATmegal62微处理器结构及原理”,分析了本毕设使用的核心单片机芯片ATmegal62,包括它的各个引脚以及I/O端口,并且分析了本论文主要使用的通信协议,即同步串行SPI接口和USART串行口。

第4章“倾角测量系统软硬件实现”,本章首先对系统的总体设计进行了实现,包括主要的技术指标、主要的功能模块等。接着进行了本系统的硬件实现和软件实现。硬件实现包括各个功能模块的具体电路设计以及最后的PCB电路板制作,软件实现包括各个功能模块的程序设计。

第5章“倾角测量系统调试及实验”,本章主要进行了硬件电路的调试,并介绍了通过AVR Studio进行软件仿真以及下载,最后在搭建的系统软硬件平台的基础上,进行调试和实验,以此来验证基站倾角测量系统的硬件与软件设计。

第6章“结论”,本章主要总结了本论文的研究结果,并阐述了系统的不足之处和对以后工作的展望。

最后,在不足之处上,这篇论文的写作以及修改的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行论文写作,但论文还是存在许多不足之处,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多。

[知识拓展]

论文答辩提问方式

在毕业论文答辩会上,主答辩老师的提问方式会影响到组织答辩会目的的实现以及学员答辩水平的发挥。主答辩老师有必要讲究自己的提问方式。

1、提问要贯彻先易后难原则。主答辩老师给每位答辩者一般要提三个或三个以上的问题,这些要提的问题以按先易后难的次序提问为好。所提的第一个问题一般应该考虑到是学员答得出并且答得好的问题。学员第一个问题答好,就会放松紧张心理,增强“我”能答好的信心,从而有利于在以后几个问题的答辩中发挥出正常水平。反之,如果提问的第一个问题就答不上来,学员就会背上心理包袱,加剧紧张,产生慌乱,这势必会影响到对后面几个问题的答辩,因而也难以正确检查出学员的答辩能力和学术水平。

2、提问要实行逐步深入的方法。为了正确地检测学员的专业基础知识掌握的情况,有时需要把一个大问题分成若干个小问题,并采取逐步深入的提问方法。如有一篇《浅论科学技术是第一生产力》的论文,主答辩老师出的探测水平题,是由以下四个小问题组成的。

(1)什么是科学技术?

(2)科学技术是不是生产力的一个独立要素?在学员作出正确回答以后,紧接着提出第三个小问题:

(3)科学技术不是生产力的一个独立要素,为什么说它也是生产力呢?

(4)你是怎样理解科学技术是第一生产力的?通过这样的提问,根据学员的答辩情况,就能比较正确地测量出学员掌握基础知识的扎实程度。如果这四个小问题,一个也答不上,说明该学员专业基础知识没有掌握好;如果四个问题都能正确地回答出来,说明该学员基础知识掌握得很扎实;如果能回答出其中的2—3个,或每个小问题都能答一点,但答得不全面,或不很正确,说明该学员基础知识掌握得一般。倘若不是采取这种逐步深入的提问法,就很难把一个学员掌握专业基础知识的情况准确测量出来。假如上述问题采用这样提问法:请你谈谈为什么科学技术是第一生产力?学员很可能把论文中的主要内容重述一遍。这样就很难确切知道该学员掌握基础知识的情况是好、是差、还是一般。

3、当答辩者的观点与自己的观点相左时,应以温和的态度,商讨的语气与之开展讨论,即要有“长者”风度,施行善术,切忌居高临下,出言不逊。不要以“真理”掌握者自居,轻易使用“不对”、“错了”、“谬论”等否定的断语。要记住“是者可能非,非者可能有是”的格言,要有从善如流的掂量。如果作者的观点言之有理,持之有据,即使与自己的观点截然对立,也应认可并乐意接受。倘若作者的观点并不成熟、完善,也要善意地、平和地进行探讨,并给学员有辩护或反驳的平等权利。当自己的观点不能为作者接受时,也不能以势欺人,以权压理,更不要出言不逊。虽然在答辩过程中,答辩老师与学员的地位是不平等的(一方是审查考核者,一方是被考核者),但在人格上是完全平等的。在答辩中要体现互相尊重,做到豁达大度,观点一时难以统一,也属正常。不必将自己的观点强加于人,只要把自己的观点亮出来,供对方参考就行。事实上,只要答辩老师讲得客气、平和,学员倒愈容易接受、考虑你的观点,愈容易重新审视自己的观点,达到共同探索真理的目的。

4、当学员的回答答不到点子上或者一时答不上来的问题,应采用启发式、引导式的提问方法。参加过论文答辩委员会的老师可能都遇到过这样的情况:学员对你所提的问题答不上来,有的就无可奈何地“呆”着;有的是东拉西扯,与你绕圈子,其实他也是不知道答案。碰到这种情况,答辩老师既不能让学员尴尬地“呆”在那里,也不能听凭其神聊,而应当及时加以启发或引导。学员答不上来有多种原因,其中有的是原本掌握这方面的知识只是由于问题完全出乎他的意料而显得心慌意乱,或者是出现一时的“知觉盲点”而答不上来。这时只要稍加引导和启发,就能使学员“召回”知识,把问题答好。只有通过启发和引导仍然答不出或答不到点子上的,才可判定他确实不具备这方面的知识。

【拓展】

单片机毕业论文开题报告参考

1. 课题名称:

数字钟的设计

近年来,随着单片机档次的不断提高,功能的不断完善,其应用日趋成熟、应用领域日趋广泛,特别是工业测控、尖端武器和日常家用电器等领域更是因为有了单片机而生辉增色,不少设备、仪器已经把单片机作为核心部分。单片机应用技术已经成为一项新的工程应用技术。尤其是Intel公司生产的MCS-51系列单片机,由于其具有集成度高、处理功能强、可靠性高、系统结构简单、价格低廉等优点,在我国得到了广泛的`应用,在智能仪器仪表机电一体化等方面取得了令人瞩目的成果。现在单片机可以说是百花齐放,百家争鸣,世界上各大芯片制造公司都推出了自己的单片机,从8位,16位,到32位,数不胜数,应有尽有由于主流C51兼容的,也有不兼容的,但他们各具特色,互成互补,为单片机的应用提供了广泛的天地。在高节奏发展的现代社会,以单片机技术为核心的数字钟越来越彰显出它的重要性。

3. 设计目的和意义:

单片机的出现具有划时代的意义。它的出现使得许多原本花费很高的复杂电路以及繁多的电气元器件都被取缔,取而代之的是一块小小的芯片。伴随着计算机技术的不断发展,单片机也得到了相应的发展,而且其应用的领域也得到更好的扩展。在民用,工用,医用以及军用等众多领域上都有所应用。为了,能够更好的适应这日新月异的社会,我们应当充实我们的知识面,方能不被时代的潮流踩在脚下。

介于单片机的重要性,我们应当对单片机的原理,发展以及应用有着一定的了解。所以,我们应当查阅相关资料,从而能够对单片机有个全方位的了解。进而将探讨的领域指向具体的国内,从而能够在科技与经济飞速发展的当今社会更好的应用这项技术。事实上,该项技术在国内有着极为广泛的发展前景,因此,通过对本课题的研究,我们因当能够充分认识到单片机技术的重要性,对单片机未来的发展趋势有所展望。

单片机的形成背景:

1.随着微电子技术的不断创新和发展,大规模集成电路的集成度和工艺水平不断提高。硅材料与人类智慧的结合,生产出大批量的低成本、高可靠性和高精度的微电子结构模块,推动了一个全新的技术领域和产业的发展。在此基础上发展起来的器件可编程思想和微处理(器)技术可以用软件来改变和实现硬件的功能。微处理器和各种可编程大规模集成专用电路、半定制器件的大量应用,开创了一个崭新的应用世界,以至广泛影响着并在逐步改变着人类的生产、生活和学习等社会活动。

2.计算机硬件平台性能的大幅度提高,使很多复杂算法和方便使用的界面得以实现,大大提高了工作效率,给复杂嵌入式系统辅助设计提供了物理基础。

3.高性能的EDA综合开发工具(平台)得到长足发展,而且其自动化和智能化程度不断提高,为复杂的嵌入式系统设计提供了不同用途和不同级别集编辑、布局、布线、编译、综合、模拟、测试、验证和器件编程等一体化的易于学习和方便使用的开发集成环境。

4.硬件描述语言HDL(Hardware Description Language)的发展为复杂电子系统设计提供了建立各种硬件模型的工作媒介。它的描述能力和抽象能力强,给硬件电路,特别是半定制大规模集成电路设计带来了重大的变革。

5.软件技术的进步,特别是嵌入式实时操作系统EOS(Embedded Operation System)的推出,为开发复杂嵌入式系统应用软件提供了底层支持和高效率开发平台。EOS是一种功能强大、应用广泛的实时多任务系统软件。它一般都具有操作系统所具有的各种系统资源管理功能,用户可以通过应用程序接口API调用函数形式来实现各种资源管理。用户程序可以在EOS的基础上开发并运行。

单片机的发展历史:20世纪70年代,微电子技术正处于发展阶段,集成电路属于中规模发展时期,各种新材料新工艺尚未成熟,单片机仍处在初级的发展阶段,元件集成规模还比较小,功能比较简单,一般均把CPU、RAM有的还包括了一些简单的I/O口集成到芯片上,它还需配上外围的其他处理电路方才构成完整的计算系统。类似的单片机还有Z80微处理器。

1976年INTEL公司推出了MCS-48单片机,这个时期的单片机才是真正的8位单片微型计算机,并推向市场。它以体积小,功能全,价格低赢得了广泛的应用,为单片机的发展奠定了基础,成为单片机发展史上重要的里程碑。

在MCS-48的带领下,其后,各大半导体公司相继研制和发展了自己的单片机。到了80年代初,单片机已发展到了高性能阶段,象INTEL公司的MCS-51系列,Motorola公司的6801和6802系列等等,此外,日本的著名电气公司NEC和HITACHI都相继开发了具有自己特色的专用单片机。

80年代,世界各大公司均竞相研制出品种多功能强的单片机,约有几十个系列,300多个品种,此时的单片机均属于真正的单片化,大多集成了CPU、RAM、ROM、数目繁多的I/O接口、多种中断系统,甚至还有一些带A/D转换器的单片机,功能越来越强大,RAM和ROM的容量也越来越大,寻址空间甚至可达64kB,可以说,单片机发展到了一个全新阶段,应用领域更广泛,许多家用电器均走向利用单片机控制的智能化发展道路。

1982年以后,16位单片机问世,代表产品是INTEL公司的MCS-96系列,16位单片机比起8位机,数据宽度增加了一倍,实时处理能力更强,主频更高,集成度达到了12万只晶体管,RAM增加到了232字节,ROM则达到了8kB,并且有8个中断源,同时配置了多路的A/D转换通道,高速的I/O处理单元,适用于更复杂的控制系统。

九十年代以后,单片机获得了飞速的发展,世界各大半导体公司相继开发了功能更为强大的单片机。美国Microchip公司发布了一种完全不兼容MCS-51的新一代PIC系列单片机,引起了业界的广泛关注,特别它的产品只有33条精简指令集吸引了不少用户,使人们从INTEL的111条复杂指令集中走出来。PIC单片机获得了快速的发展,在业界中占有一席之地。

随后的事情,熟悉单片机的人士都比较清楚了,更多的单片机种蜂拥而至,MOTOROLA公司相继发布了MC68HC系列单片机,日本的几个著名公司都研制出了性能更强的产品,但日本的单片机一般均用于专用系统控制,而不象INTEL等公司投放到市场形成通用单片机。例如NEC公司生产的uCOM87系列单片机,其代表作uPC7811是一种性能相当优异的单片机。MOTOROLA公司的MC68HC05系列其高速低价等特点赢得了不少用户。

1990年美国INTEL公司推出了80960超级32位单片机引起了计算机界的轰动,产品相继投放市场,成为单片机发展史上又一个重要的里程碑。

我国开始使用单片机是在1982年,短短五年时间里发展极为迅速。1986年在上海召开了全国首届单片机开发与应用交流会,有的地区还成立了单片微型计算机应用协会,那是全国形成的第一次高潮。截止今日,单片机应用技术飞速发展,我们上因特网输入一个“单片机”的搜 索,将会看到上万个介绍单片机的网站,这还不包括国外的。随着微电子技术的高速发展,单片机在国民经济的各个领域得到了广泛的应用。首先,单片机技术不断进步,出现了许多新的技术和新的产品。本文以Intel MCS-51系列单片机为模型,阐述单片机的一般原理、应用以及单片机的影响,较为详细地介绍当前主要单片机厂家的产品系列及发展动向。主要内容包括:单片机的基本原理、硬件结构、发展趋势以及具体的应用介绍。本文主要目的是想让大家对单片机有一个更为深入的了解。

科技的进步需要技术不断的提升。试想,曾经一块大而复杂的模拟电路花费了您巨大的精力,繁多的元器件增加了您的成本。而现在,只需要一块几厘米见方的单片机,写入简单的程序,就可以使您以前的电路简单很多。相信您在使用并掌握了单片机技术后,不管在您今后开发或是工作上,一定会带来意想不到的惊喜。

数字钟的发展:1350年6月6日,意大利人乔万尼·德·党笛制造了世界上第一台结构简单的机械打点多功能数字钟,由于数字钟报价便宜,功能齐全,因此很快受到众多用户的喜爱。1657年,荷兰人惠更斯率先把重力摆引入机械钟,进而才创立了摆钟。

到了20世纪以后,随着电子工业的快速发展,电池驱动钟、交流电钟、电机械表、指针式石英电子钟表以及数字显示式石英钟表相继问世,数字钟报价非常合理,再加上产品的不断改良,多功能数字钟的日差已经小于秒,因此受到广大用户的青睐。尤其是原子钟的出现,它是使用原子的振动来控制计时的,是目前世界上最精准的时钟,即使经过将近100万年,其偏差也不可能超过1秒钟。

多功能数字钟最早是在欧洲中世纪的教堂,属于完全机械式结构,动力使用重锤,打点钟声完全使用人工进行撞击铸钟,所以当时一个多功能数字钟工程在建筑与机械结构方面是非常复杂的,进而影响了数字钟报价。进入电子时代以后,电子多功能数字钟也相继问世。我国电子多功能数字钟行业从80年代开始渐渐成长壮大,目前不仅数字钟报价合理,在技术和应用水平上也已经达到世界同类水平。

4. 国内外现状和发展趋势:

纵观单片机的发展过程,可以预示单片机的发展趋势,大致有:

1.低功耗CMOS化

MCS-51系列的8031推出时的功耗达630mW,而现在的单片机普遍都在100mW左右,随着对单片机功耗要求越来越低,现在的各个单片机制造商基本都采用了CMOS(互补金属氧化物半导体工艺)。象80C51就采用了HMOS(即高密度金属氧化物半导体工艺)和CHMOS(互补高密度金属氧化物半导体工艺)。CMOS虽然功耗较低,但由于其物理特征决定其工作速度不够高,而CHMOS则具备了高速和低功耗的特点,这些特征,更适合于在要求低功耗象电池供电的应用场合。所以这种工艺将是今后一段时期单片机发展的主要途径。

2.微型单片化

现在常规的单片机普遍都是将中央处理器(CPU)、随机存取数据存储(RAM)、只读程序存储器(ROM)、并行和串行通信接口,中断系统、定时电路、时钟电路集成在一块单一的芯片上,增强型的单片机集成了如A/D转换器、PMW(脉宽调制电路)、WDT(看门狗)、有些单片机将LCD(液晶)驱动电路都集成在单一的芯片上,这样单片机包含的单元电路就更多,功能就越强大。甚至单片机厂商还可以根据用户的要求量身定做,制造出具有自己特色的单片机芯片。

此外,现在的产品普遍要求体积小、重量轻,这就要求单片机除了功能强和功耗低外,还要求其体积要小。现在的许多单片机都具有多种封装形式,其中SMD(表面封装)越来越受欢迎,使得由单片机构成的系统正朝微型化方向发展。

3.主流与多品种共存

现在虽然单片机的品种繁多,各具特色,但仍以80C51为核心的单片机占主流。所以C8051为核心的单片机占据了半壁江山。而Microchip公司的PIC精简指令集(RISC)也有着强劲的发展势头,中国台湾的HOLTEK公司近年的单片机产量与日俱增,与其低价质优的优势,占据一定的市场分额。此外还有MOTOROLA公司的产品,日本几大公司的专用单片机。在一定的时期内,这种情形将得以延续,将不存在某个单片机一统天下的垄断局面,走的是依存互补,相辅相成、共同发展的道路。

器官芯片毕业论文

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装 70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 1.适合PCB的穿孔安装; 2.比TO型封装(图1)易于对PCB布线; 3.操作方便。 DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。 衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。 Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装 80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。 以焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 1.适合用SMT表面安装技术在PCB上安装布线; 2.封装外形尺寸小,寄生参数减小,适合高频应用; 3.操作方便; 4.可靠性高。 在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装 90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。 BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: 引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 2.虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 3.厚度比QFP减少1/2以上,重量减轻3/4以上; 4.寄生参数减小,信号传输延迟小,使用频率大大提高; 5.组装可用共面焊接,可靠性高; 封装仍与QFP、PGA一样,占用基板面积过大; Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术 BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。 1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 1.满足了LSI芯片引出脚不断增加的需要; 2.解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 3.封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。 曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 1.封装延迟时间缩小,易于实现组件高速化; 2.缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 3.可靠性大大提高。 随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

在研制新型处方药和解毒剂的早期阶段,研究人员会进行大量动物实验。实际上,动物实验不仅成本高耗时长,而且动物身体与人类身体的生理机能不同,研究人员也无法从中得到对人体完全有效的数据。即便能进行人体实验,某些实验结果将损害被测试者的健康,不符合人道准则,法律禁止这样的实验。

在不进行动物实验或人体实验的情况下,有没有一种方法让科学家了解害化学物质、病毒或毒品对人体产生的影响,并获得准确的人体实验数据?

为了实现上述目的,美国劳伦斯利物莫国家实验室正在研制一套“人体芯片”;这套芯片是一套微型人体器官复制品,综合运用了生物学和工程学技术,将微流体技术和多电极阵列技术相结合。

人体芯片使用聚合物这样的合成材料制造。此类材料制造的器官芯片可能是透明的,可以使用显微镜来观察细胞情况。器官芯片采用人体细胞培养,结构十分精细。只要具备合适的条件,芯片内的人体细胞能自然地生长,就像在人体内一样;这些细胞的功能及对外来刺激的反应也和在人体内一样。微流体的技术被用来向器官芯片里的细胞提供营养,向细胞注入与血液成分类似的液体。值得注意的是,器官芯片不含有完整器官,只是将相关器官的细胞培植在芯片里。

劳伦斯利物莫国家实验室的人体芯片项目被称为iCHIP平台,由四个生物学系统组成:中央神经系统(大脑)、外周神经系统、血脑屏障系统和心脏系统。

戴夫·欶斯卡是劳伦斯利物莫国家实验室的工程师,也是iCHIP平台的“大脑芯片”研制团队的领导人之一,大脑芯片是模拟人体中央神经系统的装置。戴夫·欶斯卡说道:“这是一个测试平台,用来检测各种新药。只要研究人员有一套类似人体环境的系统,研究人员就用不着进行周期冗长的动物实验,动物实验提供给我们的信息不一定与人体相关。”

劳伦斯利物莫国家实验室研发团队将他们的精力主要用来研究人体大脑;他们试图弄明白神经元如何互动,对化学刺激会产生怎样的反应,例如大脑受到咖啡因、阿托品、辣椒素以及其他化学物质等激后的反应。

iCHIP平台将多种脑细胞以混合方式培植在一个装置里。为了研究人体大脑,初级神经元被植入一个微电极阵列装置,该装置能模拟人体大脑的四个区域(海马区、丘脑区、基底神经节和脑皮层)。在脑细胞长成后,将一种化学物质(例如阿托品)注入微电极阵列,神经元的生物电活动情况将被记录下来。

欶斯卡表示:这种装置的理念就是让观察到大脑更复杂的整体反应,我们之前无法做到这一点;初步结果显示海马区细胞和脑皮层细胞能在芯片里存活数月,这些细胞的反应将被记录并予以分析。

人体内有一套被称为血脑屏障的重要机制,该机制能在化学物质或毒物抵达中央神经系统之前,对这些物质进行过滤,这是人体的重要功能之一。劳伦斯利物莫国家实验室的工程师莫妮卡·莫亚领导的研发团队试图利用iCHIP平台复制出人体血脑屏障。莫亚他们使用的装置采用微管和微流控芯片(该芯片采用微型蚀刻管道而不是微管)来模拟血液流经大脑。莫亚的研发团队用咖啡因和其他化学物质对该装置进行了测试,以确保该装置正常工作以及装置内的细胞对这些物质反应与人体大脑一致。

莫亚说道:血脑屏障是大脑的门卫,让血液里的营养物质进入大脑,阻止潜在的有毒物质进入大脑;但血脑屏障的功能太过有效,可能阻止了一些治疗药物进入中央神经系统。一套真实的人体实验血脑屏障模型将有助于研究人员研究血脑屏障的渗透性;作为一套用于药物研发的体外模型,iCHIP平台的用途让人难以想象。研制iCHIP平台能促进新型癌症药品和疫苗的研发以及提高对生物武器防御措施功效评估的准确性。

科学家希瑟·恩赖特是外围神经系统研究团队的领导人,外围神经系统是将大脑与四肢及其他器官连接的神经系统。外围神经系统装置是多个微电极阵列嵌在玻璃上,微电极阵列内植入了脊椎神经细胞。类似与辣椒素这样的化学物质(用于研究疼痛反应)就能通过一个小型精确泵注入iCHIP平台,以刺激微电极阵列里的神经细胞。

微电极将记录神经细胞发出的电信号,能在不损伤神经细胞的情况下,让研究人员观察神经细胞对刺激做出的反应。与现有技术相比,iCHIP平台的这项技术极具优势。恩赖特表示:“像iCHIP平台这样的多电极阵列研究方式能让研究人员对神经细胞进行多次观察实验,研究人员能最大限度地从中获取数据。当对初级人体细胞进行测试时,iCHIP平台的这种功能显得尤为重要。例如,当研究人员观测人体细胞暴露在未知化学物质反应,细胞暴露数小时的反应与暴露数周乃至数月的反应是不同的。iCHIP平台提供了一种评估人体细胞在一段时期内的健康程度和功能变化的无损观察方法。”

此外,劳伦斯利物莫国家实验室早期还进行过在一个芯片上复制心脏的研究。在电刺激下,芯片上的心肌细胞成功地进行了跳动,研制心脏芯片的目的就是同时对心肌细胞的电生理学和运动进行研究。

伊莉莎白·惠勒是iCHIP研发团队的主要研究员,按照她的说法,iCHIP研发团队下一步将整合各个系统,从而建立一套完整的测试平台,用于研究某些基础科学问题;最终建立一个完整的人体平台,i不仅能为疫苗提供相关人体数据,还能为了解疾病机制提供有价值的信息。在将来某一天,从人体芯片系统得到的信息将用于研制定制药品。”

要停止全部动物实验和人体实验,仅仅依靠器官芯片就取得准确的实验数据,研究人员还有有一段很长的路要走,可能还得耗费十多年时间。在现阶段,一些生物医药机构还无法得到适用的器官芯片。人体免疫系统对外来物质的反应是一种相当复杂的过程,尤其是人体神经系统对药物的反应。随着相关技术的改进和研究人员对器官芯片更深的了解,越来越多的实验动物将被器官芯片取代。

  • 索引序列
  • 关于芯片的毕业论文
  • 关于芯片论文范文资料
  • 关于芯片发展的外国文献论文
  • 有关芯片制造的论文
  • 器官芯片毕业论文
  • 返回顶部