首页 > 职称论文知识库 > 中国煤炭使用论文发表时间

中国煤炭使用论文发表时间

发布时间:

中国煤炭使用论文发表时间

这个就不是核心期刊。是一个省级的期刊。——君子期刊论文网刊名: 中国煤炭地质 Coal Geology of China主办: 中国煤炭地质总局周期: 月刊出版地:河北省涿州市语种: 中文;开本: 16开ISSN: 1674-1803CN: 13-1385/TD复合影响因子:0.512综合影响因子:0.329历史沿革:现用刊名:中国煤炭地质曾用刊名:中国煤田地质创刊时间:1989期刊荣誉:Caj-cd规范获奖期刊

《中国煤炭》杂志面向国内外公开征集煤炭市场、经济管理、煤炭科技{开拓与开采、机电与信息化、地质与勘探、加工转化等)、煤矿安全、节能与环保、企业实践、世界煤炭等论文及新闻信息类稿件。

不是的,不是每个人都认同的,而且这个期刊也只不过是普通的期刊而已

中国煤炭使用论文发表

主要看发什么类型的期刊啦,核心的是最难的,一般期刊是最简单的,(ˇˍˇ) 想~文章的方向走哪的? 、

煤炭学报【中国煤炭学会】 2.煤炭工程、煤炭科学技术、煤矿机械、煤矿开采、工矿自动化【国家煤矿安全监察局】 3.中国煤炭【中国煤炭工业协会】 经查上述属于国家级别核心期刊。

看你发的是什么期刊,每个都是不一样,一般会收取600--800的版面费。

煤矿机电类的可以发表《中国煤炭》,论文有主题写是比较容易的。最关键的是找准一个主题,然后进行相关阐述。

中国煤炭发表论文

我也想知道呀,呵呵

煤炭学报【中国煤炭学会】 2.煤炭工程、煤炭科学技术、煤矿机械、煤矿开采、工矿自动化【国家煤矿安全监察局】 3.中国煤炭【中国煤炭工业协会】 经查上述属于国家级别核心期刊。

正规出版物,看看上面的刊号,如果是正常的刊号,就是正常出版的,如果上面有增刊字样,那就是增刊。《煤炭学报》是由中国煤炭学会主办,北大核心期刊、综合影响因子2.125。煤炭学报主要刊载与煤炭科学技术相关的基础理论和重大工程研究的理论成果,为传播煤炭科学技术起到了重要的作用。《煤炭学报》在包括10名中国科学院、中国工程院院士的编委会领导下,每年都制定了明确的报道重点,使刊物能紧紧围绕煤炭重大科技攻关项目发表相关的基础理论论文。本刊发表的论文反映了煤炭科学技术的最新研究成果,起到了促进煤炭科学技术交流和发展的龙头作用,为繁荣煤炭科学技术事业作出了重要贡献。

为什么要发表论文?就是为了那么点稿费吗?是有的

煤炭加工论文发表时间

评职称都是按刊物的刊期来算的,如果刊物是9月的刊,那就是9月的,哪怕是7月收的刊物。

严格意见上来讲,就没有发表时间这一说,都是出版时间,按《出版物管理条例》及其实施细则等,连续出版物是不允许提前出刊的,像这种9月的刊期,8月出版的,都是违法操作的,就是为了评职称提前拿到刊物而操作的。

按相关规定,连续出版物一般为当月或次月出版,一般来说,月刊为每月15日出版,旬刊为每月5、15、25日出版,半月刊为每月10日、20日出版。

概念

职称论文发表,顾名思义,就是在学术期刊公开发表论文,用于评定职称。“论文”是指精深而有系统的学术文章,是课题研究、问题讨论的表达形式。论文发表就是专门对社会科学或自然科学领域中某一问题,进行探讨、分析论证的文章发表在国家正式出版物上,由于利益驱使,市面上充斥着很多假刊,发表论文前一定要认真鉴别,避免上当。

看你上面的刊期,在职称评定中,是以刊期为准的。如果是5月份的刊期,即使是8月份收到的,也是按5月份算的。

论文发表一般需要的时间如下: 1、普刊即省级国家级一般安排周期是1到3个月。 2、本科学报的安排周期一般为2到4个月。 3、北大核心以上级别期刊的安排周期一般为6到8个月,审稿周期为一个月。 4、科技核心期刊从投稿到录用发表,一般是3到6个月。

首先拿自然投稿来说,省级和国家级的论文审稿需要1-2天,发表时间需要1-3个月。个别快的话半个月内就可以完成,慢的话甚至要4-7个月之久了。对于质量水平较高的期刊和一些大学期刊来说,投稿发表时间通常在6个月左右,较快的也需要3-4个月。科技核心期刊审稿需要1-3个月,发表需要6-10个月,总体时间大致是1-1.5年。北核和南核的审稿需要3-4个月时间,出版则需要6-15个月时间,跨度大,总共需要时长约1-2年。SCI和EI等与北核南核时间周期类似。众所周知,省级和国家级别的期刊是普通期刊,是职称期刊发表的起跑线。相对而言,从选刊到成功收刊用不了多长时间。有些刊物块的话研究1个月左右的时间就收到了,如果慢的话,大概也就是3个月左右的时间。

山西煤炭论文发表时间

林亮 姚勇 黄晓明

基金项目:国家科技重大专项示范工程62(20092×05062)

作者简介:林亮,1983年生,男,工程师,硕士,2009年毕业于中国矿业大学(北京),现工作于中联煤层气有限责任公司国际合作与勘探部,从事含油气盆地分析及煤层气勘探开发利用研究工作。,

(中联煤层气有限责任公司 北京 100011)

摘要:通过实施国家科技重大专项《大型油气田及煤层气开发》项目“鄂尔多斯盆地石炭二叠系煤层气勘探开发示范工程”柳林示范项目,收集大量煤田资料并施工煤层气试验生产井,研究了柳林地区煤层气储层孔渗发育特征。研究结果表明:该区煤岩孔隙度主要受煤化程度、显微组分、矿物含量和煤体结构的影响;煤层渗透率变化较大,渗透率相对较低,具有较强的非均质性;总体上由北东向南西方向渗透率有减小趋势,太原组较山西组煤层渗透率偏低。

关键词:柳林区块 煤层气 孔隙变 渗透率

The Porosity and perm eability Characteristics of the Liulin Coalbed Methane Block, Shanxi Province

LIN Liang YAO Yong HUANG Xiaoming

(China United Coalbed Methane Co., Ltd, Beijing 100011, China)

Abstract: The Liulin demonstration projects of "ordos Basin Carboniferous and Permian's coalbed methane Exploration and Development Demonstration Project" is one of the Major National Science and Technology special projects on "Large Oil and Gas Fields and Coalbed Methane Development Program. " In order to study the porosi- ty and permeability Characteristics of coalbed reservoir characteristics of this area, we collected a large number of coal fields data and many Parameters and production wells have been implemented. The results show that the coal porosity is mainly affected by the degree of coalification, maceral, mineral content and coal shape. The coal per- meability was relatively low and varied significantly, and it shows a decreasing trend from northeast to southwest area. The coal permeability of Taiyuan formation is lower than that of Shanxi formation.

Keywords: Liulin block; coalbed methane; porosity; permeability

柳林位于山西省西部,河东煤田中部,南邻石楼北区块,东邻杨家坪区块。行政区划隶属于山西省吕梁市柳林县的穆村镇、薛村镇、庄上镇、高家沟乡、贾家垣乡。地理坐标:东经110°44′00″~110°53′00″,北纬37°21′00″~37°31′00″,区块东西宽约10.1km,南北长约18.1km,面积183.824km2。

1 区域地质背景

河东煤田主要处在黄河东岸——吕梁山西坡的南北向构造带上,属于李四光指出的“黄河两岸南北向构造带”的东岸部分。煤田总体上是一个基本向西倾斜的单斜构造,属于吕梁复背斜西翼的一部分,在单斜上又发育了次一级的褶曲和经向或新华夏系的断裂构造[1]。

柳林地区位于河东煤田中段离柳矿区西部,南邻石楼北区块,北邻三交区块,构造上位于鄂尔多斯盆地东缘石鼻状构造南翼。在研究区北部,地层向西倾斜,向南逐渐转为向西南倾斜,总体为一向西或西南倾斜的单斜构造。地层产状平缓,倾角约3°~8°。在鼻状构造的背景上,发育有起伏微弱的次级小褶曲,起伏高度一般小于50m。区内断层不发育,仅在区块北部发育有由聚财塔南北正断层组成的地堑及其派生的小型断层。地表未见陷落柱,也未见岩浆活动[2]。

本区块内及周边赋存的地层有奥陶系中统峰峰组(O2f);石炭系中统本溪组(C2b)、上统太原组(C3t);二叠系下统山西组(P1s)、下石盒子组(P1x);二叠系上统上石盒子组(P2s)、石千峰组(P2sh);三叠系下统刘家沟组(T1l)、和尚沟组(T1h);新生界上第三系上新统(N2);第四系中更新统(Q2)、上更新统(Q3)、全新统(Q4)。本区内发育煤层14层,其中山西组5层,自上而下编号为1、2、3、4(3+4)、5号煤层;太原组9层,自上而下编号为6上、6、7、7下、8+9、9下、10、10下、11号[2]。其中山西组的2、3、4(3+4)、5号煤层,太原组的8+9、10号煤为主要可采煤层[3]。

2 煤储层孔隙特征

煤岩孔隙是指未被固体物质充填满的空间,为煤结构的重要组成部分,与煤储层的储集性能、渗透性等密切相关。一般来说,随着煤阶的升高,煤中的总孔容呈指数下降,总的规律为微孔和小孔增加、大孔和小孔减少[4]。

空隙的划分方案较多,一般采用B.B.霍多特方案,即大孔大于1000nm,中孔为1000~100nm,小孔为100~10nm,微孔小于10nm的标准。

从鄂尔多斯盆地东缘煤储层孔隙体积百分含量上来看,孔隙体积百分含量在26.06%~66.78%之间,均值为48.75%,微孔变化在14.89%~39.39%,平均为27.47%;大孔次之,介于5.56%~44.24%,均值为16.43%;中孔最弱,变化于2.35%~32.98%,平均7.33%。不同地区不同层位,煤储层孔隙分布变化较大[5]。

杨家坪井组数据(表1)表明柳林地区煤层孔隙以小孔为主体,一般占煤层孔隙的40%~55%,此外,微孔和大孔发育较多,中孔发育最少。平均总孔隙含量在0.0258~0.0413cm3/g之间,孔隙发育情况一般。在4MPa有效上覆压力条件下,柳林地区8号煤层总孔隙度平均为7.18%,5号煤层总孔隙度平均3.45%,4号煤层总孔隙度平均为3.90%,以8号煤层孔隙度最优。

表1 柳林地区不同煤层孔隙发育情况(注:杨家坪井组数据)

总体上看,柳林地区总孔容一般变化于(148~547)×10-4cm3/g之间,平均323×10-4cm3/g左右。如图1,孔容分布上主要以小孔、微孔为主,尤以小孔含量为优,中孔发育最少。

图1 柳林地区各类孔隙孔容比对比图

柳林地区煤层压汞总孔比表面积在0.103cm3/g~0.413cm3/g之间,且小孔和微孔总孔比表面积比占绝对优势,大孔和中孔所占比率甚微,过渡孔所占比例又略高于微孔所占比例。

3 煤储层渗透率特征

研究区内3+4号煤层渗透率为0.01~2.8mD,平均0.6mD;FL-EP1井渗透率相对较高;5号煤层渗透率变化范围为0.06~1.59mD,平均0.7mD;8+9号煤层渗透率变化范围0.005~24.8mD,平均4.8mD;整体上8+9煤层渗透率要明显高于3+4号与5号,各个层位渗透率都呈现出北高南低的特点[6](图2)。

煤岩渗透率平面变化较大,西部由于煤层埋深较大,渗透率相对较低,测试反映了煤层具有较强的非均质性;总体上由北东向南西方向渗透率有减小趋势,太原组较山西组煤层渗透率高。

煤储层的渗透性是控制煤层甲烷气生产能力的主导因素。渗透率一般指试井渗透率,通过试井资料获得,由于研究区内煤层气探井有限,所以煤层气试井渗透率资料非常有限。据已有资料,柳林地区的渗透率在0.01~10mD之间,南部渗透性要好于北部。煤层气储层的渗透率受煤体结构、裂隙系统的发育程度、地应力等影响;此外,煤层气开采过程中外界条件的改变特别是储层压力变化引起的有效应力效应与基质收缩效应,也对煤岩渗透率产生强烈影响:

1.柳林示范区及周边地区以中煤级为主,裂隙非常发育是渗透率的主控因素。裂隙多近东西向展布,端裂隙与之斜交。两组裂隙在平面上以规则的菱形网格状为主,次为不规则网状,孤立状很少见到。

大孔尤其是裂隙的发育情况决定了储层在原始地层条件下的渗透能力。裂隙的发育程度主要是指裂隙的密度(或间距)、长度、宽度、裂口宽度等,它们的值越大,煤层的渗透性越好。裂隙系统的发育程度与煤岩成分、煤变质程度、构造应力等因素密不可分。光亮型煤、中等变质程度的烟煤(如肥煤、焦煤、瘦煤)、低灰分煤等条件最有利于裂隙的大量形成。柳林地区煤以半亮煤为主体,煤级以焦煤为主,有利于形成裂隙。统计面裂隙密度表明,裂隙密度较大,且裂隙大部分未被充填,大幅度扩大了煤体的渗透率[6]。

2.煤层是对地应力十分敏感的天然气储层。通常,地应力场被分解为垂直应力和水平应力。垂直应力是由上覆岩层的重量引起的。煤层裂隙系统的渗透率是有效应力的函数,有效应力是垂直力与地层压力的函数差。垂直应力和地层压力均随埋藏深度的增加而成线数增加关系,由于岩层的密度远大于孔隙中流体的密度,可知,有效应力随深度的增加而增大,裂隙系统的渗透率随着深度的增加而变小。柳林地区煤层由东往西,往南埋深加大,例如4号煤层埋深由东部的200m加大到西南的1250m,渗透率在地应力的作用下呈现变小的趋势。

3.示范区内构造应力场及其伴生的节理发育特征是控制煤储层渗透率的主要因素之一,南部节理变化较小,而中部较大,这预示在中部地区不同走向节理交切部位可能呈网状分布,形成高渗透性地层分布区。同时,统计数据表明,示范区内中部较东西两侧渗透性好。受燕山运动影响,柳林地区地层裂隙呈北东向展布;FL-EP1井山西组3+4号煤层压裂结果显示,造缝裂隙方向仍为北东南西向,与煤层主裂隙方向一致。

图2 柳林地区4、5、8+9煤层渗透率

4 结论

柳林矿区内所含的煤系地层由老到新分别为上石炭统本溪组(C2b)、上石炭统太原组(C3t)以及下二叠统山西组(P1s)。其中矿区内有煤层气勘探潜力的煤层为上石炭统太原组底部8+9+10号煤,下二叠统山西组3+4+5号煤。

两套煤层宏观煤岩类型以半亮煤和半暗煤为主,光亮煤和暗淡煤为辅,镜质组含量高,主要为焦煤。煤层孔隙以小孔为主体,一般占煤层孔隙的40%~55%,此外,微孔和大孔发育较多,中孔发育最少。总孔容一般变化于(148~547)×10-4cm3/g之间,平均323×10-4cm3/g左右。汞总孔比表面积在0.103~0.413cm3/g之间,且小孔和微孔总孔比表面积比占绝对优势。

煤岩渗透率平面变化较大,西部由于煤层埋深较大,渗透率相对较低,测试反映了煤层具有较强的非均质性;总体上由北东向南西方向渗透率有减小趋势,太原组较山西组煤层渗透率高。

从煤层厚度、煤岩煤质、孔渗条件等方面考虑,柳林地区具备煤层气富集成藏的条件,有大规模开发的潜力。

参考文献

[1]刘新社,席胜利,周焕顺.2007.鄂尔多斯盆地东部上古生界煤层气储层特征[J].煤田地质与勘探,35(1)

[2]张新民,庄军,张遂安.2002.中国煤层气地质与资源评价[M].北京:科学出版社

[3]黄晓明,林亮,王赞维等.2010.山西柳林地区煤系地层对比特征[J].煤层气勘探开发理论与技术——2010年全国煤层气学术研讨会论文集

[4]张松航,汤达祯,唐书恒.2009.鄂尔多斯盆地东缘煤层气储集与产出条件[J].煤炭学报,10

[5]杨光,刘俊来.2008.鄂尔多斯盆地煤岩变形与煤储层特性关系的实验研究[J].地质学报,10

[6]要惠芳,阴翠珍.2006.山西河东煤田柳林杨家坪煤层气储层地质特征[J].中国石油勘探,11(3):68~72

6556565+6565555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555256564645

煤主要由碳、氢、氧、氮、硫和磷等元素组成,碳、氢、氧三者总和约占有机质的95%以上,是非常重要的能源,也是冶金、化学工业的重要原料,有褐煤、烟煤、无烟煤、半无烟煤这几种分类。著名作家朱自清也曾以煤为标题写过一首诗,赋予其独特的象征意义。截至2010年,全世界最大的产煤国是澳大利亚,澳大利亚每年生产全球70%的煤。截至2010年,全世界最大的煤消费国是中国,中国每年的煤消耗量占全球消耗量35%。煤是重要能源,也是冶金、化学工业的重要原料。主要用于燃烧、炼焦、气化、低温干馏、加氢液化等。①燃烧。煤炭是人类的重要能源资源,任何煤都可作为工业和民用燃料。②炼焦。把煤置于干馏炉中,隔绝空气加热,煤中有机质随温度升高逐渐被分解,其中挥发性物质以气态或蒸气状态逸出,成为焦炉煤气和煤焦油,而非挥发性固体剩留物即为焦炭。焦炉煤气是一种燃料,也是重要的化工原料。煤焦油可用于生产化肥、农药、合成纤维、合成橡胶、油漆、染料、医药、炸药等。焦炭主要用于高炉炼铁和铸造,也可用来制造氮肥、电石。电石是塑料、合成纤维、合成橡胶等合成化工产品。③气化。气化是指转变为可作为工业或民用燃料以及化工合成原料的煤气。④低温干馏。把煤或油页岩置于 550℃左右的温度下低温干馏可制取低温焦油和低温焦炉煤气,低温焦油可用于制取高级液体燃料和作为化工原料。⑤加氢液化。将煤、催化剂和重油混合在一起,在高温高压下使煤中有机质破坏,与氢作用转化为低分子液态和气态产物,进一步加工可得汽油、柴油等液体燃料。加氢液化的原料煤以褐煤、长焰煤、气煤为主。 综合、合理、有效开发利用煤炭资源,并着重把煤转变为洁净燃料,是人们努力的方向。

  • 索引序列
  • 中国煤炭使用论文发表时间
  • 中国煤炭使用论文发表
  • 中国煤炭发表论文
  • 煤炭加工论文发表时间
  • 山西煤炭论文发表时间
  • 返回顶部