发表SCI论文也是困难重重。对于大部分科研者而言,撰写SCI论文的过程已经够辛苦,但发表论文的过程也同样不容易,甚至会给他们带来很大的打击,首先一个是投稿录用率很低,因为全世界从事科学研究的人数很多,要发表研究论文的人也很多。
期刊收到的稿件数量远超过其能够录用的数量,SCI核心期刊尤其如此,可能有些稿件在期刊编辑的预审中就被退稿了。
SCI期刊用稿率较低,或者说他们的拒稿率较高,有稿件质量上的原因,比如缺乏原创性等,而更多情况是激烈竞争造成的,期刊只能在有限的版面内择优录用稿件。
一般来说,初投稿者的稿件是很难一次命中的,这可能是投稿者因经验不足而没有选对期刊造成的,也可能是期刊编辑对投稿人不了解、用稿十分谨慎造成的。比如有时候,作者所在单位名不见经传也会增加论文录用难度,这是因为审稿人可能对作者的研究条件以及数据的可靠性持怀疑态度。
重要性:
从科学研究到论文发表、产生影响是一个价值提炼的过程。所做的研究并不都是有效的,可能只有一部分是有效的,也就是说取得效果的研究并不是都值得写成报告或论文,值得写出来的,只是其中的一部分内容。
而且就算是论文可以成功发表,但其研究成果是否有人关注、值得一读,还要打个折扣。所以说,从事科学研究的人要想发表一篇好的SCI论文,并获得读者的认可,成为公认的对社会、对人类有贡献的科学家,是难关重重的。
但核心期刊的发表呃是很难的,因为核心期间他可以按照现象来,也可以按照内心的方法来。
我觉得真的非常难,不仅论文要写得好,而且还要得到官方认可。
没有想象中的困难。
在以英文发表文章之前,我总是觉得用英文写文章非常困难。此外,通过传闻,有经验的人会说审阅周期有多长,以及回答审阅意见有多困难。整个过程多么复杂,所以我总是担心发布英文SCI文章。在一段时间内,我会在心中安慰自己,这辈子,我会用中文发表文章。只要研究结果不错,中文仍然可以吸引别人的注意。后来,当我出国时,我不得不用英语写文章。一段时间后,我意识到用英语发表文章并不困难,根本没有那么困难。 以下是我的分析:
首先,大多数英文期刊(在英国和美国出版)都包含在SCI中,这比SCI选择的中文期刊在所有中文期刊中所占的比例要大得多。因此,在提交稿件时,基本上不需要考虑它是否被收。只要是经常阅读的文档所在的期刊,它们基本上是的。 在中国,有中文核心期刊和科技核心期刊。中国的核心水平高于科学技术的核心水平。SCI收录了部分中文核心期刊,而科技期刊的核心期刊收录很少。如果切换到英语期刊,将成为影响因子较高的SCI期刊和影响因子较低的SCI期刊。SCI和非SCI之间只有水平级别不同,其他也没有区别。 SCI总共包含3700多种期刊,因此根据研究领域,一篇文章可以找到数十种期刊以供提交投稿。如果是跨领域文章,则有更多适合提交的期刊。与中文期刊相比,每个领域的一流期刊看起来像4-5种期刊。每个期刊上发表的文章数量是有限的。同时,许多国内组织对发表文章有要求,由于科研人员众多,一流期刊数量有限,文章的接受率大大降低。因此,最好是主动出击并直接投票给英文期刊。在开始用英语撰写文章时,这有点痛苦,但换来了更广阔的道路。
人家是大三学生,说不定以后的研究生,干嘛说代发程序呢?我来告诉你一个最正规的。首先,选择与你论文主题相关的期刊;其次,找到该刊编辑部的投稿邮箱或者投稿地址,email过去或寄过去;然后,就是等待,此时编辑部邀请的专家在审稿。这一时间是发表论文最难熬的时间,可能半个月也可能3个月,一般超过3个月,你就可以改投其他期刊。当然了,时间长短与你投的期刊和论文质量有关。接下来,就是审稿通知,如果你的论文通过审稿,一般让你稍微修改或者不修改,然后缴纳版面费,有些期刊不受版面费;如果未通过审稿,那你只有改投其他期刊了。最后,就是给你寄发票,然后你接着等待文章刊出吧。。。。这是最正规的,希望对你有所帮助。。。。。
首先拿自然投稿来说,省级和国家级的论文审稿需要1-2天,发表时间需要1-3个月。个别快的话半个月内就可以完成,慢的话甚至要4-7个月之久了。对于质量水平较高的期刊和一些大学期刊来说,投稿发表时间通常在6个月左右,较快的也需要3-4个月。科技核心期刊审稿需要1-3个月,发表需要6-10个月,总体时间大致是1-1.5年。北核和南核的审稿需要3-4个月时间,出版则需要6-15个月时间,跨度大,总共需要时长约1-2年。SCI和EI等与北核南核时间周期类似。众所周知,省级和国家级别的期刊是普通期刊,是职称期刊发表的起跑线。相对而言,从选刊到成功收刊用不了多长时间。有些刊物块的话研究1个月左右的时间就收到了,如果慢的话,大概也就是3个月左右的时间。
这个要看具体情况的,一个是如果你发的是普刊,那么周期就会短一些,一个是如果你发表的是核心期刊,有可能一年多才能见刊发表,前提是录用的情况下。还有一个情况是,如果你是自己投稿,会慢一些,如果你是找一些论文机构帮忙投稿发表,会快速一些。我之前找淘淘论文网发表的经济类论文,2个月就给你加急发表了,是普刊,如果是核心他们也没法加急。所以看你发表的什么刊物了。
这个具体要看你发的是什么样的杂志了,不同杂志的发表周期也不一样。省级、国家级的普刊一般是2-6个月(特别快的1个月左右,一部分可以办理加急版面)。杂志都有出版周期的问题,而且有的版面特别紧张,所以,如果用,要提早半年,不宜临时抱佛脚。每年三月份、九月份,是各地上报职称材料的高峰期。各个正规杂志社稿件大量积压,版面十分紧张,因此,及早准备。早准备、早受益。我当时是在百姓论文网发表的,省级的大概在2个月左右拿到手的,各方面都挺满意的,
1.华罗庚 自学成材的天才数学家,中国近代数学的开创人!! 在众多数学家里华罗庚无疑是天分最为突出的一位!! 华罗庚通过自学而成为世界级的数学家,他是解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域的中都作出卓越贡献。在这些数学领域他或是创始人或是开拓者! 从某种意义上他也是位传奇数学家,一生最高文凭是初中,早年在美国取得巨大成就后,闻知新中国成立后,发出"粱园随好,非久居之处"呼吁在国外的科学家学成回去报效祖国,跟他同时代在闻讯回国的科学家,许多都为中国做出了巨大贡献,其中最著名的有: 导弹之父钱学森:为中国火箭,导弹做出贡献 两弹元勋邓稼先:为中国创立了原子弹,氢弹等核武器; 回国后华罗庚开创了中国的近代数学,并建立了中科院数学研究所,培养了大批数学家如陈景润,王元等号称华学派,后来致力于应用数学,将数学应用于工业生产,推广"优选法"和"统筹法"! 由于华罗庚的重大贡献,有许多用他的名字命名的定理,如华引理、华不等式、华算子与华方法。 另外华罗庚还被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。 美国著名数学家贝特曼著文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有著名科学院院士”。 中国最著名的五大数学家2: 2.陈省身 现代微分几何的开拓者,曾获数学界终身成就奖----沃尔夫奖! 他对整体微分几何的卓越贡献,影响着半个多世纪的数学发展。 他创办主持的三大数学研究所,造就了一批承前启后的数学家。 在微分几何领域有诸多贡献,如以他命名的"陈空间","陈示性类","陈纤维从" 一位数学家说道“陈省身就是现代微分几何。”这也许是对他的最好评价!! 中国最著名的五大数学家3: 3.苏步青 世界著名微分几何学家,射影微分几何学派的开拓者 早年对对仿射微分几何学和射影微分几何学做出了贡献, 四、五十年代开始研究一般空间微分几何学, 60年代又研究高维空间共轭网理论 70年代以来在中国开创了新的研究方向——计算几何!! 为中国数学走向现代化做出巨大贡献!! 中国最著名的五大数学家4: 4.陈景润 华罗庚的学生!数论学家,歌德巴赫猜想专家! 离解决歌德巴赫猜想即"1+1"问题,最近的人,证明了"1+2" 陈是一生只做一件事的人,那就是歌德巴赫猜想,他也一直只专注于这个领域而取得了举世瞩目的成就!! 陈为世人所知是由于报告文学家徐迟的<<歌德巴赫猜想>>报告文学,当年很多人热血学子因为这篇文章而走上数学道路!! 趋今为止,歌德巴赫猜想依然是世界级难题!!!众多数学家认为用现有数学理论系统无法解决这一问题,除非出现新的数学观念,新的数学理论系统!!! 注: "1+1":任何大于2的偶数都能分成两个素数之和. "1+2":任何大于2的偶数,都可表示成两个数之和,其中一个是素数,另一个或者是素数,或者是两个素数的乘积。这是目前陈景润证明得到的距歌德巴赫猜"1+1"最近的结果! 数学家证明歌德巴赫猜想的道路也是非常有趣的,人们是从"m+n"去逼近"1+1"的,"m+n"即每一个充分大的偶数,都可以表为素因子不超过m个与素因子不超过n个的两个数之和。 当时各国数学家不断努力,最终解决了"3+3","2+3","1+3",在这一逼近过程中,在华罗庚带领下也写下了许多中国数学家名字如王元,潘承桐等,最终陈景润解决了"1+2"!! 中国最著名的五大数学家5: 5.丘成桐 陈省身的学生,因解决微分几何的许多重大难题而获得数学界菲尔奖! 丘成桐的第一项重要研究成果是解决了微分几何的著名难题—卡拉比猜想,从此名声鹊起。他把微分方程应用于复变函数、代数几何等领域取得了非凡成果,比如解决了高维闵考夫斯基问题,证明了塞凡利猜想等。这一系列的出色工作终于使他成为菲尔兹奖得主。
61岁的杨教授不仅是数学系教授,还精通三门外语,健身数十年。凭借着严谨的教学,杨晓京很早以前就是清华的名人。
清华大学,杨晓京被称为“发论文狂魔”,是清华大学所有教授里,以第一作者发表SCI论文最多的学者之一,在数量上能与之相比的,大概只有清华现任校长邱勇。
根据资料显示,截至2011年1月,杨晓京总共独立或以第一作者身份发表论文100余篇,其中被SCI收录88篇,国内外核心期刊论文20余篇,名列2002年度中国数学专业SCI论文发表篇数并列第一名。
此外,据了解,他还是国内外多种数学期刊的审稿人和编委。
据称,课堂上的杨晓京严肃高冷,不闲聊但喜欢讲冷笑话,然而笑点奇特——因为冷笑话都是和函数相关,那种只有学霸才能听懂的“数学冷笑话”。全程板书,从不用PPT,对学生严厉负责,很受学生欣赏的老师。
作为一名“资深清华人”,杨晓京始终牢记清华的“体育精神”。几十年如一日的健身,令这位已经到了花甲之年的老师,依然有着比一般年轻人更强壮的体质。
中英文对照太难了英文的维基百科Leonhard Euler Leonhard Euler (pronounced Oiler; IPA [ˈɔʏlɐ]) (April 15, 1707 – September 18 [O.S. September 7] 1783) was a pioneering Swiss mathematician and physicist, who spent most of his life in Russia and Germany. He published more papers than any other mathematician in history.[1]Euler made important discoveries in fields as diverse as calculus and topology. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, optics, and astronomy.Euler is considered to be the preeminent mathematician of the 18th century and one of the greatest of all time. He is also one of the most prolific; his collected works fill 60–80 quarto volumes.[3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is a master for us all".[4]Euler was featured on the sixth series of the Swiss 10-franc banknote[5] and on numerous Swiss, German, and Russian postage stamps. The asteroid 2002 Euler was named in his honor. He is also commemorated by the Lutheran Church on their Calendar of Saints on May 24.Contents [hide]1 Biography 1.1 Childhood 1.2 St. Petersburg 1.3 Berlin 1.4 Eyesight deterioration 1.5 Last stage of life 2 Contributions to mathematics 2.1 Mathematical notation 2.2 Analysis 2.3 Number theory 2.4 Graph theory 2.5 Applied mathematics 2.6 Physics and astronomy 2.7 Logic 3 Philosophy and religious beliefs 4 Selected bibliography 5 See also 6 Notes 7 Further reading 8 External links [edit] Biography[edit] Childhood Swiss 10 Franc banknote honoring Euler, the most successful Swiss mathematician in history.Euler was born in Basel to Paul Euler, a pastor of the Reformed Church, and Marguerite Brucker, a pastor's daughter. He had two younger sisters named Anna Maria and Maria Magdalena. Soon after the birth of Leonhard, the Eulers moved from Basel to the town of Riehen, where Euler spent most of his childhood. Paul Euler was a family friend of the Bernoullis, and Johann Bernoulli, who was then regarded as Europe's foremost mathematician, would eventually be an important influence on the young Leonhard. His early formal education started in Basel, where he was sent to live with his maternal grandmother. At the age of thirteen he matriculated at the University of Basel, and in 1723, received a masters of philosophy degree with a dissertation that compared the philosophies of Descartes and Newton. At this time, he was receiving Saturday afternoon lessons from Johann Bernoulli, who quickly discovered his new pupil's incredible talent for mathematics.[6]Euler was at this point studying theology, Greek, and Hebrew at his father's urging, in order to become a pastor. Johann Bernoulli intervened, and convinced Paul Euler that Leonhard was destined to become a great mathematician. In 1726, Euler completed his Ph.D. dissertation on the propagation of sound with the title De Sono[7] and in 1727, he entered the Paris Academy Prize Problem competition, where the problem that year was to find the best way to place the masts on a ship. He won second place, losing only to Pierre Bouguer—a man now known as "the father of naval architecture". Euler, however, would eventually win the coveted annual prize twelve times in his career.[8][edit] St. PetersburgAround this time Johann Bernoulli's two sons, Daniel and Nicolas, were working at the Imperial Russian Academy of Sciences in St Petersburg. In July 1726, Nicolas died of appendicitis after spending a year in Russia, and when Daniel assumed his brother's position in the mathematics/physics division, he recommended that the post in physiology that he had vacated be filled by his friend Euler. In November 1726 Euler eagerly accepted the offer, but delayed making the trip to St Petersburg. In the interim he unsuccessfully applied for a physics professorship at the University of Basel.[9]1957 stamp of the former Soviet Union commemorating the 250th birthday of Euler. The text says: 250 years from the birth of the great mathematician and academician, Leonhard Euler.Euler arrived in the Russian capital on May 17, 1727. He was promoted from his junior post in the medical department of the academy to a position in the mathematics department. He lodged with Daniel Bernoulli with whom he often worked in close collaboration. Euler mastered Russian and settled into life in St Petersburg. He also took on an additional job as a medic in the Russian Navy.[10]The Academy at St. Petersburg, established by Peter the Great, was intended to improve education in Russia and to close the scientific gap with Western Europe. As a result, it was made especially attractive to foreign scholars like Euler: the academy possessed ample financial resources and a comprehensive library drawn from the private libraries of Peter himself and of the nobility. Very few students were enrolled in the academy so as to lessen the faculty's teaching burden, and the academy emphasized research and offered to its faculty both the time and the freedom to pursue scientific questions.[8]However, the Academy's benefactress, Catherine I, who had attempted to continue the progressive policies of her late husband, died the day of Euler's arrival. The Russian nobility then gained power upon the ascension of the twelve-year-old Peter II. The nobility were suspicious of the academy's foreign scientists, and thus cut funding and caused numerous other difficulties for Euler and his colleagues.Conditions improved slightly upon the death of Peter II, and Euler swiftly rose through the ranks in the academy and was made professor of physics in 1731. Two years later, Daniel Bernoulli, who was fed up with the censorship and hostility he faced at St. Petersburg, left for Basel. Euler succeeded him as the head of the mathematics department.[11]On January 7, 1734, he married Katharina Gsell, daughter of a painter from the Academy Gymnasium. The young couple bought a house by the Neva River, and had thirteen children, of whom only five survived childhood.[12][edit] Berlin Stamp of the former German Democratic Republic honoring Euler on the 200th anniversary of his death. In the middle, it is showing his polyhedral formula.Concerned about continuing turmoil in Russia, Euler debated whether to stay in St. Petersburg or not. Frederick the Great of Prussia offered him a post at the Berlin Academy, which he accepted. He left St. Petersburg on June 19, 1741 and lived twenty-five years in Berlin, where he wrote over 380 articles. In Berlin, he published the two works which he would be most renowned for: the Introductio in analysin infinitorum, a text on functions published in 1748 and the Institutiones calculi differentialis, a work on differential calculus.[13]In addition, Euler was asked to tutor the Princess of Anhalt-Dessau, Frederick's niece. He wrote over 200 letters to her, which were later compiled into a best-selling volume, titled the Letters of Euler on different Subjects in Natural Philosophy Addressed to a German Princess. This work contained Euler's exposition on various subjects pertaining to physics and mathematics, as well as offering valuable insight on Euler's personality and religious beliefs. This book ended up being more widely read than any of his mathematical works, and was published all across Europe and in the United States. The popularity of the Letters testifies to Euler's ability to communicate scientific matters effectively to a lay audience, a rare ability for a dedicated research scientist.[13]Despite Euler's immense contribution to the Academy's prestige, he was eventually forced to leave Berlin. This was caused in part by a personality conflict with Frederick. Frederick came to regard him as unsophisticated especially in comparison to the circle of philosophers the German king brought to the Academy. Voltaire was among those in Frederick's employ, and the Frenchman enjoyed a favored position in the king's social circle. Euler, a simple religious man and a hard worker, was very conventional in his beliefs and tastes. He was in many ways the direct opposite of Voltaire. Euler had very limited training in rhetoric and tended to debate matters that he knew little about, making him a frequent target of Voltaire's wit.[13] Frederick also expressed disappointment with Euler's practical engineering abilities:I wanted to have a water jet in my garden: Euler calculated the force of the wheels necessary to raise the water to a reservoir, from where it should fall back through channels, finally spurting out in Sanssouci. My mill was carried out geometrically and could not raise a mouthful of water closer than fifty paces to the reservoir. Vanity of vanities! Vanity of geometry![14][edit] Eyesight deterioration A 1753 portrait by Emanuel Handmann. This portrayal suggests problems of the right eyelid and that Euler is perhaps suffering from strabismus. The left eye appears healthy, as it was a later cataract that destroyed it.[15]Euler's eyesight worsened throughout his mathematical career. Three years after suffering a near-fatal fever in 1735 he became nearly blind in his right eye, but Euler rather blamed his condition on the painstaking work on cartography he performed for the St. Petersburg Academy. Euler's sight in that eye worsened throughout his stay in Germany, so much so that Frederick referred to him as "Cyclops". Euler later suffered a cataract in his good left eye, rendering him almost totally blind a few weeks after its discovery. Even so, his condition appeared to have little effect on his productivity, as he compensated for it with his mental calculation skills and photographic memory. For example, Euler could repeat the Aeneid of Virgil from beginning to end without hesitation, and for every page in the edition he could indicate which line was the first and which the last.[3][edit] Last stage of life Euler's grave at the Alexander Nevsky Laura.The situation in Russia had improved greatly since the ascension of Catherine the Great, and in 1766 Euler accepted an invitation to return to the St. Petersburg Academy and spent the rest of his life in Russia. His second stay in the country was marred by tragedy. A 1771 fire in St. Petersburg cost him his home and almost his life. In 1773, he lost his wife of 40 years. Euler would remarry three years later.On September 18, 1783, Euler passed away in St. Petersburg after suffering a brain hemorrhage and was buried in the Alexander Nevsky Laura. His eulogy was written for the French Academy by the French mathematician and philosopher Marquis de Condorcet, and an account of his life, with a list of his works, by Nikolaus von Fuss, Euler's son-in-law and the secretary of the Imperial Academy of St. Petersburg. Condorcet commented,"...il cessa de calculer et de vivre," (he ceased to calculate and to live).[16] [edit] Contributions to mathematicsEuler worked in almost all areas of mathematics: geometry, calculus, trigonometry, algebra, and number theory, not to mention continuum physics, lunar theory and other areas of physics. His importance in the history of mathematics cannot be overstated: if printed, his works, many of which are of fundamental interest, would occupy between 60 and 80 quarto volumes[3] and Euler's name is associated with an impressive number of topics. The 20th century Hungarian mathematician Paul Erdős is perhaps the only other mathematician who could be considered to be as prolific.[edit] Mathematical notationEuler introduced and popularized several notational conventions through his numerous and widely circulated textbooks. Most notably, he introduced the concept of a function[2] and was the first to write f(x) to denote the function f applied to the argument x. He also introduced the modern notation for the trigonometric functions, the letter e for the base of the natural logarithm (now also known as Euler's number), the Greek letter ∑ for summations and the letter i to denote the imaginary unit.[17] The use of the Greek letter π to denote the ratio of a circle's circumference to its diameter was also popularized by Euler, although it did not originate with him.[18] Euler also contributed to the development of the the history of complex numbers system (the notation system of defining negative roots with a + bi).[19][edit] AnalysisThe development of calculus was at the forefront of 18th century mathematical research, and the Bernoullis—family friends of Euler—were responsible for much of the early progress in the field. Thanks to their influence, studying calculus naturally became the major focus of Euler's work. While some of Euler's proofs may not have been acceptable under modern standards of rigour,[20] his ideas led to many great advances.He is well known in analysis for his frequent use and development of power series: that is, the expression of functions as sums of infinitely many terms, such asNotably, Euler discovered the power series expansions for e and the inverse tangent function. His daring (and, by modern standards, technically incorrect) use of power series enabled him to solve the famous Basel problem in 1735:[20]A geometric interpretation of Euler's formulaEuler introduced the use of the exponential function and logarithms in analytic proofs. He discovered ways to express various logarithmic functions in terms of power series, and successfully defined logarithms for negative and complex numbers, thus greatly expanding the scope where logarithms could be applied in mathematics.[17] He also defined the exponential function for complex numbers and discovered its relation to the trigonometric functions. For any real number φ, Euler's formula states that the complex exponential function satisfiesA special case of the above formula is known as Euler's identity,called "the most remarkable formula in mathematics" by Richard Feynman, for its single uses of the notions of addition, multiplication, exponentiation, and equality, and the single uses of the important constants 0, 1, e, i, and π.[21]In addition, Euler elaborated the theory of higher transcendental functions by introducing the gamma function and introduced a new method for solving quartic equations. He also found a way to calculate integrals with complex limits, foreshadowing the development of modern complex analysis, and invented the calculus of variations including its most well-known result, the Euler-Lagrange equation.Euler also pioneered the use of analytic methods to solve number theory problems. In doing so, he united two disparate branches of mathematics and introduced a new field of study, analytic number theory. In breaking ground for this new field, Euler created the theory of hypergeometric series, q-series, hyperbolic trigonometric functions and the analytic theory of continued fractions. For example, he proved the infinitude of primes using the divergence of the harmonic series, and used analytic methods to gain some understanding of the way prime numbers are distributed. Euler's work in this area led to the development of the prime number theorem.[22][edit] Number theoryEuler's great interest in number theory can be traced to the influence of his friend in the St. Petersburg Academy, Christian Goldbach. A lot of his early work on number theory was based on the works of Pierre de Fermat. Euler developed some of Fermat's ideas while disproving some of his more outlandish conjectures.One focus of Euler's work was to link the nature of prime distribution with ideas in analysis. He proved that the sum of the reciprocals of the primes diverges. In doing so, he discovered the connection between Riemann zeta function and prime numbers, known as the Euler product formula for the Riemann zeta function.Euler proved Newton's identities, Fermat's little theorem, Fermat's theorem on sums of two squares, and made distinct contributions to Lagrange's four-square theorem. He also invented the totient function φ(n) which assigns to a positive integer n the number of positive integers less than n and coprime to n. Using properties of this function he was able to generalize Fermat's little theorem to what would become known as Euler's theorem. He further contributed significantly to the understanding of perfect numbers, which had fascinated mathematicians since Euclid. Euler made progress toward the prime number theorem and conjectured the law of quadratic reciprocity. The two concepts are regarded as the fundamental theorems of number theory, and his ideas paved the way for Carl Friedrich Gauss.[23][edit] Graph theorySee also: Seven Bridges of Königsberg Map of Königsberg in Euler's time showing the actual layout of the seven bridges, highlighting the river Pregel and the bridges.In 1736, Euler solved a problem known as the Seven Bridges of Königsberg.[24] The city of Königsberg, Prussia (now Kaliningrad, Russia) is set on the Pregel River, and included two large islands which were connected to each other and the mainland by seven bridges. The question is whether it is possible to walk with a route that crosses each bridge exactly once, and return to the starting point. It is not; and therefore not an Eulerian circuit. This solution is considered to be the first theorem of graph theory and planar graph theory.[24] Euler also introduced the notion now known as the Euler characteristic of a space and a formula relating the number of edges, vertices, and faces of a convex polyhedron with this constant. The study and generalization of this formula, specifically by Cauchy[25] and L'Huillier,[26] is at the origin of topology.[edit] Applied mathematicsSome of Euler's greatest successes were in using analytic methods to solve real world problems, describing numerous applications of Bernoulli's numbers, Fourier series, Venn diagrams, Euler numbers, e and π constants, continued fractions and integrals. He integrated Leibniz's differential calculus with Newton's method of fluxions, and developed tools that made it easier to apply calculus to physical problems. He made great strides in improving the numerical approximation of integrals, inventing what are now known as the Euler approximations. The most notable of these approximations are Euler's method and the Euler-Maclaurin formula. He also facilitated the use of differential equations, in particular introducing the Euler-Mascheroni constant:One of Euler's more unusual interests was the application of mathematical ideas in music. In 1739 he wrote the Tentamen novae theoriae musicae, hoping to eventually integrate musical theory as part of mathematics. This part of his work, however, did not receive wide attention and was once described as too mathematical for musicians and too musical for mathematicians.[27][edit] Physics and astronomyEuler helped develop the Euler-Bernoulli beam equation, which became a cornerstone of engineering. Aside from successfully applying his analytic tools to problems in classical mechanics, Euler also applied these techniques to celestial problems. His work in astronomy was recognized by a number of Paris Academy Prizes over the course of his career. His accomplishments include determining with great accuracy the orbits of comets and other celestial bodies, understanding the nature of comets, and calculating the parallax of the sun. His calculations also contributed to the development of accurate longitude tables.[28]In addition, Euler made important contributions in optics. He disagreed with Newton's corpuscular theory of light in the Opticks, which was th
高斯(1777~1855) 高斯是德国数学家、物理学家和天文学家,英国皇家学会会员。 高斯是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。1801年,他发表的<<算术研究>>,阐述了数论和高等代数的某些问题。他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。作为一个物理学家,他与威廉.韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。高斯30岁时担任了德国著名高等学府天文台台长,并一直在天文台工作到逝世。他平生还喜欢文学和语言学,懂得十几门外语。他一生共发表323篇(种)著作,提出了404项科学创见,完成了4项重要发明。 高斯去世后,人们在他出生的城市竖起了他的雕像。为了纪念他发现做出17边形的方法,雕像的底座修成17边形。世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。 八岁的高斯发现了数学定理 德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。 长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。 他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。 这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。 “你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。 教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。 还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?” 老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。 可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。” 数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢? 高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。 欧拉欧拉(1707~1783) 欧拉瑞士数学家,英国皇家学会会员。 欧拉从小着迷数学,是一位不折不扣的数学天才。他13岁便成为著名的巴塞尔大学的学生,16岁获硕士学位,23岁就晋升为教授。1727年,他应邀去俄国圣彼得堡科学院工作。过度的劳累,致使他双目失明。但是,这并没有影响他的工作 。欧拉具有惊人的记忆力。氢说,1771年圣彼德堡的一场大火,把他的大量藏书和手稿化为灰烬。他就凭着惊人的记忆,口授发表了论文400多篇、论著多部。欧拉这们18世纪数学巨星,在微积分、微分方程、几何、数论、变分学等 领域都作出了巨大贡献,从而确定了他作为变分法的奠基人、复变函数先驱者的地位。同时,他还是一位出色的科普作家,他发表的科普读物,在长达90年内不断重印。欧拉是古往今来最多产的数学家,据说他留下的宝贵的文化遗产够当时的圣彼得堡所有的印刷机同时忙上几年。 欧拉作为历史上对数学贡献最大的四位数学家之一(另外三位是阿基米德、牛顿、高斯),被誉为"数学界的莎士比亚"。 小欧拉智改羊圈 欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。 事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。" 欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢? 他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。 在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。 回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。 爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。 小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。 父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。 小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。" 父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。 父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。 华罗庚报效祖国宏愿------ 华罗庚的故事 同学们都知道,华罗庚是一位靠自学成才的世界一流的数学家。他仅有初中文凭,因一篇论文在《科学》杂志上发表,得到数学家熊庆来的赏识,从此华罗庚北上清华园,开始了他的数学生涯。 1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。20世纪声名显赫的数学家哈代,早就听说华罗庚很有才气,他说:“你可以在两年之内获得博士学位。”可是华罗庚却说:“我不想获得博士学位,我只要求做一个访问者。”“我来剑桥是求学问的,不是为了学位。”两年中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了著名的“华氏定理”,向全世界显示了中国数学家出众的智慧与能力。 1946年,华罗庚应邀去美国讲学,并被伊利诺大学高薪聘为终身教授,他的家属也随同到美国定居,有洋房和汽车,生活十分优裕。当时,不少人认为华罗庚是不会回来了。 新中国的诞生,牵动着热爱祖国的华罗庚的心。1950年,他毅然放弃在美国的优裕生活,回到了祖国,而且还给留美的中国学生写了一封公开信,动员大家回国参加社会主义建设。他在信中坦露出了一颗爱中华的赤子之心:“朋友们!梁园虽好,非久居之乡。归去来兮……为了国家民族,我们应当回去……”虽然数学没有国界,但数学家却有自己的祖国。 华罗庚从海外归来,受到党和人民的热烈欢迎,他回到清华园,被委任为数学系主任,不久又被任命为中国科学院数学研究所所长。从此,开始了他数学研究真正的黄金时期。他不但连续做出了令世界瞩目的突出成绩,同时满腔热情地关心、培养了一大批数学人才。为摘取数学王冠上的明珠,为应用数学研究、试验和推广,他倾注了大量心血。 据不完全统计,数十年间,华罗庚共发表了152篇重要的数学论文,出版了9部数学著作、11本数学科普著作。他还被选为科学院的国外院士和第三世界科学家的院士。 从初中毕业到人民数学家,华罗庚走过了一条曲折而辉煌的人生道路,为祖国争得了极大的荣誉。 阿基米德(约公元前287~212年) ——希腊物理学家、数学家。 阿基米德的父亲是一位天文学家和数学家,他从小受到良好的教育,特别喜爱数学。有一次,国王请他去测定金匠刚刚为其做好的王冠是纯金的还是掺有银子的混合物,并且告诫他不得毁坏王冠。起初,阿基米德茫然不知所措。直到有一天,当自己泡大一满盆洗 澡水里时,溢出水量的体积等于他身体浸入水中的那部分体积。那么,如果把王冠浸入水中 ,根据水面上升的情况算出王冠的体积与等重量金子的体积相等,就说明王冠是纯金的;假如掺有银子的话,王冠的体积就会大一些。他兴奋地从浴盆中跃出,全身赤条条地奔向皇宫,大喊着:"我找到了!找到了!"他为此而发明了 浮力原理。除此之外,他还发现了著名的杠杆原理。伴随着这一发明,还产生了一句众所周知的名言:"只要给我一个支点,我就能撬动地球。" 在阿基米德的老年岁月里,他的祖国与罗马发生战争,当他住的城市遭劫掠时,阿基米德还专心地研究他在沙地上画的几何图形,凶残的罗马士兵刺倒了这位75岁的老人,伟大的科学家扑倒在鲜血染红了的几何图形上…… 阿基米德死后,人们整理出版了《阿基米德遗著全集》,以永远缅怀这位科学巨匠的伟大业绩。 牛顿(1642~1727) 牛顿英国物理学家、数学家。曾任英国皇家学会会长。 牛顿是举世公认的、有史以来最伟大的科学家之一。他的幼年充满了辛酸,在他出生前3个月父亲便去世了,之后母亲改嫁,他是由外祖母抚养成人的。23毕业于著名的剑桥大学后留校工作。后因逃避伦敦流行的鼠疫来到母亲的农场里。在这里,他被一个常人熟视无睹的现象吸引住了。有一次,他看到一个熟透了的苹果落在地上,便开始思索为什么苹果会垂直落在地上,而不是飞到天上去呢?一定是有一种力在拉它,那么这种将苹果往下拉的力会不会控制月球?他就是通过这个看起来十分简单的现象,发现了著名的万有引力定律。这个定律的巨大作用,很快就显示了出来。它解释了当时所知道的天体的一切运动。同时,牛顿又完成了一项重要的光学实验,从而证明了白光是由以赤、橙、黄、绿、青、蓝、紫的顺序排列的合成光。1687年,牛顿出版了有史以来最伟大的科学著作《自然哲学的数学原理》。在这里,他钻研了伽利略的理论,并归纳出著名的运动三大定律。除此之外,他发现的二项式定理,在数学界也有一席之地。1704年,出版《光学》一书,总结了他对光学研究的成果。 牛顿61岁那年被选为英国皇家学会会长,此后年年连任直至逝世。作为举世公认的、最卓越的科学巨匠,他仍谦逊地说:“如果说我比别人看得远些,那是因为我站在了巨人的肩上。”1727年3月20日,84岁的牛顿逝世了。作为有功于国家的伟人,他被葬在了英国国家公墓,受到世人的瞻仰。 祖冲之(429~500) 中国南北朝时代南朝数学家、天文学家、物理学家。范阳遒(今河北涞水)人 祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。 宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。 我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。 公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。 祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。 尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。 祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。
这个时间没有比较好的时候,平时有就可以发表,不要临时抱佛脚,那就太迟了。
发表论文需要提前,最好提前一两年,做好准备比较稳妥。比较现在也不容易发表了,发表难度增大了
什么时候发表论文比较合适?论文在写作完成,检查没有问题之后,就要选择期刊进行投稿了。论文在投稿之后通常会有三个审稿环节,分别是初审、复审、终审。这一过程需要很长的时间,对于作者来说也是非常的煎熬的。因此作者们最关心的也是这一时间问题,那么论文什么时候投稿发表呢? 这个要看作者是投稿的什么期刊了,期刊级别的不同,审稿周期和发表的时间也是不同的。省级的刊物发表的时间一般都是比较短的,审核的周期大概在一到三个月左右。核心期刊的话,核心期刊是都需要预约排版的,审核相对来说也比较严,因此时间相对也要长一些,一般8个月到一年,有时候可能还要长一些。 因为发表论文一般要经历以下过程:投稿、审稿、录用/被退稿、修改润色、终审、定稿、校对、排版、印刷、出刊、邮寄。尤其是审稿,作为论文发表前必不可少的流程,论文审稿时间是整个论文发表过程中占用时间最长的。如果一次性通过还好,要是因为论文内容问题出现反复退修、审稿,势必直接导致论文发表时间增加,在投稿前对论文进行修正是非常有必要的。 需要提醒作者的是,虽然说现如今有很多的刊物都变成了月刊、半月刊,甚至旬刊,但还是建议作者们提前做准备,尤其是每年的三月份、九月份,是各地上报职称材料的高峰期。可以说是各个正规生物杂志社都面临着稿件大量积压,版面十分紧张的情况。所以说,就算作者是这个时候要发表论文,也是提前准备好的好,这样到时候直接发表就可以了,根本就不担心时间来不及。 当然,想要论文发表周期快,就要做到论文质量高;论文内容能够引起编审人员的阅读兴趣,标题有吸引力;论文的字数和格式要符合所投稿期刊的要求。这样,论文在审稿的过程也能够更加的顺利,论文发表的周期也就会快很多了。
考虑到发表论文对于评职称来说是非常重要的,因此在发表论文时应当尽量考虑到评职称的具体要求,以保证论文质量。最佳发文时间是在近几年中,根据评职称所提出的相关要求发表论文最好。一般来说,针对评职称相关要求,申请人最好在最近的几年中发表论文,以保证论文质量。另外,在近几年中发表的论文也可以得到更多人的关注,有助于实现个人在学术界的成就。同时,在发表论文的过程中也应当了解国内学术界的最新发展动态,以便申请人更好地理解论文发表的背景,从而发表更有竞争力的论文。
论文什么时候发表看个人需求,一般评职用的多,只要在规定平时时间前发表出来就可以。发表了也没人看
职称评审单位在检查参评者的期刊杂志的时候,只需要将杂志的目录跟知网,维普,万方的登录数据对比一下就可以辨别出真假。但无论是中国知网还是万方,维普,通常要在杂志出刊后的1-3个月内才会登录该期文章。一般的登录过程是:杂志出刊后,杂志社向数据库递交光盘版的期刊数据,数据会根据自身的更新速度将光盘数据录入系统。因为工作量大,所以一般要在1-3个月内才会登录完。这就要求我们的作者必须提前发表论文,才可以在职称评审中用得到。而论文发表通常在投稿到出刊之间又需要1-3个月的时间。
如果是评职称用的论文,发表越早越好,越多越好,因为职称评审文件是随时会发生变化的,而且每年的职称评审时间和职称名额也是变化的。凡事未雨绸缪不会错,否则机会来了你却只能干瞪眼。
孙丹丹。在2020到2021年四川发表最多;论文的学者是孙丹丹,一年的时间发布了六篇论文,最具有代表性的论文是《人类与自然》。