《校园英语》省级知网跨库,是12月出刊,可以收全英文文章2版4600字符或9200英文字符起发。
《海外英语》省级知网首页可查,只收21年上半年的加急版面(注意截止到2020年9月3日,他还是只收加急的上半年版面)。
《英语广场》省级知网首页可查,SCD期刊,目前正常收21年2-3月的刊期,另外有个别年内版面可以免费加急到年底出刊,注意他的版面是按字算,不是字符。
《现代英语》万方收录的期刊,只收英语高教的文章。如果是文学的,如果必须是年内的。
《青年文学家》《作家天地》《今古文创》《文化学刊》也可以考虑去发心理学专刊《心理月刊》。
英文期刊:
《有机化学》创刊于1975年,是由中国科学院主管,中国化学会、中国科学院上海有机化学研究所主办的学术期刊。
主要刊登有机化学领域基础研究和应用基础研究的原始性研究成果。设有综述与进展、研究论文、研究通讯、研究简报、学术动态、研究专题、亮点介绍等栏目。主要读者对象为中国国内外化学工作者。
《物理学报》由中国物理学会和中国科学院物理研究所主办的综合性物理学中文学术期刊,为半月刊,被SCI-CD、SCI-E、Scopus、EI、CA、INSPEC、JICST、AJ、MR等国际核心检索系统收录。
主要栏目有研究论文、研究快报等,发文领域包括凝聚态物理和材料物理、原子分子物理和光物理、统计物理、非线性物理、等离子体物理、粒子物理与核物理、物理学交叉学科等。
《光谱学与光谱分析》是1981年创办的中文学术期刊,月刊,中国光学学会主办,中国科学技术协会主管。
主要刊登激光光谱测量、红外、拉曼、紫外、可见光谱、发射光谱、吸收光谱、X-射线荧光光谱、激光显微光谱、光谱化学分析、国内外光谱化学分析最新进展、开创性研究论文、学科发展前沿和最新进展、综合评述、研究简报、问题讨论、书刊评述。
《无机材料学报》是1986年创办的中文学术期刊,月刊,中国科学院上海硅酸盐研究所主办,中国科学院主管。
主要刊登包括纳米无机材料、功能陶瓷(铁电、压电、热释电、PTC、温敏、热敏、气敏等)、高性能结构陶瓷、功能晶体材料、能源材料、生物材料。
无机薄膜材料、特种玻璃、环境材料、特种无机涂层材料以及无机复合材料等方面的最新研究成果,和上述材料性能的最新检测方法以及获得上述材料的新工艺等。
《金属学报》创刊于1956年,是由中国科协主管、中国金属学会主办、中国科学院金属研究所承办、科学出版社出版的材料冶金领域的学术性期刊。主要刊登冶金科技和材料科学与工程方面具有创新性的原始学术论文和高水平的综述性文章。设置有原始论文、短文快报、综合评述等栏目。
相信很多人会遇到这样一个类似的问题,那就是在英文论文写好之后,却苦于找不到国内经常使用的论文发表期刊有哪些。下面是根据多年的经验总结出来的其中比较受欢迎的期刊,希望对您有一定帮助。至于查重可以了解一下paperfree。谢谢!zAcademic Journal of Xi'an Jiaotong University(English Edition)Acta Geologica SinicaActa Mathematica ScientiaActa Oceanologica SinicaActa Pharmacologica SinicaActa Seismologica SinicaADVANCES IN ATMOSPHERIC SCIENCESApplied Mathematics A Journal of Chinese UniversitiesBiomedical and Environmental SciencesCell ResearchChemical Research in Chinese UniversitiesChina WeldingChinese Annals of Mathematics,Series BChinese Chemical LettersChinese Geographical ScienceChinese Journal of AeronauticsChinese Journal of Astronomy and AstrophysicsChinese Journal of Cancer ResearchChinese Journal of Chemical EngineeringChinese Journal of GeochemistryChinese Journal of Integrative MedicineChinese Journal of LasersChinese Journal of Mechanical EngineeringChinese Journal of Oceanology and LimnologyChinese Journal of Polar ScienceChinese Journal of Reactive PolymersChinese Journal of Sexually Tuansmitted InfectionsChinese Journal of Traumatology (English Edition)Chinese Medical JournalChinese Medical Sciences JournalChinese Quarterly Journal of MathematicsChinese Rice Research NewsletterChinese Science BulletinCommunications In Theoretical PhysicsEarthquake Engineering and Engineering VibrationElectricityForestry Studies in ChinaGeo-spatial Information ScienceHigh Technology LettersHunan Agricultural Science & Technology NewsletterInternational Journal of Plant Engineering and ManagementJournal of Beijing Institute of TechnologyJournal of Central South University of Technology(English Edition)Journal of China University of GeosciencesJournal of China University of Mining and TechnologyJournal of Chongqing University(English Edition)Journal of Coal Science & Engineering(China)Journal of Computer Science and TechnologyJournal of Electronics(China)Journal of Environmental SciencesJournal of Forestry ResearchJournal of Geographical SciencesJournal of Harbin Institute of Technology(New Series)Journal of Huazhong University of Science and Technology(Medical Sciences)Journal of HydrodynamicsJournal of Iron and Steel Research,InternationalJournal of Materials Science & TechnologyJournal of Nanjing Medical University(English Edition)Journal of Northeast Agricultural University(English Edition)Journal of Rare EarthsJOURNAL OF SHANGHAI JIAOTONG UNIVERSITYJournal of Shanghai Second Medical UniversityJournal of Shanghai University(English Edition)Journal of Southeast University(English Edition)Journal of Southwest Jiaotong University(Englis Edition)Journal of Systems Engineering and ElectronicsJournal of Systems Science and ComplexityJournal of Traditional Chinese MedicineJournal of Tropical MeteorologyJournal of University of Science and Technology BeijingJournal of Wuhan University of Technology (Materials Science Edition)Journal of Zhejiang University(Science)Nuclear Science and TechniquesNumerical Mathematics A Journal of Chinese Universities English SeriesPedospherePlasma Science and TechnologyProgress in Natural ScienceRare MetalsReproduction & ContraceptionScience In China (Chemistry)SCIENCE IN CHINA (Earth Sciences)Science In China (Information Sciences)Science In China (Life Sciences)Science In China (Mathematics Physics Astronomy)Science In China (Technological Sciences)Semiconductor Photonics and TechnologyThe Chinese-German Journal of Clinical OncologyThe Journal of China Universities of Posts and TelecommunicationsTransactions of Nanjing University of Aeronautics and AstronauticsTransactions of Nonferrous Metals Society of ChinaTransactions of Tianjin UniversityTsinghua Science and TechnologyWuhan University Journal of Natural Sciences
随着理论和实验的不断发展,物理学家逐步建立了粒子物理的“ 标准模型 ”。
在这个模型下,整个宇宙的基本粒子分为4类,分别是 夸克 、 轻子 、 矢量玻色子 和 标量希格斯粒子 。
其中,矢量玻色子是相互作用的 媒介子 ,通过规范作用传递着基本粒子之间的强相互作用、弱相互作用和电磁相互作用。
所有的基本粒子通过和希格斯子发生 相互作用 而获得质量。随着2012年希格斯粒子 在实验中发现 ,粒子物理标准模型完成最后一块“拼图”,证明了标准模型的巨大成功。
但是目前宇宙中仍然有许多标准模型解释不了的问题,表明 粒子物理标准模型并不是“终极”理论 ,而是电弱能标下的“有效”理论,仍然有超出标准模型的新物理亟待去发掘,这也是当前粒子物理学界的主要研究内容。
暗物质研究
暗物质超出了粒子物理标准模型,是当今物理学和天文学亟待解决的重大问题,在 实验中探测到暗物质并研究其物理属性 ,将是物理学的重大突破。
暗物质实验探测有3个主要方向—— 直接探测 、 间接探测 和 对撞机探测 。
国际新一代暗物质直接探测实验 PandaX-4T 4t级液氙实验 率先投入运行,取得大质量暗物质世界最强的限制。
间接探测包括暗物质粒子探测( DAMPE )和 AMS-02空间实验 积累了更多数据,给出更加精确的测量。
欧洲核子研究中心大型强子对撞机 LHC 上的暗物质寻找不断深入更加复杂的参数空间,并为即将开始的Run-3阶段取数做准备。
中国锦屏地下实验室(CJPL) 是世界上最深的实验室,有效屏蔽了来自宇宙线的干扰,提供了极其优越的实验环境,中国开展了 PandaX液氙实验 和 CDEX高纯锗实验 直接探测暗物质。
>>>
近20年来,位于意大利的 DAMA/LIBRA实验 一直宣称观测到暗物质在NaI(Tl)晶体中产生的 年调制信号 ,然而相应的暗物质信号参数被各种类型的直接探测实验所排除。
为了更加确切地检验这个疑似信号,国际上试图用同样的低本底NaI(Tl)晶体开展实验。
2021年5月,西班牙 Canfrac地下实验室 采用112.5 kg的低本底NaI(Tl)晶体探测器的ANAIS实验公布了3年曝光量的探测结果,并 没有发现显著年调制现象 。预计到2022年底,该实验将有超过3倍标准偏差灵敏的曝光量,可以给出更加确切的结论。
另一个采用106 kg低本底NaI(Tl)晶体的 COSINE-100实验 ,在韩国Yangyang地下实验室1.7 a曝光量的数据,也 没有发现显著的年调制现象 。
>>>
2020年,位于意大利Gran Sasso地下实验室的 XENON1T液氙实验 在0.65 t·a曝光量的低能量电子反冲数据中,观测到了 大于3倍标准偏差的疑似信号 ,引起了暗物质理论和实验研究领域的广泛关注,亟需 同类型实验的进一步检验 。
中国 PandaX-II二期580 kg级液氙实验 积累了100 t·d的曝光量数据,直接从刻度数据中获取了 氙中主要的放射性杂质本底的特征谱 ,进而根据这些高可靠性的本底特征谱对电子反冲数据进行分析。
PandaX-II的结果显示,XENON1T观测的疑似信号 和当前数据并不矛盾 ,还需要提高数据统计量和探测灵敏度以给出确定性结论。
PandaX-II实验对轴子暗物质耦合常数(a)和中微子反常磁矩(b)的排除限,和XENON1T的疑似信号并不矛盾
国际上开展了多种类型暗物质探测的实验升级和研发,3个以液氙作为靶物质的实验,位于中国的PandaX-4T、欧洲的XENONnT和美国的LZ实验,将探测体量提升到了多吨级,预期能够 将探测灵敏度比之前提升1个数量级以上 。
其中, PandaX-4T液氙实验 在2020年底完成安装和调试,成为国际上首个投入运行的 多吨级液氙探测实验 ,在2021年上半年试运行的曝光量达到0.63 t·a。
PandaX-4T探测器中应用了一系列新技术:研制了 新一代超大尺寸高透光的时间投影室探测器 ,大幅提高了探测器电场的均匀性和电子信号放大率,实现高分辨率的信号重建;采用了 无触发数据读出方式 ,有效降低了微弱信号的探测阈值;研制了 新型低温精馏氙系统 ,成功提纯6 t原料氙,将放射性杂质氪85的含量降低到PandaX-II时的1/20;有效利用液氙自屏蔽并结合多种放射性测量方法和表面清洗工艺,将单位探测靶中放射性本底降低到1/20,放射性杂质氡222的含量降低到1/6。
PandaX-4T首批数据的探测灵敏度较PandaX-II 提升了2.6倍 ,给出了大质量暗物质和原子核自旋无关散射截面世界最强的限制。
PandaX-4T首批数据
对暗物质自旋无关散射截面的排除限
黄色区域为“中微子地板”,即探测灵敏度可以探测到太阳或大气中微子在探测器中的信号贡献
这批数据也显示,在暗物质质量10 GeV/ c 2附近区域,PandaX-4T实验开始触碰到所谓的“ 中微子地板 ”,即有可能探测到太阳中核聚变产生的硼8中微子同氙原子核的 相干散射信号 ,这种散射将是未来探测中微子的一个重要途径。
与此同时,国际上开始计划 几十吨级“终极”液氙探测实验 ,其中一个目标是将暗物质探测灵敏度推进到“中微子地板”。PandaX实验团队已经开展了相应的关键技术研发。
以液氩为靶物质 的探测器对大质量暗物质也有独特的探测灵敏度,几十吨级的低本底氩探测器的研发也在持续推进中。
>>>
中国CDEX实验利用 点电极高纯锗探测器 ,可实现 低能量阈值的探测 ,对轻质量暗物质具有高灵敏度。
2021年CDEX实验公布了利用942.5 kg·d曝光量的数据寻找有效场暗物质信号的结果。
直接探测实验中,暗物质和靶物质相互作用转移动量小,可以 用有效场算符的形式系统地研究 ,从而实现较为全面的覆盖多种可能的暗物质理论模型。
在分析中,CDEX实验将探测阈值降低到160 eV,针对小质量暗物质,系统性地给出了 非相对论下 多种类型有效场模型的耦合常数上限。
同时,利用 手征有效场理论 ,获得了6 GeV/ c 2质量以下世界最强的WIMP与pion介子散射截面的排除限。
目前CDEX实验正在开展50 kg级高纯锗探测阵列实验的研发,预期将探测灵敏度 提高2个数量级以上 。
>>>
针对 小质量暗物质 ,直接探测实验也尝试不同探测方案来突破探测阈值的限制。
液氙探测实验 通过独立电离电子信号(S2-only)、Migdal或韧致辐射等次级效应来寻找小质量暗物质。
如 PandaX实验 在2021年初发表的S2-only数据分析结果,寻找暗物质和电子散射信号,在15~30 MeV/ c 2暗物质质量区间给出世界最强的 散射截面限制 。
SENSEI实验 采用了约2 g的高阻抗Skipper-CCD,在2020年底发表了24 d运行数据的结果,给出0.5~10 MeV/ c 2质量的暗物质和电子散射信号世界最强的限制,以及1.2~12.8 eV/ c 2质量的暗光子世界最强的限制。
SENSEI实验正在组装测试100 g探测模块,将 大幅度提升该质量范围的暗物质探测灵敏度 。
>>>
在 暗物质间接探测 方面,中国暗物质探测卫星 DAMPE实验 和位于国际空间站的 AMS-02实验 继续积累数据。
2021年发表了AMS-02实验运行7 a以来的物理数据,给出 更加精确 的反电子、反质子等测量结果。
>>>
在 对撞机探测 方面, 大型强子对撞机LHC 上的 ATLAS 和 CMS 实验不断深入分析Run-2运行时期的全部数据,寻找 暗物质产生过程 以及 中间传播子信号 。
对撞机探测不受原子核自旋大小的压制,通过寻找夸克或者胶子湮灭产生暗物质的过程,以及通过双喷注共振峰直接寻找轴矢量中间传播子,在一定的耦合常数下,可以 有效补充直接探测实验的结果 。
对撞机实验同时在寻找一些 复杂过程的暗物质模型 ,其中, 暗希格斯子模型 认为暗物质的质量起源有可能也存在类似希格斯子的破缺机制——暗希格斯子,暗希格斯子可以有和希格斯子类似的衰变过程。
ATLAS实验在2021年发表了 首个暗希格斯子衰变到2个矢量玻色子最终态的寻找结果 ,对中间传播子和暗希格斯子质量给出了限制。
LHC第三期取数Run-3即将开始,将累计更多的数据量进一步扫描多种暗物质产生模型。
中微子和粒子天体物理研究
粒子天体物理和粒子物理研究紧密联系, 宇宙线 具有地球上人造加速器无法达到的高能量,为我们认识极端高能物理过程、寻找新物理提供了宝贵的物质样本。
>>>
2021年粒子天体物理领域最显著的成果来自中国国家重大 科技 基础设施—— 高海拔宇宙线观测站LHAASO 。
LHAASO于2021年完成建设并顺利通过工艺验收,正式进入科学运行阶段,以前所未有的灵敏度开展 伽马射线、宇宙线巡天观测 。
在建设期间,基于1/2阵列数据,LHAASO合作组发布了首批观测结果:发现 银河系中大量超高能宇宙加速器 ,为寻找河内宇宙线起源做出了重要推进;记录到 能量达1.4 PeV的伽马射线光子 ,这是人类迄今为止观测到的最高能量光子,开创了超高能伽马射线这一崭新的天文窗口。
蟹状星云 是首批发现的12个超高能伽马射线源之一,一直作为伽马射线天文学的“标准烛光”,LHAASO的最新结果为此“标准烛光” 在超高能波段设定了亮度标准 。
LHAASO观测到来自蟹状星云方向的0.88 PeV伽马射线光子
这些超高能伽马射线辐射产生PeV以上能段的电子,接近经典电动力学和理想磁流体力学理论所允许的加速极限, 对现有的粒子加速理论提出了严峻挑战 。
未来几年,LHAASO将持续对北天区开展巡天观测,扫描伽马射线源并精确测量“膝”区宇宙线能谱, 冲击宇宙线起源的世纪之谜 。
>>>
另一种来自宇宙深处的重要物质样本是 高能中微子 。
2021年,位于南极冰层中的冰立方中微子天文台公布了首个 格拉肖共振事件 ——格拉肖预言,反电子中微子可与电子相互作用生成W-玻色子。产生格拉肖共振的中微子峰值能量为6.3 PeV,可 从极端天体环境中得到 。
冰立方在此次簇射事例中测得6.05 0.72 PeV的能量,考虑到簇射中的不可见能量,中微子能量被修正为约6.3 PeV;事例中测到次级缪子的信号预示着 W-玻色子的强子衰变过程 ,为格拉肖共振提供了进一步证据。
冰立方的格拉肖共振事件再次验证了粒子物理标准模型, 揭示了天体反电子中微子的存在 。
对格拉肖共振事件的观测有望对天体中微子的产生机制做出限制。
未来几年是中微子天文学发展的关键时刻,国内外多个实验组提出了冰层、海洋、湖泊中的多种 下一代中微子望远镜方案 ,结合伽马射线、宇宙线、引力波的观测数据开展多信使天文学研究。
>>>
在 超出标准三味中微子模型的新物理寻找 方面,位于美国费米国家加速实验室的MicroBooNE实验发布了新的测量结果,没有找到惰性中微子存在的迹象。
此前,LSND、MiniBooNE等 短基线实验 相继发现中微子的数量异常,引入第四种中微子—— 惰性中微子 。
MicroBooNE实验没有找到惰性中微子,表明其中的差异还需要进一步研究,中微子数量异常仍然是未解之谜。
>>>
2021年,国际 无中微子双贝塔衰变实验 方向发展势头迅猛。
大型实验 中,CUORE和Kam⁃LAND-ZEN实验分别继续取数,GERDA的继任实验LEGEND-200即将开始运行。
国内无中微子双贝塔衰变实验在最近几年蓬勃发展,多个实验组提出了多种不同的实验方案,再次彰显了 马约拉纳中微子 这一问题的重要性和显著度。
>>>
2021年, 中国江门中微子实验 的建设进展顺利,预期2023年开始取数,剑指中微子质量顺序、中微子混合参数的精确测量,有望率先获得具有国际竞争力的实验成果。
明天将介绍缪子反常磁矩研究、重味与强子物理研究、高能量前沿希格斯物理、电弱物理与新物理寻找这3个领域的进展,敬请关注!
论文全文发表于《 科技 导报》2022年第1期,原标题为《2021年粒子物理学热点回眸》,本文有删减,欢迎订阅查看。
博士发表一篇prl那是相当厉害了。
可以说所有获诺贝尔物理学奖的都是在PRL上发表论文。
CCF推荐分类:PR是B类;PRL是C类。一般,PR在行业里还是比较认可的。博士毕业,还是要发几篇像PR这样的期刊。
期刊性质:PR和PRL是一个Publisher,区别是PRL原本的意图是发表短少精炼、周期短的论文,而PR是复杂长篇、周期长的论文或文章。但逐渐的PR也开始发表短文章。
在PRL上发表而获得诺贝尔物理学奖者有史蒂芬·温伯格、阿瑟·伦纳德·肖洛、基普·索恩等。
1979年因弱电统一理论,史蒂芬·温伯格与格拉肖和萨拉姆分享当年诺贝尔物理学奖。1967年11月20日,史蒂芬·温伯格在物理评论快报(PRL)上发表的一篇标志性的论文:《轻子模型》(A Model of Leptons),为高能粒子物理学在20世纪后半叶的发展指明了方向。
1981年,阿瑟·伦纳德·肖洛获诺贝尔物理学奖,主要学术领域是激光的研究。肖洛曾放弃没有奖学金的工程学改学物理学专业,在哥伦比亚大学与Townes教授一起工作,在1958年与Townes教授一起写了一篇关于激光的论文在PRL上发表。
中学物理期刊排名物理学报、光学学报、高能物理与核物理。
一、物理学报
《物理学报》创刊于1933年的《中国物理学报》,1953年更名为《物理学报》;2009年被评为新中国60年有影响力的期刊,2010年获得中国政府出版奖期刊奖,2013年被评为全国百强科技期刊。
据2016年10月中国知网显示,《物理学报》出版文献量26557篇、总下载量3265714次、主要栏目有研究论文、研究快报等,发文领域包括凝聚态物理和材料物理、原子分子物理和光物理、统计物理、非线性物理、等离子体物理、粒子物理与核物理、物理学交叉学科等。
二、光学学报
《光学学报》是1981年创办的中文学术期刊,月刊,中国科学院上海光学精密机械研究所与中国光学学会主办,是中国科学技术学会主管。
学报主要刊登以光学科研为主体(交叉学科须侧重光学领域),有广阔研究前景、具有国内外领先水平或独创意义的学术论文,有一定独立见解的理论论述,有可靠数据的实验报道,有科学依据的技术应用,阶段性科研成果的实验快报。
三、高能物理与核物理
《 高能物理与核物理》为专业性学报,由中国科学院高能物理研究所,中国科学院近代物理研究所主办,月刊,每期96页,国内外公开发行。
主要发表粒子物理、核物理、宇宙线物理、加速器及同步辐射等学科在理论、实验与应用方面的研究论文。设有快报专栏,以最快速度发表最新重要科研成果的简要报导。对国家重大项目、重大基金项目与前沿课题取得的突破性创新成果,提供多发稿与快发稿的优惠。
博士好不好毕业可以看看工大每个学院的毕业要求都不太一样,但是都会有论文的要求,我汇总了几个学院的内容,大家可以参考:数学学科:至少两篇SCI论文物理学学科:光学、凝聚态物理、分子与原子物理研究方向:在物理领域的国际刊物SCI检索源期刊上发表1-3篇论文,发表论文的影响因子之和大于3.0,粒子物理与原子核物理研究方向:在SCI检索源期刊上发表1-3篇论文,发表论文的影响因子之和大于1.5。发表的论文总数在4篇以上激光雷达技术等应用研究方向:在SCI检索源期刊和EI检索源期刊上发表至少2篇论文,其中至少有1篇在SCI检索源期刊发表仪器科学与技术学科发表的与本博士论文创新点密切相关的学术论文应满足以下三项基本要求之一:(1)在本学科领域权威国际学术刊物上发表一篇学术论文,并包括SCI影响因子高于附录1-1所列刊物的相关学科的学术刊物)。(2)在SCI、EI检索的本学科领域重要国际学术刊物或权威国际学术年会论文集,或国内SCI、EI源刊物(不包括大学学报)上发表两篇学术论文,其中至少一篇发表在重要国际学术刊物上。(3)在国内SCI、EI源刊物或本学科领域权威国际学术年会论文集上发表的学术论文总数不少于3篇,其中至少有1篇发表在刊物上,且至少有1篇用外文撰写。
中学物理期刊排名物理学报、光学学报、高能物理与核物理。
一、物理学报
《物理学报》创刊于1933年的《中国物理学报》,1953年更名为《物理学报》;2009年被评为新中国60年有影响力的期刊,2010年获得中国政府出版奖期刊奖,2013年被评为全国百强科技期刊。
据2016年10月中国知网显示,《物理学报》出版文献量26557篇、总下载量3265714次、主要栏目有研究论文、研究快报等,发文领域包括凝聚态物理和材料物理、原子分子物理和光物理、统计物理、非线性物理、等离子体物理、粒子物理与核物理、物理学交叉学科等。
二、光学学报
《光学学报》是1981年创办的中文学术期刊,月刊,中国科学院上海光学精密机械研究所与中国光学学会主办,是中国科学技术学会主管。
学报主要刊登以光学科研为主体(交叉学科须侧重光学领域),有广阔研究前景、具有国内外领先水平或独创意义的学术论文,有一定独立见解的理论论述,有可靠数据的实验报道,有科学依据的技术应用,阶段性科研成果的实验快报。
三、高能物理与核物理
《 高能物理与核物理》为专业性学报,由中国科学院高能物理研究所,中国科学院近代物理研究所主办,月刊,每期96页,国内外公开发行。
主要发表粒子物理、核物理、宇宙线物理、加速器及同步辐射等学科在理论、实验与应用方面的研究论文。设有快报专栏,以最快速度发表最新重要科研成果的简要报导。对国家重大项目、重大基金项目与前沿课题取得的突破性创新成果,提供多发稿与快发稿的优惠。
PRL是物理评论快报的简称,为美国物理学会主办的高水平的学术期刊。 在物理学领域几乎是最权威的杂志,除去综合性的期刊Science和Nature,以及刊载综述文献的Reviews of Modern Physics,以及像nanoletter、JHEP等具体学科的期刊之外,PRL是物理类影响因子最高的学科内综合性期刊。PRL一般涵盖多个物理学方向, 包括引力理论、粒子物理和场论、宇宙学、高能物理及实验、凝聚态物理,包括磁学、纳米物理和介观物理、半导体物理、光学等。 PRL也是优选漫游列表的英文缩写。当运营商启用新的频点时,原有用户需更新PRL文件。在运营商签约新的漫游服务提供商,用户需出境漫游时,也需更新PRL。
针对当前大多数学术期刊对科技论文的普遍要求,介绍论文的主要排版格式如下。这些格式也是建立论文文档模板的基本样式参数。论文标题:黑体(中文)或Times New Roman(英文),小2号(18磅),居中,1.5倍行距,前后段落间距都是12磅,首行缩进0字符。一级小标题:黑体(中文)或Times New Roman(英文),小4号(12磅),左对齐,行距17磅,段落间距为段前,行、段后0.5行,首行缩进0字符。二级小标题:黑体(中文)或Times New Roman(英文),5号(10.5磅),左对齐,行距17磅,段落间距为段前0.5行、段后0.5行,首行缩进0字符。三级小标题:宋体(中文)或Times New Roman(英文),5号(10.5磅),左对齐,行距17磅,段落间距为段前0.25行、段后0行,首行缩进0字符。正文:宋体(中文)或Times New Roman(英文),5号(10.5磅),两端对齐,行距17磅,段落间距为段前0行、段后0行,首行缩进2字符,字距可加宽0.3磅左右。作者:宋体(中文)或Times New Roman(英文),小4号(12磅),居中,行距17磅,段落间距为段前0.5行、段后0.5行,首行缩进0字符,字距加宽0.3磅左右。作者单位:宋体(中文)或Times New Roman(英文),小5号(9磅),居中,行距17磅,段落间距为段前0.5行、段后0.5行,首行缩进0字符。字距加宽0.3磅左右。摘要:宋体(中文)或Times New Roman(英文),小5号(9磅),两端对齐,行距15磅,段落间距为段前0.25行、段后0.5行,首行缩进0字符,字距加宽0.3磅左右。参考文献:宋体(中文)或Times New Roman(英文),6号(7.5磅),两端对齐,行距15磅,段落间距为段前0.25行、段后0.5行,首行缩进0字符,自动编号。表题、图题:黑体(中文)或Times New Roman(英文),小5号(9磅),居中,行距15磅,段落间距为段前0.5行、段后0.25行,首行缩进0字符,字距加宽0.3磅左右。以上是论文中常用项目的格式,各期刊的排版要求可能会有所不同,但作为投稿,做到上述要求已经足够了。作者在实际工作中,应当参考上述要求先建立文档模板,然后应用此模板及其中的样式、格式,来编辑和排版自己的论文。在为段落设置字体或定制样式字体时,不能简单地只在工具栏的字体框内选择一个字体,而应当在格式菜单中点击“字体”选项,并在字体设置框中同时选择合适的中文字体和西文字体,此时还可以同时设置“字形”、“字号”、“字符间距”等属性。用这种专业设置的方式,可以同时满足中文和西文的要求。
中文论文题目一般字数不超过25个字。字体:宋体;字号:二号;字形:加粗;居中排列。
摘要、关键词题头分别用中括弧括住,前空两格,字体:黑体;字号:小四号。摘要内容文字楷体;字号:小四号。 摘要、关键词下空一行接正文。
标题及正文
论文采用四级标题,格式为:
一、××××××××××(黑体四号;前空两格)
(一)××××××××(宋体小四;加粗;前空两格)
1、×××××(宋体小四;前空两格)。×××××××××××××××××××××××××××××××××××××××××××。
(1)××××××(宋体小四;前空两格)。×××××××××××××××××××××××××××××××××××××××××××。
论文正文字体:宋体;字号:小四号。
6、注释
毕业论文(设计)中有个别名词或情况需要解释时,可加注说明。其格式为:①,②,③ ;宋体小五。注释采用脚注形式(将注文放在加注页的底端),脚注只能写在注释符号出现的同页,不得隔页。
7、参考文献
参考文献另起一页。参考文献题头字体:黑体;字号:小四号;居中排列。
所有参考文献均以尾注形式列在论文篇末,字体:宋体;字号:五号;顶格排列。参考文献排列顺序一般先写中文后写英文,文中标注编号的则一般按编号顺序排列。参考文献不得少于6篇(部)。
各类参考文献条目的编排格式为:
(1)专著、论文集、学位论文、报告
[序号]主要责任者.文献题名[文献类型标识(专著:M;论文集:C;学位论文:D;报告:R)].出版地:出版者,出版年.起止页码.
(2)期刊文章
[序号]主要责任者.文献题名[J].刊名,年,(期).
(3)报纸文章
[序号]主要责任者.文献题名[N].报纸名,出版日期(版次).
(4)电子文献
参考文献下空一行接外文题目、摘要与关键词。
8、外文题目、摘要与关键词
外文题目不超过15个实词,不使用标点符号,中外文题名应一致。标题中尽量不用外文缩写词,必须采用时,应使用本行业通用缩写词。外文题目字体:Times New Roman,字号:四号,字形:加粗,实词首字母大写,居中排列;英文摘要、关键词题头分别顶格排列,字体:Times New Roman,字号:五号,字形:加粗。英文摘要内容字体:Times New Roman,字号:五号;关键词各词条间用分号“;”隔开,字体:Times New Roman,字号:五号。
9、页码设置
毕业论文(设计)必须标注页码,其格式为“第×页共×页”,宋体小五,居中排列。
01一、期刊发表论文的标准格式为:文章标题 作者姓名 作者单位: (包括单位全称、邮政编码)[摘 要](以摘录或缩编方式复述文章的主要内容)50~300 字[关键词](选用可表达文章主要内容的词或词组)3~8 个关键词正文参考文献:[1] [2] [3]…… (有的期刊还要求英文摘要和英文关键词)作者简介与作者联系方式02二、针对以上格式组成还须注意的是:1、标题期刊发表论文题目是一篇论文给出的涉及论文范围与水平的第一个重要信息, 也是必须考虑到有助于选定关键词和编制题录、索引等二次文献可以提供检索的特定实用信息。 论文题目十分重要,必须用心斟酌选定。有人描述其重要性,用了下面的一 句话:"论文题目是文章的一半"。(1) 准确得体要求论文题目能准确表达论文内容,恰当反映所研究的范围和深度。(2) 简短精炼力求题目的字数要少,用词需要精选。至于多少字算是合乎要求, 并无统一的"硬性"规定,一般希望一篇论文题目不要超出 20 个字.(3) 外延和内涵要恰如其分外延和内涵属于形式逻辑中的概念。 所谓外延,是指一个概念所反映的每一个对象;而所谓内涵,则是指对每一个概 念对象特有属性的反映。2、正文期刊发表论文格式要求正文篇幅一般在 2000--8000 字不等, 包括简短引言、 论述分析、 结果和结论等内容。 文中出现的外文缩写除公知公用的首次出现一律应标有中文翻译或外文全称。 文中图、表应有自明性,且随文出现,并要有相应的英文名。文中图的数量一般不超过 6 幅。图中文字、符号、坐标中的标值和标值线必须写清,所有出现的数值都应标有明确的量与单位。文中表格一律采用"三线表"。文中有关量与单位必须符合国家标准和国际标准。 用单个斜体外文字母表示 (国家标准中专门规定的有关特征值除外;如要表示量的状态、序位、条件等, 可对该单个字母加上下角标、阿拉伯数字以及"′""^"等) ,避免用中文表示。 正文章节编号采用三级标题顶格排序。一级标题形如 1,2,3,…排序;二级标题形如 1.1,1.2,1.3,…排序;三级标题形如 1.1.1,1.1.2,1.1.3,… 排序;引言不排序。3、参考文献期刊发表论文格式要求有专著(M),论文集(C),报纸文集(N),期刊文章 (J) ,学位论文(D),报告(R),标准(S),专利(P),其他未说明文章(Z)参考文献如为专著,项目包括:作者姓名. 书名. 版本. 出版地:出版者, 出版年;参考文献如为期刊,项目包括:作者姓名. 版本. 年. 月. 卷(期)~ 年. 月. 卷(期). 出版地: 出版者, 出版年;参考文献如为电子文献, 项目包括: 作者姓名. 电子文献题名. 文献出处或网址,发表或更新日期.4、作者信息包括作者简介(100 字以内)出生年月 性别 毕业院校 学历 主要研究方向。作者联系方式,包括: 地址, 邮编,电话, (含手机)E-mail 等。03三、期刊发表论文发表渠道将论文直投杂志社是作者的首选途径。但由于发表档期安排、论文需要修改和编辑部稿件堆积如山的现状, 作者要想成功及时发表往往需要借助一些发表平台。国内比较可靠的发表渠道有期刊云,发表论文写作经验丰富。特别提示论文发表格式要求虽多,但如果在平时写作中有所注意,在发表时就会有事半功倍的效果不同的期刊可能还有不同的格式要去,应具体问题具体分析
说到杨振宁这一个名字,相信大家一点也不会陌生,杨振宁是我国一位十分著名的科学家同时他还是世界上顶级的科学家。然而之所以说杨振宁是世界顶级的科学家,主要是因为他在科学研究方面的成就,对中国以及对世界的贡献都是非常大的。查找杨振宁这一个科学家的资料,我们可以知道他在科学研究上的成就是是非常多的,他的科学成就主要集中物理学这个领域中。
杨振宁是一位非常著名的科学家,他又被称为中国科学院的院士,并且在世界历史上也获得过诺贝尔物理学奖。然而如此厉害的一个科学家,他在小的时候就比平常人要更加努力一些,也要比普通小孩更聪明一些,在他四岁的时候,他就已经学会了三千多个汉字。
众所周知,杨振宁是中国十分伟大的一名物理科学家,同时他也是世界上十分著名的一位物理科学家,他的成就主要是在物理学方面的成就。杨振宁在统计力学、凝聚态物理、粒子物理以及场论等方面取得了很大的成就。首先杨振宁在1952年的时候就自己提出了有关于统计力学中的相变理论,而在五年之后,他又在统计力学中发表了一篇有关波色子多体问题的论文。在此期间杨振宁在粒子物理学的研究中也起到了一定的成就,他在这一年还发表了一篇有关时间反演、电荷共轭的论文。经过了十年的研究,杨振宁还提出了杨氏方程。总得来说,杨振宁主要是在我国的物理学方面取得了十分伟大的成就。
杨振宁是中国历史上一位十分著名的物理科学家,他对于中国乃至于世界的贡献都是非常大的。
力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。下文是我为大家整理的关于物理学力学论文的范文,欢迎大家阅读参考!
浅析物理力学的产生及其发展
摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。
关键词:物理力学;产生;发展
一、物理力学发展需要解决的问题分析
在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。
在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。
针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。
在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。
还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。
二、新技术不断推动物理力学的发展
物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。
人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。
本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。
参考文献:
[1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02).
[2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02).
[3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。
[4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06).
浅析力学在机械中的应用
[摘 要]力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。本文立足于力学,简要论述了力学的内涵及其发展历程,并对力学在机械中的应用进行了较为深入的探讨与分析。
[关键词]力学 弹性力学 断裂力学 工程力学 机械
力学是力与运动的科学,它的研究对象主要是物质的宏观机械运动,它既是一门基础科学,又是一门应用众多且广泛的科学。力学与天文学和微积分学几乎同时诞生,在经典物理的发展中起关键作用,推动了地球科学的发展进步,如大气物理、海洋科学等,同时力学也在机械中起着越来越重要的作用,且应用广泛。
一、力学
力学是一门独立的基础学科,主要研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系,可粗分为静力学、运动学和动力学三部分。
力学的发展历史悠久,古希腊时代力学附属于自然哲学,后来成为物理学的一个大分支,1687年,牛顿三大定律的提出标志着力学作为一门独立的学科开始形成。此后,随着资本主义生产的发展,到18世纪末,以动力学和运动学为主要特征的经典力学日益完善。19世纪,大机器生产促进了力学在工程技术和应用方面的发展,推动了结构力学、弹性固体力学和流体力学等主要分支的建立。19世纪末,力学已是一门相当发展并自成体系的独立学科。
二、力学在机械中的应用
力学在机械中的应用广泛,其典型应用主要有以下几种:
1.弹性力学在机械设计中的应用
弹性力学也称弹性理论,是固体力学的重要分支,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。机械运动当中,许多机械运转速度较高、承载很大,机械的弹性变形对系统的影响不容忽视,必须将机械系统按弹性系统进行分析和设计。由此可见,弹性力学在机械设计中应用广泛。一般情况下,弹性力学在凸轮机构设计、齿轮机构设计、轴设计中应用较为广泛。
齿轮机构在设计时运用了弹性力学的知识,渐开线作为齿廓曲线存在诸多优点,但用弹性力学知识加以分析便可得出它存在的一些固有缺陷,即当两齿轮啮合传动时,根据弹性力学中的赫兹公式分析可得,在其它条件相同的情况下,要想降低两齿轮在接触处的最大接触力,就必须增大两轮齿廓在接触点处的综合曲率半径,对于渐开线齿轮传动来说,由于要增大两轮齿廓在接触点处的综合曲率半径,就需要增大齿轮机构的尺寸,而两轮齿廓在接触点处的综合曲率半径增大的范围是有限的,所以难以进一步达到齿轮机构尺寸小、而承载能力大幅度提高的目的。同时,弹性力学在轴设计中也有众多应用。为避免共振现象,对高转速的轴,如汽轮机主轴、发动机曲轴等设计时振动计算尤其重要,此时必须运用弹性力学知识。
2.断裂力学在机械工程中的应用
断裂力学,是固体力学的一门新分支,主要研究含裂纹构件的强度与寿命,是结构损伤容限设计的理论基础。断裂力学主要可分为线弹性断裂力学与弹塑性断裂力学两大类,前者适用于裂纹尖端附近小范围屈服的情况;而后者适用于裂纹尖端附近大范围屈服的情况。断裂力学发展迅速,在机械工程中应用广泛,并占据重要地位。断裂力学在机械工程中的有效应用,不仅可以提高机械的性能与功效,更能防止工程设备发生灾难性的断裂事故,以确保机械、设备的安全可靠与良好运行。
首先,我国在采用断裂力学方法制订结构缺陷评定标准及安全设计规范方面已取得了较好的成绩,如压力容器、小型但用量大的液化石油气钢瓶及汽轮一发电机组等。
其次,概率断裂力学在可靠性设计中应用较多。概率断裂力学在可靠性设计中的广泛应用推动了可靠性设计的快速发展。运用参量的分布及安全余度来反映常规设计中不能准确反映的客观实际和常规设计安全评定中用安全系数不能准确反映的真实安全性。由于安全余度考虑了应力和强度的二阶矩,较好地反映了结构可靠度的实质,既考虑了变异特性又考虑了平均值,因而与失效分布有较直接的关系,使安全设计更可靠。国外已较完整地应用于飞机结构,如概率损伤容限分析、飞机结构可靠性和事故分析、飞机结构的耐久性分析等方面。我国在这方面开展的典型性研究则是海洋石油平台导管架焊接管节点的疲劳强度分析。
再者,可用断裂力学方法进行机械产品的失效分析。失效分析是指事故或故障发生后所进行的检侧和分析,目的在于找到失效的部位、失效原因和机理,从而掌握产品应当改进的方向及修复的方法,防止同类问题再次发生,以推进技术不断前进。因此,失效分析技术受到了社会各界的重视。断裂力学在机械产品失效分析中具有着重要作用。机械产品的主要失效模式有: 断裂、蠕变、疲劳、腐蚀、磨损及热损伤等,它们都可以借助断裂力学方法及断裂分析技术予以解决,断裂力学方法是失效分析的有力工具。
最后,运用断裂力学可以指导改进工艺及合理选材,如模具、焊接工艺等方面,可以减少工人的劳动量。
3.工程力学在机械修理中的应用
工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与工程技术联系极为密切的技术基础学科,工程力学的定理、定律和结论广泛应用于各行各业的工程技术中,是解决工程实际问题的重要基础。处理机械工程出现的大量破坏问题,绝大多数是根据力学方面的知识作出判断和分析的。例如,汽车修理中汽车零部件的破坏分析与修理也是如此,其中,判断汽车半轴套管断裂的原因与确定修复方案等,全部流程无一不体现着工程力学知识在汽修中的应用。
三、结语
当今社会,科学技术迅猛发展,作为一门基础学科,力学也一定会得到进一步的发展与进步,且在机械中获得更广更深的应用。
参考文献
[1]林同骥,浦群.现代力学的发展[J].力学进展,1990,(1).
[2]李彦军.工程力学在汽修中的应用与对策[J].科技向导,2012,(32).
[3]侯岩滨.弹性力学在机械设计中的应用[J].辽宁师专学报,2005,(1).
[4]吴清可,刘元杰,张毓槐.断裂力学在机械工程中的应用[J].机械强度,1988,(6).
通过测试,每秒是0.09立方米,那么也就是每秒是90升。一吨水等于1000升。学习物理的三个方法 学好物理,首先我们要对每个物理概念弄懂,把最基本的操作学会。 学好物理的三个基本方法: 第一、动手。在学习物理时,我们要在“做”的过程中学习,边动手边学,老师上课讲例题时,跟着老师一起写步骤、一起画图、一起计算。在动手的过程中,学会知识和学会如何运用知识。 第二、运用知识。学会运用知识的关键,就是学会解决问题的操作步骤。在学习的过程中,一定要跟着老师,把解题的步骤、做实验的步骤学会。自己解问答题时,才会步骤清楚;做实验题时,才会条理清晰。 第三、改错。在学物理过程中,一定要学会改错。有些同学在学习过程中,一些题目做错了,老师一讲,明白了,以为自己就是已经改错了,已经学会了。结果在下次考试,老师又出了一个类似的题目,题目只改了一点点条件,又不会做了。其实就是同学们没有学会改错。一道题目做错了,要深入去了解下,这道题考的是一个什么知识点,对这个知识点我掌握了没有?我做这道题时做错了,当时是怎么考虑的?是有个知识点不了解,还是我对这个知识点有误解,还是这道题我根本就是没看懂他说的是什么?针对自己做错的原因,深入挖掘,解决这道题的原理在哪。这样,下次这类题不管怎么变化,都在自己的掌控之中了。
杨振宁(1922,10.1~ ),美籍华裔物理学家,生于安徽省合肥市。 1957年,杨振宁与李政道以他们提出的“弱相互作用中宇称不守恒”理论共同获得了诺贝尔物理学奖。他们两个人是最早获得诺贝尔奖的中国人。后二人因排名先后的问题交恶。1962年因为《纽约客》的一篇文章,两人正式决裂。杨振宁七岁的儿子杨光诺曾说,“我要一人得诺贝尔奖。”1989年他写给已故中研院长吴大猷的信,向老师报告两人合作情形。吴大猷覆信说∶“整件事是一极不幸的事,我想truth是不能永远掩盖著的,所以我希望大家都不再在世人前争,而让truth慢慢的展现出来。” 1977年他和梁恩佐等人在波士顿创办了“全美华人协会”,促进中美关系。 1980年杨振宁获得拉姆福德奖(Rumford),1986年获得美国国家科学奖章。 杨振宁现居于北京清华大学。杨振宁的结发太太是杜聿明的女儿杜致礼,2003年10月因病过世。 2004年底至2005年初,82岁高龄的杨振宁与28岁广东外语外贸大学翻译系硕士班学生翁帆(离异)再一次步入婚姻殿堂。 荣誉 1957年与李政道共同获得诺贝尔物理学奖。他还获得过美国国家科学奖章及拥有多项荣誉学位,也是国内外许多著名大学的名誉教授。