首页 > 学术论文知识库 > 研究水基泡沫稳定性的论文

研究水基泡沫稳定性的论文

发布时间:

研究水基泡沫稳定性的论文

孙晗森1贺承祖2

(1.中联煤层气有限责任公司 北京 100011;2.成都理工大学 成都 610059)

作者简介:孙晗森,1973年生,男,浙江义乌入;1998年毕业于成都理工大学石油系,获工学硕士;中联煤层气有限责任公司,高级工程师,从事油气藏数值模拟和增产改造技术研究;地址:北京安外大街甲88号,邮编:100011;E-mail:hssun 。

攻关项目:国家科技部“十五”科技攻关项目部分成果。

摘要 氮气泡沫压裂工艺技术特别适用于低压、低渗和水敏性地层(煤层)的压裂改造。研究表明,泡沫压裂液中作为稳泡剂的高分子聚合物和某些作为起泡剂的表面活性剂均可能损害煤储层,影响压裂效果。本文提出一种新的粘弹性表面活性剂泡沫压裂液。通过室内实验研究及现场应用试验,优选出的氮气泡沫压裂液具有性能好,施工后无需破胶即可排液,对煤层损害小的优点;现场应用后可达到明显的增产效果。

关键词 煤储层 氮气泡沫 压裂液 表面活性剂 现场应用

Study and Experiment on Nitrogen Foam Stimulation Technology for CBM

Sun Hansen,He Chenzhu

( United Coalbed Methane Corp.,Ltd,Beijing 100011; University of Technology,chengdu 610059)

Abstract:Nitrogen foam stimulation technology particularly applies to stimulation operations of coal seams with low pressure,low permeability and water researches indicate that macromolecular polymers as steady agent of bubble and certain surface-active agents as generating agent of bubble in foam fracture liquid may damage coal reservoir and produce negative effects on new type of nitrogen foam fracture liquid called visco-elastic surface-active agent was introduced in this optimized nitrogen foal fracture liquid through indoor study and field application test not only has good physical performance and virtues of low damage to coal seams,but also can produce liquid without glue-broken agent after stimulation application of this type of nitrogen foam fracture liquid in the practical operations of CBM fields showed very obvious stimulation results.

Keywords:coal reservoir;nitrogen foam;fracture liquid;surface-active agent;site application

前言

煤层具有致密、低压、低渗的特点,必须经过压裂之后才能获得有工业价值的产量[1]。压裂液的种类很多,其中以泡沫压裂液因其含液量小,易排,对储层损害小,认为较适合煤层[2,3]。研究表明,泡沫压裂液中作为稳泡剂的高分子聚合物和某些作为起泡剂的表面活性剂均可能损害煤储层,影响压裂效果。

氮气泡沫压裂工艺是20世纪70年代以来发展起来的一项压裂工艺技术。主要适用范围是低压、低渗和强水敏性储集层。在低渗油层压裂改造和煤层气压裂增产中,氮气泡沫压裂工艺在美国应用已经相当普遍,在黑勇士盆地的煤层气开采井中,大多数的施工井都采用氮气泡沫压裂工艺;而国内由于受到压裂设备、技术工艺和成本等方面因素的影响,制约了氮气泡沫压裂工艺的发展。

泡沫压裂液从工艺和添加剂的更新换代上看,主要发展经历了三代。入们将仅用表面活性剂水溶液生的泡沫压裂液叫做第一代泡沫压裂液;将加有聚合物和交联聚合物的泡沫压裂液分别叫做第二和第三代泡沫压裂液[3]。第二和第三代泡沫压裂液虽然比第一代泡沫压裂液的稳定性高,但由于引入聚合物,存在低温井破胶不完全以及破胶后对地层的损害问题[5],部分丧失了泡沫压裂液低损害性的优点。

本文提出一种新的粘弹性表面活性剂泡沫压裂液。通过室内试验及研究,优选出的氮气泡沫压裂液具有性能好,施工后无需破胶即可排液,对煤层损害小的优点。

1 实验条件和方法

试剂及材料

粘弹性表面活性剂:研制产品。氯化钾、过硫酸铵、碳酸盐型阴离子表面活性剂、季铵盐型阳离子表面活性剂、非离子表面活性剂,均为化学试剂。羟丙基瓜胶:工业品。煤样:潘河先导性试验区无烟煤。

实验方法[5,6]

泡沫基液的性质

用毛管粘度计测量粘度,用滴重法测量表面张力,用改进的Bickerman法测量在煤样上的接触角。

泡沫的结构和性质

用高速搅拌法(≥100转/min,2min)起泡。在显微镜下观察泡沫的结构,测量泡沫的体积,计算泡沫质量(气体体积/泡沫体积)。测量液体析出一半的时间,确定泡沫的半衰期。用六速粘度计测量泡沫的流变性。测量砂粒在泡沫中的沉降速度,评价携砂能力。在失水仪测量泡沫的滤失速度。

2 泡沫压裂液性能

氮气泡沫压裂液的结构

研究者[3]根据等球体最紧密堆积时,球体所占空间体积为 这一几何原理,认为泡沫质量≤时泡沫中的气泡为球形,泡沫质量> 时被挤压为五角十二面体。我们的观察表明,该粘弹性表面活性剂水溶液所形成的泡沫,在质量高达 时气泡仍为球形,显微相片如图1所示。仅在泡沫质量大于 时才被挤压为五角十二面体形。由该图可以看出:泡沫中气泡大小分布比较均匀,大多在~之间,由于小气泡可填充在大气泡之间的空隙中,所以这种泡沫在质量远大于时气泡仍可保持球形。

图1 泡沫显微照片

图2 粘弹性表面活性剂溶液中蠕状胶束网络示意图

稳定性

泡沫形成时气液界面增加,气液界面能随之增加。因为高能态均有自发转变为低能态的趋势,所以泡沫属于热力学不稳定体系,只能靠动力学因素维持有限的生存时间。由于气液相密度相差大,液膜中的液体会在重力下流失使液膜变薄,液膜薄到一定程度后易在外力扰动下破裂而使泡沫消失。表面活性剂在气液界面上形成定向吸附层,既可通过降低界面张力使泡沫容易生成,又可靠这种吸附层的粘弹性,使液膜不易破裂,增加泡沫的稳定性[14]。

本文提出的粘弹性表面活性剂溶于水后,可形成类似于聚合物的蠕虫状胶束结构(见图2)[14,15]。这种胶束在较低浓度时,不会明显增加水的粘度(<5mPa·s),但可吸附在气水界面,形成比单独表面活性剂要强得多的吸附层,增加泡沫的稳定性,使氮气泡沫的半衰期均长达1~2h。这种粘弹性表面活性剂形成的泡沫压裂液主要靠增加吸附层的强度,而不是靠增加水的本体粘度来增加泡沫的稳定性,不存在需要破胶以及对储层损害问题,从而比第二代和第三代泡沫压裂液优越。

流变性

实验表明,氮气在该粘弹性表面活性剂水溶液中形成的泡沫压裂液为假塑性流体,氮气n=,K=·s,泡沫压裂液的流变曲线如图3所示。

图3 泡沫压裂液的流变曲线

泡沫流动时气泡之间滑动,气泡还可能变形,需要克服的阻力比基液流动要大,故粘度比基液大。泡沫流动时,随着切力的增加,结构逐渐拆散,阻力减小,表现为剪切稀释性质。泡沫压裂液粘度高,有助于携砂,剪切稀释性有助于减少管输阻力。

携砂能力

压裂液的携砂能力取决于砂粒在其中的沉降速度,文献认为[15],沉降速度小于时最佳,介于~5cm/min 可以接受,大于5cm/min时不可接受。该泡沫压裂液基液的粘度(约为4~5mPa·s)高于清水和活性水压裂液(约为1mPa·s),低于聚合物压裂液(>40mPa·s);实验表明,40目砂粒在该粘弹性表面活性剂泡沫中未见沉降,说明携砂能力良好。

泡沫压裂液良好的携砂能力,宏观而言归因于泡沫高的粘度,微观而言归因于4~10倍于气泡大小的砂粒欲在其中下沉,必需将途中气泡推开和使之变形,而砂粒的重力不足以克服这些阻力,故其沉降速度很小,甚至趋近于零。将30mL(视体积)60 目(粒径)的砂粒放入100mL基液中,在氮气中高速搅拌2min后,将生成的泡沫倾入量筒中静置下来,观察水和砂粒的沉降速度。研究结果表明,在有砂粒存在时泡沫的半衰期缩短约为原来的5/6,并且砂粒的沉降速度约为水沉降速度的80%。前者可能是由于砂粒下沉时的作用力促使液膜破裂;后者说明失水后的泡沫虽然骨架尚在,但已无悬砂能力。这与破胶后水基或油基压裂液的行为有些相似。

降滤失性

压裂液滤失于裂缝壁会引起传递压力损失,故压裂需要降滤失性。压裂液的滤失速度V同时间t有如下关系:

中国煤层气勘探开发利用技术进展:2006年煤层气学术研讨会论文集

式中C称为滤失系数。该泡沫压裂液的 ,与聚合物凝胶压裂液的数值相近。泡沫压裂液滤失时无瞬时失水现象,它是靠高粘度降滤失,而不是靠形成滤饼降滤失。

3 现场应用

在室内研究的基础上,将氮气泡沫压裂技术应用于现场实践。本次现场试验的设计要求是:施工排量控制在 ~;氮气泵注排量达到 600m3/min;氮比大于340m3/m3SPACE;泡沫质量在60%~75%。2005年12月,在潘河先导性试验区完成了2口井的氮气泡沫压裂施工。经过一段时间的排采证实,氮气泡沫压裂施工的 P H1和PH1-006井与周边采用活性水加砂压裂完成的煤层气井比较,主要有以下几点优越性:

(1)加速排液。压裂后返排速度快,产气速度快,氮气泡沫压裂井平均排液完成后开始产气,并可以在井口点火。

(2)氮气泡沫压裂液粘度高,有较好的携砂能力,可以有效控制裂缝形态的发育,降低压裂液在多裂缝发育的煤层中的滤失性。

(3)氮气泡沫压裂施工中,用液量少,对煤层污染较小。

(4)在地质情况基本相同的条件下,通过对周围井的产量对比分析发现,氮气泡沫压裂井的增产效果非常显著。

由上所示,产量与含气量变化图(见图 4、5)可见,PH1 井含气量在 12m3/t,PH1-006井约为16m3/t。通过排采分析发现,氮气泡沫压裂井的产量比周边水力压裂井增加在3倍以上(见图6、7)。

图4 PH1-006井周围井产量与含气量变化图

图5 PH1井周围井产量与含气量变化图

图例说明:★PH1006为氮气泡沫压裂井,其余为活性水加砂压裂井; —产气量(m3/d)

图6 PH1井与周边井的产量对比图

图7 PH1-006井与周边井的产量对比图

4 结论

本文提出的粘弹性表面活性剂溶于水后,可形成类似于聚合物的蠕虫状胶束结构。这种胶束在较低浓度时,不会明显增加水的粘度(<5mPa·s),但可吸附在气水界面,形成比单独表面活性剂要强得多的吸附层,增加泡沫的稳定性,使半衰期长达1~2h。

该泡沫压裂液的切速为170s-1时的表观粘度远大于50mPa·s,压裂液具有良好的悬砂能力。

这种粘弹性表面活性剂形成的泡沫压裂液主要靠增加吸附层的强度,而不是靠增加水的本体粘度来增加泡沫的稳定性,不存在需要破胶以及对储层损害问题,比第二代和第三代泡沫压裂液具有优越性。

通过在煤层气井中的现场应用,氮气泡沫压裂井的增产效果非常显著。通过排采分析发现,氮气泡沫压裂井的产量增加在常规水力压裂井产量的3倍以上。

在国家“十五”攻关项目资助下,开始进行了氮气泡沫压裂技术的研究,并在潘河示范项目中进行了工业试验,实践表明,该项技术具有巨大的推广应用前景。

参考文献

[1]Zebrowitz B stimulation are optimized in Alabama (4):61~72

[2]Blauer D fracturing shows success in gas/oil (31):57~60

[3]Watkins C B New crosslinked foamed fracturing

[4]贺承祖,华明琪.2003.压裂液对储层的损害及其抑制方法.钻井与完井液,20(1):49~53

[5]贺承祖,华明琪.1995.油气藏物理化学.成都:成都电子科技大学出版杜

[6]贺承祖,华明琪.1996.水锁效应研究.钻井与完井液,13(6):13~15

[7]Van Science and pab company

[8]Righmire C methane resource AAPG,32(17):1~13

[9]贺承祖,华明琪.2005.低渗砂岩气藏岩石的孔隙结构与物性特征.新疆石油地质.26(3)280~284

[10]Conway M G R fluid Leakoff and damage mechanism in coalbed methane reservoirs Rock Mountain Resional Meeting/low permeability Reservoirs symposium and Exhibition:245~260

[11]赵庆波等著.1999.煤层气地质与勘探技术.北京:石油工业出版杜

[12]肖进新,赵振国编著.2003.表面活性剂应用原理.北京:化学工业出版杜

[13]Adamson A chemistry of

[14]Magid L surfactant-polyelectrolyte (21):4064~4074

[15]Economides K education services USA

查到以下内容,如果需要的话请留邮箱。1 不污染环境的生物泡沫塑料 ,塑料科技, 2001 查看全文 2 氧化沟污泥膨胀和生物泡沫的控制及应用研究 ,戴兴春、谢冰、黄民生、张玉梅、田泽辉,环境科学与技术, 2007 查看全文 3 MSBR系统诺卡氏菌生物泡沫的防治对策 ,杜英豪、崔文亮、钟志蓉,中国给水排水, 2007 查看全文 4 鲁岗污水处理厂A2/O工艺生物泡沫发生与控制 ,赵福欣、张万泽、武旭辉,给水排水, 2006 查看全文 5 生物泡沫玻璃的制备及性能研究 ,余曼丽、穆松,武汉理工大学学报, 2006 查看全文 6 活性污泥污水处理厂生物泡沫产生机理及控制 ,谢冰、徐亚同,净水技术, 2006 查看全文 7 污水处理厂生物泡沫的影响与控制 ,雒满意,工业用水与废水, 2005 查看全文 8 活性污泥法的生物泡沫形成和控制 ,李探微、韦苏、吕阳泉、彭永臻、陈志根,中国给水排水, 2001 查看全文 9 巴西开发成功生物泡沫塑料 ,化学工业与工程技术, 2001 查看全文 10 生物泡沫塑料在巴西问世 ,聚氯乙烯, 2001 查看全文 11 曝气池中生物泡沫的产生和控制 ,黄旭勇、赵保全,甘肃科技, 1999 查看全文

摘要:投加水处理药剂是水处理中一种常用的方法。本文以絮凝剂,杀生剂为主,介绍了它们的发展现状,使用的局限性,分析了各种主要药剂的应用前景。1、前言水处理剂是工业用水、生活用水、废水处理过程中必需的化学药剂,通过使用这些化学药剂,可使水达到一定的质量要求。它的主要作用是控制水垢和污泥的形成、减少泡沫、减少与水接触的材料腐蚀、除去水中的悬浮固体和有毒物质、除臭脱色、软化水质等。目前由于世界各国用水量急剧增加,同时各种环保法规(水净化法)相继制定,而且要求日益严格,所以对于各类高效的水处理药剂增长很快。在我国,与日益严峻的水资源危机矛盾的是水处理药剂的生产能力很低,质量也得不到保证,所以加快我国水处理药剂这一环保材料产业的发展迫在眉睫。水处理药剂包括絮凝剂、缓蚀剂、阻垢剂、杀生剂、分散剂、清洗剂、预膜剂、消泡剂、脱色剂、螯合剂、除氧剂及离子交换树脂等。本文将对絮凝剂和杀生剂作系统地介绍。2、絮凝剂絮凝技术的关键是絮凝剂的选择。絮凝剂可分为无机、有机和微生物絮凝剂。、无机絮凝剂无机低分子絮凝剂有氯化铝、硫酸铝、硫酸铁、氯化铁等。其聚集速度慢,形成的絮状物小,腐蚀性强,在水处理过程中存在较大的问题,而逐渐被无机高分子絮凝剂所取代。无机高分子絮凝剂是在传统铝盐、铁盐的基础上发展起来的一种新型的水处理剂,价格较低廉,净水效果好。聚合氯化铝(PAC)的混凝性能好,生成的矾花大,投药量少,效率高,沉降快,适合水质范围较宽。主要用于饮用水和工业给水的净化。同时还能用于去除水中所含的铁、锰、铬、铅等重金属,以及氟化物和水中含油等,故可用于处理多种工业废水。聚合氯化铝铁(PAFC)是一种新型的无机高分子净水剂,产品中铝铁二者的配比是可调的,以适应不同水质的需求,已分别在石化、钢铁、煤炭工业等废水的净化处理中得到应用。结果表明,该药剂质优、价廉,是一种新型、高效、稳定的净水剂,具有广泛的应用前景。有人通过实验比较得出PAFC的净水效果稍好于PAC,但PAFC加药成本比PAC少得多。聚合硫酸铁具有良好的絮凝和吸附作用,广泛应用于原水,饮用水、自来水、工业用水、工业废水及生活污水的处理。聚合硫酸铝(PAS)是一种使用最广的混凝剂,主要用于饮用水和工业用水的净化处理。聚硅酸盐是在聚硅酸及传统的铝盐、铁盐基础上发展起来的。高度聚合的硅酸与金属离子一起可产生良好的混凝效果。通过把金属离子的电中和能力和聚硅酸的吸附架桥能力结合在一起,使复合产物具有较强的电中和与吸附架桥作用,达到更好的净水效果。它们的絮凝脱稳性能远超过聚硅酸和聚金属离子,同聚硅酸相比,不但提高了稳定性,且增加了电中和能力;同聚金属离子相比,则增强了粘结架桥性能。以聚合硅酸硫酸铝(PASS)、聚硅氯化铝(PASC)和硅铁复合无机高分子絮凝剂为代表的复合无机高分子絮凝剂,成功应用在给水、工业废水以及城市污水的各种流程中,现已成为主流絮凝剂。但是,无机高分子絮凝剂的相对分子质量和粒度以及絮凝架桥能力仍比有机絮凝剂差很多,且存在对进一步水解反应的不稳定性问题。有机高分子絮凝剂与无机絮凝剂相比,合成有机高分子絮凝剂用量少,絮凝速度快,受共存盐类、介质pH及环境温度影响小,生成污泥量也少;而且有机高分子絮凝剂分子可带—COO、—NH—、SO3、—OH等亲电基团,可具链状、环状等多种结构,利于污染物进入絮体,脱色性好。一般有机絮凝剂的色度去除较无机絮凝剂高20%左右.目前应用较为广泛的是聚丙烯酰胺类。它能适应多种絮凝对象,用量少,效率高,生成的泥渣少,后处理容易。常与其它无机絮凝剂复配,如与氯化铝的复配使用。但合成高分子絮凝剂其单体或水解、降解产物常常有毒,如聚丙烯酰胺(PAM)的单体,有神经毒性和致畸、致癌、致突变的“三致”效应。微生物絮凝剂微生物絮凝剂是利用生物技术,从微生物或其分泌物提取、纯化而获得的一种安全、高效、能自然降解的新型水处理剂,至今发现具有絮凝性的微生物已超过17种,包括霉菌、细菌、放线菌和酵母菌等。它分为:(1)直接利用微生物细胞的絮凝剂,如某些细菌、霉菌、放线菌和酵母,他们大量存在于土壤、活性污泥和沉积物中;(2)利用微生物细胞壁提取物的絮凝剂,如酵母细胞壁的葡聚糖、甘露聚糖、蛋白质和N-乙酰葡萄糖胺等成分;(3)利用微生物细胞代谢产物的絮凝剂,微生物细胞分泌到细胞外的代谢产物是细胞的荚膜和粘液质,除水外,其主要成分为多糖及少量多肽、蛋白质、脂类及其复合物。其中多糖在某种程度上可用做絮凝剂。迄今为止,发现的絮凝效果最好的微生物絮凝剂是红平诺卡氏菌NOC-1。可用于畜产废水处理,膨胀污泥的沉降及纸浆废水(黑液)颜料废水等有色废水的脱色,效果显著。虽然,对微生物絮凝剂的研究屡有报道,但大多处于实验室研究阶段,未走向工业应用。我国这方面的起步较晚,目前的研究仅限于菌种筛选。成都生物研究所分离筛选初步获得6株微生物絮凝剂产生菌,用其发酵离心上清液对造纸黑液,皮革废水,偶氮染料废水,硫化染料废水,电镀废水,彩印制板废水,石油化工废水,造币废水及蓝黑水,碳素墨水等进行的絮凝试验表明,废水固液分离效果良好,COD去除率55%—98%,悬浮物,色度、浊度去除率90%以上。上海大学环境科学系在污水处理厂的回流污泥及底泥中分离,筛选出3株絮凝剂产生菌.该菌株所产培养液可使土壤悬液浊度去除率达99%以上,使碱性染料废水COD去除率为70%左右,色度去除为92%左右。目前,絮凝剂正向价廉实用、无毒高效的方向发展。有机高分子絮凝剂将逐渐取代目前被广泛使用的无机絮凝剂,另一方面,微生物絮凝剂具有使用稳定性、安全性、高效性及低耗性。是当今最具发展前途的絮凝之一。所以,未来的发展不仅要开发新型廉价高效的微生物絮凝剂,还要研究微生物絮凝剂与其他絮凝剂的配合使用。已有试验表明,二者配合使用,可以互补, 不仅可以提高絮凝效率,而且还可降低投加量。3、杀生剂杀生剂是在循环冷却水系统中,用以杀死微生物(菌藻)以阻止其大量繁殖致使冷却水系统中的金属设备发生腐蚀及事故,影响正常运行的水处理药剂。根据杀生机制分为氧化性杀生剂和非氧化性杀生剂。氧化性杀生剂氯气是一种强氧化性杀生剂,其杀菌力强,价格低廉,使用较简单,是当今应用最广泛的杀生剂之一。但不适于碱性水处理。另外,它可能与水中有机物生成致癌物三卤甲烷,因而限制了它的应用。于是溴类、臭氧、二氧化氯相继为人们所重视。溴类杀生剂主要有溴化钠、溴化海因、活性溴、溴化丙酰胺等。溴化丙酰胺是近年来开发出的一类氧化性杀生剂,其中2,2-二溴-3-氮川丙酰胺是一种非常有效的广谱杀生剂。随着冷却水pH值和温度的升高,它的半衰期迅速变短,对环境污染小。臭氧具有十分优良的杀菌活性,剥离粘泥作用较强,同时还兼具缓蚀阻垢作用,用它处理循环冷却水,其浓缩倍数可达30~50。但由于成本较高,目前还未被广泛采用。二氧化氯对细胞壁有较强的吸引和穿透能力,它对冷却水中存在的主要危害菌种如异养菌、铁细菌、硫酸盐还原菌等都有很好的杀灭作用。它的特点是用量少、高效、快速、药效持续时间长。如2mg/L的二氧化氯作用30s后就能杀死近100%的微生物;在pH为,活菌数达71万个/ml的水中投加的二氧化氯作用12h后,对异养菌的杀菌率保持在99%以上。另外,它能不受pH的影响,不与水中氨、有机胺类及酚类反应;不仅能杀死微生物,而且能分解残留的细胞结构,具有杀孢子和杀病毒的作用;适用于碱性水处理,对环境没有威胁。在我国,以前由于它的不稳定性限制了其推广应用。近年来,一些厂家已先后批量生产稳定性二氧化氯,南京某公司还推出了化学法二氧化氯发生器,其设计独特,操作简便,安全可靠。用二氧化氯取代氯气作为工业循环冷却水的杀生剂具有很多的优越性,特别是对于合成氨厂,化工厂和炼油厂的冷却水系统,由于系统中有机物和氨的含量高,需氯量大,pH值偏碱性,用二氧化氯取代氯气可以取得更好的经济、环境效益。非氧化性杀生剂非氧化性杀生剂种类较多,应用较早的氯酚类因毒性大,易污染水体,渐渐被弃之不用。有机胺类使用也极少。二硫氰基甲烷是使用较早的有机硫化物杀生剂。对于抑制藻类、真菌和细菌,尤其是硫酸盐还原菌十分有效。但不适宜在碱性冷却水系统中使用。异噻唑啉酮是一类较新的有机硫化物杀生剂。该类杀生剂是通过断开细菌和藻类蛋白质的键而起杀生作用的,浓度为时,即能有效地抑制冷却水系统中的藻类、真菌和细菌,具有广谱高效、作用时间长(的加入量,使用5周后仍有效)、低毒、pH使用范围广、配伍性混溶性好、不起泡沫,并能阻止粘泥生成等优点。国外已广泛应用于冷却水处理中。季铵盐杀生剂因其成本低,毒性小,且兼具缓蚀性。故得到广泛的应用,但使用中还存在易产生抗药性、费用增加,起泡,加重腐蚀等问题。鉴于此,新合成的十六烷基辛基二甲基溴化铵(168)和十六烷基癸基二甲基溴化铵(1610)两种双烷基季铵盐,改变了季铵盐的表面活性和分子稳定性,它产生的泡沫少,杀生活性也得以提高。戊二醛具有高效广谱的杀菌灭藻作用,对生物粘泥也有一定的剥离作用。美国联合碳化物公司生产了系列戊二醛水处理杀生剂A515、A525、A530等,试验证明,A515对异养菌等具有明显的杀生作用,且药效持续时间长,72h后杀菌率仍有90%以上;它适用于碱性水处理,与磷系药剂具有良好的配伍性。武汉某公司近年推出戊二醛系列用于循环冷却水系统,效果明显。在对冷却水的推荐使用浓度下,戊二醛几乎没有毒性,它的水溶液本身会发生生物降解。随着社会环保意识的加强,戊二醛类杀生剂将大有发展前途。开发新型杀生剂,要考虑价格、毒性,使用安全性,贮存稳定性、微生物耐药性等因素外,还应考虑杀生剂的复配间的协同效应,复配在一起,既能增强杀生能力,又能降低加药量。4、水处理药剂的发展方向专用水处理药剂的开发为了满足不同废水系统(如造纸废水、印染废水、食品加工废水等)的需要,专用性强,针对某一类化学物质的品种的研制与开发势在必行。多功能水处理药剂的开发多功能水处理剂是水处理药剂研究的一个重要方面,这类新型水处理技术的出现,将开拓水处理剂的生产和应用范围,对化学法处理工业水的发展有重大的促进作用。这方面的研究主要有:缓蚀-阻垢剂、絮凝-缓蚀剂、絮凝-杀菌剂、絮凝-杀菌-缓蚀剂、絮凝-缓蚀-阻垢剂等。绿色水处理药剂的发展水处理药剂绿色化发展中,无毒、无害、易生物降解都是方向。最典型的绿色水处理药剂是近年来国内外开发的分散阻垢剂聚天冬氨酸(PASP)。PASP是合成的一种生物高分子。有良好的生物相溶性和可生物降解性。毒理学的研究揭示出聚天冬氨酸(PASP)无毒、无敏感或无突变的效果。高性价比的水处理药剂的开发目前高性能的药剂价格普遍偏高,可通过寻找价廉易得的原料研制出高性能产品,也可通过加强对复配技术的研究,即添加廉价辅助剂,减少药剂的实际用量,同时保持净水效能而达降低成本的目的。

泡沫陶瓷的性能研究论文

1.邱军、曹小明、田冲、张劲松.泡沫陶瓷/纤维/树脂新型超混杂复合材料的力学性能.材料研究学报 2004(2)。2.邱军.碳纤维布增强聚苯硫醚复合材料的性能研究.工程塑料应用 2002(9)。3.邱军.玻璃纤维布增强聚苯硫醚复合材料的性能研究.中国塑料 2002(9)。4.邱军,张志谦. 辐照对APMOC纤维结构及性能的影响. 高分子材料科学与工程 2001(1)。5.邱军,张志谦. r-射线辐照APMOC纤维对AFRP层间剪切强度的影响.材料科学与工艺 1999(1)。6.邱军. 芳纶纤维辐照处理研究. 合成纤维 2000(6)。7.邱军. 偶联剂对高岭土增韧聚丙烯的影响. 塑料科技. 2000(6)。

陶瓷是一种玻璃相和晶相的复合体,属于无机复合材料的一种,碳化硅是一种纯化合物,常用作生产碳化硅磨料,这两种结合在一起就是碳化硅砂轮

找到以下这么多,有用的话留邮箱。1 泡沫陶瓷材料的研究进展 ,靳洪允,陶瓷科学与艺术, 2005 查看全文 2 泡沫陶瓷的研究进展 ,焦方方、朱广燕,陶瓷, 2007 查看全文 3 泡沫陶瓷材料制备方法及应用的研究进展 ,董毅峰、王雪瑶、李志宏、刘石、刘长春,陶瓷, 2007 查看全文 4 有机泡沫浸渍法制备SiC泡沫陶瓷的研究进展 ,赵东亮、张玉军、张兰,陶瓷, 2006 查看全文 5 泡沫陶瓷的研究进展 ,靳洪允,佛山陶瓷, 2005 查看全文 6 泡沫陶瓷材料的研究进展 ,靳洪允,现代技术陶瓷, 2005 查看全文

什么是泡沫陶瓷?

以聚氨酯海绵为模板、磷酸二氢铝为黏结剂、碳化硅微粉为骨料,在800℃低温下制备出碳化硅泡沫陶瓷。

研究了浆料中磷酸二氢铝含量、固相含量和高温处理对碳化硅泡沫陶瓷的线收缩率、体积密度、抗折强度、气孔率及微观形貌的影响,揭示了泡沫陶瓷在高温下结构及性能演变机理。结果表明:低温制备的碳化硅泡沫陶瓷线收缩率小于1%,线收缩率随固相含量的增加而减小,体积密度和抗折强度均随磷酸二氢铝和固相含量的增加而增大。

低温制备的碳化硅泡沫陶瓷经高温处理后,其线收缩率、体积密度和抗折强度均随温度的升高先减小后增加,而气孔率则随温度的升高先增加后减小,处理温度为1000℃时,碳化硅泡沫陶瓷抗折强度可达(±)MPa。

碳化硅泡沫陶瓷低温下由A型和B型的Al(PO3)3将碳化硅微粉粘结起来,随着处理温度的升高,B型Al(PO3)3逐渐向A型转化,随着温度的进一步升高,A型Al(PO3)3逐渐分解成AlPO4相,将碳化硅微粉包裹、粘结起来。

泡沫陶瓷具有什么性能?

氧化硅(Siliconcarbide,SiC)泡沫陶瓷具有低密度、高强度、高孔隙率、高渗透性、比面积大、抗腐蚀、抗氧化、良好的隔热性、抗热震次数和耐高温性优异等特点,已广泛应用于过滤、吸音、化工填料、生物陶瓷和催化剂载体等领域。

SiC是一种具有强共价键的无机非金属材料,在低温下很难烧结,即便添加烧结助剂,烧结温度均在1400℃以上。聚碳硅烷黏结法虽能在低温下制备出SiC泡沫陶瓷,但其制品线收缩率大,成本极高,限制了其规模化应用。磷酸二氢铝耐水性好,固化收缩率小,高温强度大,可在较低温度下实现高强度粘结,已广泛应用于陶瓷纤维复合材料、耐火材料和无机涂料领域,将其用于制备SiC泡沫陶瓷,可望实现泡沫陶瓷的低温、低成本制备。

目前,国内外鲜见采用磷酸二氢铝黏结法低温制备SiC泡沫陶瓷的报道。利用磷酸二氢铝为粘结剂低温制备SiC泡沫陶瓷,考察了磷酸二氢铝含量、固相含量和高温处理对SiC泡沫陶瓷的线收缩率、体积密度、抗折强度、开气孔率及微观形貌的影响,并探讨了泡沫陶瓷在高温下结构及性能演变机理。

坝基稳定性研究论文

浅谈土石坝防渗变形的处理措施论文

土石坝在我国水利工程施工中由来已久,它的主要材料是由本地的土料、石材以及土石混合材料构成,经过有序的碾压、回填等方式筑成的挡水大坝。由于使用的材料不同,土石坝可以分为以下几种:石坝、土坝以及土石混合材料铸成的混合型大坝。随着我国经济的发展,水利工程的发展也有了较大的进步,由于受到各方面环境条件的限制,在一些情况下,因为土石坝的渗漏问题,如果不及时处理,有可能会对人们生命财产安全造成严重危害,所以,必须采取有力措施,防止土石坝渗漏。

1土石坝渗透变形的含义及危害

土石坝由于长期在水中受到浸泡和冲刷,周围土体在渗透作用下发生浮动变形,当土体的质量小于浮容重时,土石坝的土石就会逐渐被带走,从而使土石坝发生变形。刚开始的大坝渗透能力不会造成土石流失,但是,如果不及时治理,日积月累,成年累月的冲刷,就会发生较大的土石坝滑坡或重大事故。

要根据土石坝出现渗透变形各个部分的实际情况进行分析,如果大坝下游坝坡的边缘,发生的危害就大,如果在大坝的坝基里面发生涵洞,就会出现建筑物下陷,有时候还会出现塌陷等严重后果。

2土石坝渗透变形的成因

土石坝渗透变形有以下几种形式:泥土受到冲刷后发生流失、管涌以及接触性流土。因为泥土的颗粒的大小不同以及渗透程度的不同使土石坝发生渗流变形,主要是因为:(1)坝基的不透水层没有和土石坝下面的截水槽相连,对于不稳定的地基没有很好的.处理,都会使坝基出现渗流,如果任其发展,就会使坝基变形或出现空洞甚至溃坝。(2)因为选用的土石材料在力学方面没有认真思考,在建成土石坝工程时进行储存水源时,对浸润线的设置不合理,以至于土石坝的渗漏流出的水流从下游的坝坡斜面流出,使下游坝坡极不稳定。(3)在进行输出水的涵洞和施行工程施工中,使用的浆液不均匀、混凝土比例配合没有按照一定的标准,周围的黏土夯实不严密,有时候在回填时不结实,也会使土石坝出现涵洞,从而引起渗透变形发生。(4)土石坝渗流的出现一般在大坝的坝心墙和斜面墙等处非常容易出现裂缝或者发生管涌,以至于引发坝体渗漏变形,破坏非常严重的有可能会出现坝体坍塌或者崩坝。(5)对水文地质条件和工程及其基础防渗处理不重视,误以为土石坝不需要高标准的基础,造成基础漏水,导致土石坝变形。

3土石坝渗透变形的形式

我国的许多地区,特别是南方,使土石坝渗漏并发生变形的原因主要有机械作用及化学作用,由于土石的这些作用,使坝体的某些部分发生破坏。依据土石坝的土质的不同以及涂料的质量的差别、防止渗漏和排除渗流的方法不同、水流的基本条件的不同,土石坝渗流存在以下四种情况:

流土

由于土石坝渗流时泥土颗粒因为渗流逐渐加大,出现被带走,并且坝体表层出现隆起或者冲出现象,这种渗流经常在土粒粗细比较均匀的黏性土壤和黏性不大的土体中出现。因渗流而发生土体断裂、凸起和掉落。

管涌

管涌经常出现在土石坝下方的地基和下游坝坡表层出现渗流的流出的地方。非黏性土壤的微小土粒在泥土小石块的渗透影响下,持续的从孔洞中被冲出,当土壤中的微小颗粒到了某一速度时,泥土颗粒就被冲刷走,如果时间过长,坝体中的土壤颗粒被冲走的越来越多,空洞就会越来越大,这样,土石坝的内部结构就会发生很大的改变,土石坝由于渗透发生变形。

接触流土

由于土石坝在相互相邻的土层中的接触面,会发生渗透系数较小的土层向较大的土层渗入,这种接触性流动的土壤,对土石坝危害极大。

接触冲刷

接触冲刷对土石坝的损坏程度,直接影响着土石坝经久耐用的年限。在坝体渗流经过地基相接触的地方,以及和建筑物等接触系数有很大差别的土层相接触的时候,小的土石颗粒就会被冲刷流走。

土石坝渗透变形的形式在接触冲刷中会较为单纯,在一些特殊情况下,有可能出现两种或两种以上的情况,依据各不相同的渗透坡降情况、位置的差别、该地方的土料状况等进行具体情况进行具体分析,进而制定出有效的保护措施。

4治理土石坝防渗变形的措施

水平防渗

水平防渗的方法非常简便易行,一般采取人力把黏土进行填埋或者使用自然的黏土进行填筑,这种方法非常简便,也能够因地制宜,花费时间短,施工作业面很大、造价低廉,不需要任何的设备和器材。但是在施工过程中要认真依照设计图纸和有关要求,使土石坝的稳定性得到有效的控制,但如果渗透量加大,在土石坝基部有可能还会出现坡降现象。因此,必须通过防渗的方式实施水平盖铺,与下游的减小压力,增加排水量的工程实施有机地联系在一起。

垂直防渗

在坝基透水层较薄并且隔水层厚度不大的前提下,应该使用垂直防渗的方法,并用封闭式防渗帷幕进行施工,从而使所有由于渗透变形的情况得到了彻底治理,这样从根本上解决了土石坝的坝体和坝基的渗漏。通常用的防渗方法有以下三个方面:

高压喷射灌浆防渗。依据施工设计要求,在受到破坏的坝体周围用钻机实施钻孔,然后把高压喷射管放入钻孔中,对钻孔内的土体使用高压水流冲刷,破坏里面的土体结构,然后冲入水泥浆液,并且和周围土体充分混合、渗透、搅拌,然后逐渐提起喷嘴,待浆液凝固后,根据设计要求,确定好喷浆后的混凝土深度和厚度,从而与坝基紧密凝结在一起,很好地发挥防渗变形的优势。

建造混凝土防渗墙。为了使土石坝更加坚固,增强它的抗冲刷能力,可在土石坝坝体或土体的透水层和覆盖层中建立槽型孔,同时使用高压水泵把水泥浆液压入槽型孔内部,使孔内的残渣等物质被冲出孔外,接着再用直升套管向槽孔内部压入混凝土,连续不断的混凝土墙就这样形成了,充分发挥阻止防渗变形的作用。

土工膜防渗。使用土工膜防渗,能够使渗透半径加大,坡降变小、渗漏量变低,但是不能使渗流全部阻断,并且此种防渗方法对坝体渗漏有一定作用,对多种渗漏的防治效果不大。

通过一系列防渗措施的实施,必须根据实际情况认真分析,防渗施工技术的提高是进一步加强土石坝稳定性的关键因素。因此,只有建立一支专业化、能力强、技术过硬、有丰富经验的施工技术队伍,才能保证工程质量。同时,还必须有足够的土石坝防渗施工基金作保障,并能及时修缮、维护,一旦发现问题迅速处理,使管理和综合利用有机结合起来,并且要积极学习一些国外防渗补漏的先进技术和经验,使土石坝防渗变形工程有新的突破。

1概述坝基岩体内部存在各种型式的软弱结构面,当这些结构面的产状有利于其上的建筑物滑动时,往往成为安全的控制因素。我国已建的葛洲坝、安康、大化、三峡、万家寨、百色、沙坡头以及在建的向家坝、金安桥、武都等大中型水利工程,都存在坝基深层抗滑稳定问题,国外所发生的重力坝沿坝基软弱结构面破坏的例子也不少见。因此,重力坝深层抗滑稳定分析是重力坝设计中较为重要的内容。近代坝工技术发展至今,国内外许多学者与工程技术人员在坝基深层抗滑稳定计算方法、安全系数取值、软弱结构面物理力学指标取值等领域开展了大量的试验与理论研究,取得了较为丰硕的成果。但因坝基深层抗滑稳定是一个系统而复杂的问题,目前还没有统一规范的解决办法,业内的观点也不太统一,如长江三峡工程左岸厂房1~5号坝段深层抗滑稳定分析研究过程中,集中了国内各著名的科研机构和高等院校历经数年,并聘请著名专家进行咨询,但研究结果和意见仍不十分一致。本文就实际运用中争议较大的稳定分析方法、抗剪公式的适用性、数值计算分析方法及其安全控制标准等方面进行简要的讨论,供设计者参考。2分析方法早期坝基深层抗滑稳定分析主要采用刚体极限平衡法及物理模型法,形成了一套较为成熟的理论及安全判断标准,并沿用至今。随着微型计算机软、硬件技术的发展,数值分析方法也得到了很大发展,针对不同的工程特点开发出了很多计算软件,为分析深层抗滑中软弱面的应力和变形创造了条件。20世纪末期,可靠度分析方法逐渐被引进到水利电力行业中。目前有关各种方法的理论文献较多,本文主要对各种方法的特点及适用性进行分析。当坝基岩体内存在软弱面时,应主要采用传统的刚体极限平衡法核算坝基的深层抗滑稳定性。刚体极限平衡法是将滑移的各块岩体视为刚体,考虑滑移体上力的平衡,根据滑移面上的静力平衡条件对滑动块体的安全度作笼统的整体分析。刚体极限平衡法应用非常广泛,具有很多优点:概念清楚、计算简便、工作量小、易于掌握、可用于任何规模的工程、工程应用实例多,而且有比较成熟的与之配套的设计准则。当坝基岩体内存在软弱面时,对特别重要且地质条件复杂的坝基应辅以数值分析方法分析坝基的深层抗滑稳定性,进行综合评定,其成果可作为坝基处理方案选择的依据。数值分析方法可以考虑材料的各种性质,能较精确地计算出坝体和坝基内各点的应力和变形,可模拟复杂的地质构造,探求坝体和坝基的破坏机理;还可以了解破坏区的分布、范围,找出最危险的部位,分析其严重程度及各种加固措施的作用。当重力坝坝基中对深层抗滑稳定起控制性作用的结构面、岩层层面等与大坝轴线的交角较大时,坝基滑移模式将具有明显的三维效应,此时为合理确定坝基抗滑稳定安全系数,应采用三维刚体极限平衡法进行坝基的抗滑稳定分析。3抗剪公式的适用性及安全控制标准3. 1适用性常用的抗滑稳定安全系数计算公式有两种:抗剪断强度公式和抗剪强度公式。早期重力坝3. 0的允许安全系数是建立在节理岩体的“抗剪断”强度指标基础上的。这一指标中包含了极大的凝聚力,滑面一定不是由100%连通的结构面构成的。如果将“抗剪断”(剪摩)公式应用到层面、软弱夹层、断层这一类连通率为100%的结构面上,对这些凝聚力较低的结构面,仍然按3. 0的允许安全系数要求,就可能导致在复核深层抗滑稳定时遇到困难。为了验算抗剪断公式和抗剪公式的适用性及相应安全系数标准,利用三峡、武都、银盘、亭子口、万家寨等工程的地质参数,根据坝基软弱结构面的滑移模式,在相同荷载及滑移模式下分别采用抗剪断公式和抗剪公式进行对比分析,结果如表1所示。表1已建工程坝基软弱结构面抗滑稳定安全系数从表1中可以看出:当滑动面的凝聚力c′值较低时,两种公式计算得到的安全系数k′和k相差不大,如葛洲坝、高坝洲、武都, k大于1. 0,而k′远小于3. 0。随着滑动面的凝聚力c′值的增加,安全系数k′和k差别逐步加大,如三峡、亭子口、向家坝等工程,抗剪断安全系数k′为3. 0左右时,抗剪安全系数只有1. 0左右,三峡还小于1. 0。因此,在分析重力坝深层抗滑稳定时,对于不同的地质条件,应采用不同的计算公式。坝基潜在滑移面由硬性结构面和岩桥组成时,按抗剪断公式进行抗滑稳定计算较合适;当坝基中存在着连续分布的软弱结构面(单滑面或双滑面均为软弱结构面) ,且结构面强度参数较低,可采用抗剪公式计算。3. 2安全控制标准目前水利行业《混凝土重力坝设计规范》( SL319 - 2005)条文说明中对按抗剪公式计算的安全系数选取进行了特别说明。对坝基岩体内存在软弱结构面、缓倾角裂隙时,应首先按抗剪断强度公式进行坝基深层抗滑稳定分析,如采取工程措施后仍不能满足规范要求时,可按抗剪强度公式,计算坝基深层抗滑稳定安全系数,其指标应经论证后确定,论证时可参考表2所示的安全系数。表2坝基深层抗滑稳定安全系数(按抗剪强度)对于双滑面、多滑面等情况,由于垂直分裂面是假定的, φ值通常取为0,用等K法计算,应有一定安全裕度。但对于单滑面,没有上述安全裕度,其安全系数取值尤须慎重。在已建工程中,坝基存在软弱结构面的情况较为普遍,采用抗剪断公式计算不能满足规范要求而采用抗剪公式计算的实例也较多,因规范未提出确定的安全系数标准,各工程根据自身地质条件及工程重要性提出了各自的安全系数要求,见表3。表3国内若干已建工程坝基软弱结构面抗滑稳定设计参数指标在收集的资料中,根据葛洲坝等11个工程自身地质条件及工程重要性提出了相应的安全系数要求,其设计安全系数为1. 1~1. 4,加固后的安全系数在1. 2左右,实践证明上述设计安全系数标准有较大安全储备。因此,在抗剪断公式不能满足要求时,可采用抗剪公式进行计算,安全系数标准可按表4选取。一般情况下取安全系数的上限,如果采用多种加固措施以后仍不能满足上限要求,经过论证后可以取安全系数的下限。表4推荐坝基深层抗滑稳定安全系数(按抗剪强度)4数值计算分析方法及其安全控制标准目前,连续介质数值分析方法在坝基深层抗滑稳定分析中已得到广泛应用。在岩土工程领域, ABAQUS与FLAC数值计算软件应用最为广泛,拥有的本构模型非常丰富,在进行非线性计算时具有较大的优势,在重力坝深层抗滑稳定计算分析中,推荐采用这两种计算软件。数值方法计算的稳定安全系数有多种定义,包括超载系数、强度储备系数、抗滑富裕系数等,通过研究,认为强度储备系数能够反映岩体材料强度的不确定性和可能的弱化效应,能较为客观地揭示坝基的渐进破坏过程与失稳机理。因此,进行数值分析计算时,推荐采用强度储备安全系数作为坝基抗滑稳定安全系数。本文分别采用FLAC3D和ABAQUS软件对葛洲坝二江泄水闸进行了数值模拟,采用不同的极限状态准则求解其强度储备系数。计算结果见表5。表5葛洲坝二江泄水闸安全系数计算结果由表5可知,两种软件的计算结果较为一致,具有一定的可比性。相同计算条件下两计算软件求得的位移与应力结果差别较小,而得到的强度储备系数相近。采用位移突变准则的结果最小,不收敛准则的结果最大,位移突变准则与塑性区贯通准则得到的结果相近。采用塑性区贯通准则得到的安全系数是偏于安全的,采用不收敛准则得到的安全系数为上限值。由此可见,强度储备系数法得到的安全系数依赖于坝基临界失稳状态的判据,而不同地质条件的坝基,其失稳判别标准难以统一规定,建议采用两种或两种以上判据来综合确定坝基抗滑安全系数。5结语(1) 重力坝深层抗滑稳定分析主要有刚体极限平衡法、数值分析法等,各方法都存在各自的优缺点,单靠其中一种方法,难以合理地分析和解决复杂地质条件下坝基深层抗滑稳定安全问题,应采用不同的方法进行分析,相互补充、验证,综合评定坝基的稳定安全。(2) 坝基潜在滑移面由硬性结构面和岩桥组成时,按抗剪断公式进行抗滑稳定计算较合适;当坝基中存在着连续分布的软弱结构面(单滑面或双滑面均为软弱结构面) ,且结构面强度参数较低,采用抗剪断公式难以满足要求时,可采用抗剪公式计算。(3) 采用数值分析方法时,推荐采用强度储备安全系数作为坝基抗滑稳定安全系数,其值依赖于坝基临界失稳状态的判据,建议采用两种或两种以上判据来综合确定坝基抗滑安全系数。

泡沫混凝土性能研究论文

1王立久,曹明莉,任铮铖,王宝民 粉煤灰活化剂及其工程应用研究,大连理工大学学报 40 (4),P489-491 EI收录2王立久,艾红梅(学生),曹明莉 商品混凝土(C20~C60)配合比计算理论研究 混凝土 1999(5),p19-213任铮钺,王立久,曹明莉,王宝民 高掺粉煤灰混凝土水泥水化动力学研究.混凝土 2000(2),p18-204任铮钺,王立久,曹明莉,王宝民 高掺粉煤灰混凝土水泥水化动力学研究.混凝土 2000(2),p18-205王立久,王宝民,曹明莉,任铮钺 建筑模网混凝土耐久性研究,混凝土,2002(6)6王立久,曹明莉,带空气夹层的高保温混凝土砌块研究,住宅产业,2002(4)7曹明莉,王立久,李洪义 墙体节能,陶粒为本,住宅产业,2002(6)8 Study on the Embedding Aggregate Coefficient about ordinary Concrete,Lijiu Wang, Mingli Cao, Hongmei Ai第三届全国现代建筑材料科技学术研讨会论文集《建筑材料》,陕西人民教育出版社, P14~179王立久,曹明莉,艾红梅,混凝土密实系数研究,《混凝土》2002-810 荣利民(学生),李洪义,曹明莉 建筑模网混凝土补强加固住宅楼研究 建筑结构 (11), 2002年11月11 王立久 刘剑(学生) 曹明莉,硅酸盐水泥熟料的率值匹配模型, 大连轻工业学院学报 2003(3)P161-16312 曹明莉 王立久 赵湘慧 免烧型镁质陶粒的研制,建筑砌块与砌块建筑,2003(5)P12-1413 王立久,薛庆(学生),曹明莉 最新洁净煤技术—燃煤发电与水泥联产技术 粉煤灰 VoL15(2) p41—4214 王立久 曹明莉 非线性材料受压全曲线数学模型研究 建材技术与应用,2003:2 P8-1115 王立久 王伟(学生) 曹明莉 泡沫玻璃微晶化研究进展 玻璃与搪瓷 VoL31 (2) 2003:4 p56--5816 王立久,扬新朝(学生),曹明莉. 燃煤发电与水泥生产联产技术可行性研究. 世界科技研究与发展, 2004/5,VoL26(5): 王立久,王文亮(学生),曹明莉 混凝土结构模型研究综述 第五届全国高性能砼学术交流会议文集—辽大出版社,沈阳18 Ming-li Cao and Li-jiu Wang Research on MgO-MgCL2-H2O System Ceramsite Exempted from Sintering, Proceeding of the Internatiotal Workshop on Sustainable Development and Concrete Technology, P141-150, Beijing China May 20-21,200419 曹明莉,王立久 基于集浆比J的混凝土水泥石模型研究,武汉理工大学学报, P45-49(EI 收录)20 王立久,曹明莉 混凝土架构模型研究,武汉理工大学学报,2006 P48-54 (EI )21 曹明莉,王安成,王立久,DIP技术在单粒径骨料粒形参数与其架构型式相关性研究中的应用,建筑技术与应用,2007(2)P1-422 曹明莉,吕兴军 发泡剂及泡沫混凝土技术现状与展望(一),建筑技术与应用,2007(4)P7-823 曹明莉,吕兴军 发泡剂及泡沫混凝土技术现状与展望(二),建筑技术与应用,2007(5)P7-824 杨海成(学生),曹明莉(通讯作者) 混凝土抗冻性研究方法综述,辽宁师范大学学报(自然科学版) 2008(31)P136-13825 曹明莉,刘东,位建强 聚氨酯模网夹心保温板的可行性分析,建材技术与应用2010(1)P15-1626 王立久,谭晓倩(学生),曹明莉 结合分形理论的水泥絮凝研究,沈阳建筑大学学报, P82-84, (EI 收录 )27 丁一宁,安培卿(学生),曹明莉,废弃板岩石粉用作水泥掺合料的探索与研究 建筑材料学报 (1), P62-65 (EI)28 王立久,谭晓倩(学生),曹明莉,水泥净浆絮凝结构研究,混凝土 2007(1)P29-3129 王景贤(学生),王立久,曹明莉 少熟料水泥的研究进展 水泥技术 2005(1)P28-3130 位建强(学生),曹明莉(通讯作者) 脱硫石膏-粉煤灰-矿粉复合胶结材GFG的研究,新型建筑材料 (4) P9-1231 . Wang,and . Cao,Research on Concrete Aggregate Frame Model (AFM),The 6th international symposium on cement & concrete , Xi’an China 2006-09, P1168-1176 (ISTP收录)32 曹明莉,刘东 保温材料在墙体节能中的应用及国内外相关标准与法规,2008年中国国际墙体保温材料及应用技术交流会,墙体保温与建筑节能,P69-75,中国电力出版社,2008-1033 曹明莉,薛永丽 国内外住宅屋面节能标准及节能技术措施的对比研究,2008年中国国际墙体保温材料及应用技术交流会,墙体保温与建筑节能,P87-94,中国电力出版社,2008-1034 曹明莉,田冬梅,王安成 混凝土架构模型架浆比参数研究 第九届全国水泥和混凝土化学及应用技术会议论文汇编(下卷)P1065 ,广州35 曹明莉,位建强 碳酸钙晶须研究及其在复合材料中的应用,化工新型材料2010(10)36 曹明莉,杨海成,王立久 基于“渗阻”概念的混凝土抗冻耐久性研究,低温建筑技术2010(8)37 王安成; 张峰; 曹明莉;架构混凝土砂浆比模型研究,建材技术与应用 2009年06期,P1-3 “十一五”国家科技支撑计划项目(2006BAJ04A04)38 于得水 潘淑燕 王安成 曹明莉 双级配骨料空隙率与粒径的关系,建材技术与应用2009年10期,P1-2 “十一五”国家科技支撑计划项目(2006BAJ04A04)39 Cao mingli, Wei jianqiang, Microstructure and mechanical properties of CaCO3 whisker-reinforced cement,Journal of Wuhan University of Technology-Materials Science Edition(SCI收录)P75-8240 Wei jianqiang(学生), Cao mingli ,Liu jing“Application research and prospect of CaCO3 whiskers in cement-based composite materials”, 6th International Specialty Conference on FIBRE REINFORCED MATERIALS, Yantai, April 25-27,2010,P359-364(ISTP收录)41 Cao mingli, Wei jianqiang,Yao hang “Application and Prospect of CaCO3 Whisker in Composite Materials”,12th International Conference on Inspection, Appraisal, Repairs and Maintenance of Structures, P1577-1584;6th International Specialty Conference on FIBRE REINFORCED MATERIALS,P75-82 2010-04 Yantai, China,(ISTP收录)

发泡聚苯乙烯(EPS)是一种轻质泡沫材料,将其掺入砂浆或混凝土中能制备出不同表观密度的轻质混凝土。早在1973年,Cook就对EPS作为混凝土的集料进行了研究.经过多年的研究与尝试,EPS轻质混凝土可以用于诸多建筑结构方面,如EPS保温涂层、EPS砂浆、EPS密封腻子、EPS轻质灰浆、EPS混凝土内外墙板等.此外,EPS轻集料混凝土还在路面回填与找平、防冻路基、保温屋面、楼面隔音以及海洋漂浮结构等领域应用,特别是其具有较强的吸能功能,因而还可用于结构抗冲击保护层[8].然而,EPS颗粒具有两大弱点:其一,EPS的表观密度只有12~20 kg/m3,在混凝土搅拌过程中易产生离析;其二,EPS与水泥浆体界面粘结力弱.这两大弱点严重制约了EPS混凝土技术的应用和推广.因此,需要对其表面进行化学处理.在以前的研究报道中,大多建议采用一些界面添加剂,如环氧树脂或水溶性乙烯丙酸脂,但这大大提高了EPS混凝土。聚苯乙烯泡沫塑料(Expanded Polystyrene,简称EPS)是一种轻质材料,并具有良好的耐水性、绝热性、绝缘性、低吸湿性、较强的抗震性等特点。以EPS颗粒部分或全部取代混凝土中的砂、石,可配制不同密度和强度的混凝土。EPS混凝土具有保温隔热和隔震、减震、大变形及超轻等工程特性,受到建筑行业关注。因此,EPS混凝土结构材料的开发与性能研究及其工程应用探讨,不仅在建筑领域,而且在减轻环境污染和固体废弃物回收利用方面,均具有十分重要的科技和社会效益。迄今为止,国内外的学者已经研制出一些强度较高的EPS轻质混凝土。本文在总结国内外既有成果的基础上,采用了实验和数值分析的方法开展相关研究工作,主要内容包括:(1)以经典堆积理论为基础,通过自编程序计算比较了几种堆积模型,分析了它们的适用范围,并以此作为EPS混凝土配合比设计的依据。(2)测试了EPS混凝土的立方体抗压强度、轴心抗压强度、劈裂抗拉强度、抗折强度和收缩等力学性能指标。

1、耐热度高。泡沫混凝土由于是水泥无机材料,耐热可达500℃以上,不存在热分解,因而使用寿命更长,不会造成保温失效。2、绿色环保,无毒无害。泡沫混凝土不含任何有毒成份,发泡剂及各种外加剂均没有挥发性有害物质,有利于室内环境。3、强度比聚苯乙烯泡沫塑料好。聚苯乙烯泡沫塑料的抗压强度,只有~,而200~300㎏/m3泡沫混凝土抗压强度为~ MPa,抗压性更好。4、使用成本更低。200~300㎏/m3泡沫混凝土的总成本却只有100元左右,具有明显的经济优势。5、施工速度快。泡沫混凝土浇注摊平既可,不需要一张张铺设,其施工速度比聚苯乙烯泡沫塑料板快1/3。6、没有接缝,减少了接缝所造成的热损失。

硅烷水解的稳定性研究论文

硅烷偶联剂遇水都会水解,只是水解速度快慢的问题,KH-550 氨丙基三乙氧基硅烷 遇水就会水解 不需要催化剂,氨基碱性有自催化作用。KH-570 疏水性好,水解速度慢,所以文献资料会提到用酸或者碱来做催化剂,碱性条件下硅烷水解后不稳定,一般建议采用酸,一般 甲酸,乙酸都可以。我们还要求水解加入醇(主要是工业酒精:乙醇),并不是所谓的醇解,而醇是起到助溶的作用和保证硅烷水解后溶液的稳定性。 硅烷的醇水溶液的稳定性要比硅烷的水溶液好的多!每个厂家对自己产品质量的把握和控制也有所不同,目前主要是对硅烷偶联剂的含量进行色谱分析,但是硅烷还有一个指标,也就是水解百分比,这个指标可以直接影响硅烷水解的,也影响着硅烷的有效活性和偶联效果。

甲烷不水解。硅烷水解产生沉淀和气体。

稳定性避免强氧化剂,强碱,卤素。标准状态下气体密度为,液体的相对密度为(-185℃)。蒸气压11mmHg(1mmHg=)(-160℃)、102mmHg(-140℃)、470mmHg(-120℃)。红外光谱波长2191cm-1、914cm-1。在室温时为气体状态,在储存过程中,数月之内无显著分解。因为甲硅烷几乎不溶于润滑脂,可以储存在瓶塞涂有润滑脂的容器内。硅烷的化学性质比烷烃活泼得多,极易被氧化。在与空气接触时可发生自燃。25℃以下与氮不起作用,室温下与烃类化合物不起反应。与氧反应异常激烈,即使在-180℃温度下也会猛烈反应。硅烷与氟氯烃类灭火剂会发生激烈反应,所以不能用这类灭火剂灭火。爆炸极限为~98%。制备在反应瓶和加料漏斗里分别装入 LiAlH4于70mL乙醚中的溶液和 SiCl4于50mL乙醚中的图硅烷的制备装置溶液。在整个合成过程中,把冷浴和指型冷却管分别保持在-15~-20℃和℃。将仪器抽空后,乙醚开始回流,此时必须要注意避免过多的骤沸。然后,将靠近反应装置的U形管接收器冷却到-95℃(用甲苯冻膏),其余四个接收器冷却到-196℃(液氮)。在搅拌下,用15min将SiCl4+乙醚溶液加入到LiAlH4悬浮液中。为了避免乙醚剧烈回流,使甲硅烷连续地以中等速度分出。调节反应器和真空管路之间的玻璃活塞便可以容易地控制反应速度。将SiCl4加完后,继续搅拌15~20min,以保证反应完全。在此期间,将反应器和真空系统切断以免乙醚逃逸过多。当甲硅烷从真空系统排净之后,将空气通入反应器,拆开真空系统。应用用于集成电路制造、太阳能电池、涂膜反射玻璃等。硅烷气:点击查看图片硅烷气硅烷气是太阳能电池生产过程中不可或缺的材料,因为它是将硅分子附着于电池表面的最有效方式。在高于400℃的环境下,硅烷气分解成气态硅和氢气。氢气燃烧后,剩下的就是纯硅了。此外,硅烷气可以说是无处不在。除了光伏产业外,还有很多制造工厂需要用到硅烷气,如平板显示器、半导体、甚至镀膜玻璃生产厂。注意事项危害辨识最重要危害与效应:眼接触:硅烷会刺激眼睛。硅烷分解产生无定型二氧化硅。眼睛接触无定型二氧化硅颗粒会引起刺激。吸入:1.吸入高浓度的硅烷会引起头痛、恶心、头晕并刺激上呼吸道。2.硅烷会刺激呼吸系统及粘膜。过度吸入硅烷会引起肺炎和肾病,这是由于存在结晶二氧化硅的原因。3.暴露于高浓度气体中还会由于自燃而造成热灼伤。摄入:摄入不可能成为接触硅烷的途径。皮肤接触:硅烷会刺激皮肤。硅烷分解产生无定型二氧化硅 。皮肤接触无定型二氧化硅颗粒会引起刺激。慢性:侵入途径:症状:如今不清楚长期暴露于硅烷中对健康的进一步影响。损害器官:未建立过度暴露造成的病情恶化 :有皮肤和呼吸道疾病的人暴露在硅烷及其分解物中会加重病情。致癌性:未被 NTP、OSHA及IARC列为致癌物。急救措施不同暴露途径之急救方法:热灼伤:由于硅烷泄漏引起人员灼伤时应由受过培训的人员进行急救,并立即寻求医疗处理。眼睛接触:立即用水冲洗最少15分钟,水流不要太快,同时翻开眼睑。使受难者为“O”形眼,立即寻求眼科处理。吸入:将患者尽快移到空气清新处。如有必要由受过培训的人员进行输氧或人工呼吸。皮肤接触:1.用大量的水冲洗最少15分钟。脱掉已暴露在硅烷中或被污染的衣服,小心不要接触到眼睛。

  • 索引序列
  • 研究水基泡沫稳定性的论文
  • 泡沫陶瓷的性能研究论文
  • 坝基稳定性研究论文
  • 泡沫混凝土性能研究论文
  • 硅烷水解的稳定性研究论文
  • 返回顶部