首页 > 职称论文知识库 > 大学发表nature论文

大学发表nature论文

发布时间:

大学发表nature论文

在《Nature》上发表一篇论文并没有相应的称号,不过也基本上属于大学教授级别(水平)。

《Nature》和《Science》属于顶尖科学杂志,按SCI影响因子算两杂志都有30多分,像中国博士毕业的要求只要在3分以上的杂志上发表一篇研究型文章就行。对比可知道这两本杂志的高度。

《Nature》和《Science》属于顶尖科学杂志,按SCI影响因子算两杂志都有30多分,像中国博士毕业的要求只要在3分以上的杂志上发表一篇研究型文章就行。对比可知道这两本杂志的高度。

介绍

在《自然》上发表文章是非常光荣的,《自然》上的文章会经常被引用。这有助于晋升、获得资助和获得其它主流媒体的注意。因此科学家们在《自然》或《科学》上发表文章的竞争很激烈。

与其它专业的科学杂志一样,在《自然》上发表的文章需要经过严格的同行评审。在发表前编辑选择其他在同一领域有威望的、但与作者无关的科学家来检查和评判文章的内容。作者要对评审做出的批评给予反应,比如更改文章内容,提供更多的试验结果,否则的话编辑可能拒绝该文章。

在《Nature》上发表一篇论文基本上属于大学教授级别(水平)。

《Nature》和《Science》属于顶尖科学杂志,按SCI影响因子算两杂志都有30多分。

《Nature》是世界上历史悠久的、最有名望的科学杂志之一,首版于1869年11月4日。与当今大多数科学论文杂志专一于一个特殊的领域不同,其是少数依然发表来自很多科学领域的一手研究论文的杂志(其它类似的杂志有《科学》和《美国科学院学报》等)。在许多科学研究领域中,很多最重要、最前沿的研究结果都是以短讯的形式发表在《自然》上。

【详细介绍】

《自然》是科学界普遍关注的、国际性、跨学科的周刊类科学杂志。2014年它的影响因子为41.456。

1869年约瑟夫·诺尔曼·洛克耶爵士建立了《自然》,洛克耶是一位天文学家和氦的发现者之一,他也是《自然》的第一位主编,直到1919年卸任。

《自然》每周刊载科学技术各个领域中具有独创性,重要性,以及跨学科的研究,同时也提供快速、权威、有见地的新闻,还有科学界和大众对于科技发展趋势的见解的专题。

《自然》的主要读者是从事研究工作的科学家,但杂志前部的文章概括使得一般公众也能理解杂志内最重要的文章。杂志开始部分的社论、新闻、专题文章报道科学家一般关心的事物,包括最新消息、研究资助、商业情况、科学道德和研究突破等栏目。杂志也介绍与科学研究有关的书籍和艺术。杂志的其余部分主要是研究论文,这些论文往往非常新颖,有很高的科技价值。

在《自然》上发表文章是非常光荣的,《自然》上的文章会经常被引用。这有助于晋升、获得资助和获得其它主流媒体的注意。因此科学家们在《自然》或《科学》上发表文章的竞争很激烈。与其它专业的科学杂志一样,在《自然》上发表的文章需要经过严格的同行评审。在发表前编辑选择其他在同一领域有威望的、但与作者无关的科学家来检查和评判文章的内容。作者要对评审做出的批评给予反应,比如更改文章内容,提供更多的试验结果,否则的话编辑可能拒绝该文章。

《自然》是一份在英国发表的周刊,其出版商为自然出版集团,这个集团属于麦克米伦出版有限公司,而它则属于格奥尔格·冯·霍茨布林克出版集团。《自然》在伦敦、纽约、旧金山、华盛顿哥伦比亚特区、东京、巴黎、慕尼黑和贝辛斯托克设有办公室。自然出版集团还出版其它专业杂志如《自然神经科学》、《自然生物学技术》、《自然方法》、《自然临床实践》、《自然结构和分子生物学》和《自然评论》系列等。

nature一作,优青起步,最高院士

发表nature论文的大学

这是因为他发表的文章是非常优秀的,得到了很多人们的关注,观点非常的独特,所以能够创造校史。

近日,电子 科技 大学材料与能源学院夏川教授以第一作者和共同通讯作者身份在国际著名期刊Nature Chemistry (《自然–化学》)上发表题为“General synthesis of single-atom catalysts with high metal loading using graphene quantum dots”的研究论文。该研究开发了一套高载量过渡金属单原子材料的普适性合成策略,实现了高达 40 wt.% 或 3.8 at.% 的高过渡金属原子负载,比目前报道的单原子负载量提升了几倍甚至数十倍。 该工作由电子 科技 大学、加拿大光源和美国莱斯大学三个单位共同合作完成。材料与能源学院的夏川教授为论文第一作者和通讯作者,美国莱斯大学的汪淏田教授和加拿大光源的胡永峰教授为论文通讯作者。该合作团队在电催化材料研究和电化学反应器设计领域建立了坚实的基础,并取得了丰硕的研究成果。 过渡金属单原子材料具有极高的原子利用率、独特的电子结构以及明晰且可调的配位结构,在各种电催化过程中展现出优异的活性。但常规单原子材料中金属原子密度较低(通常小于5 wt.%或1 at.%),大大限制了其整体催化性能及工业应用前景,因此发展出高载量过渡金属单原子材料普适性合成策略至关重要。现有“自上而下”和“自下而上”工艺对提高合成单原子材料的金属负载量有很大的局限(图1, a-b)。以碳材料负载的单原子为例,现有的“自上而下”方法通过在碳材料载体表面制造缺陷,然后通过缺陷稳定单原子。然而,无法精确调控缺陷尺寸导致缺陷位点的数目极大地受到限制,而且当金属负载量提高时,容易在大尺寸的缺陷位处形成团簇。“自下而上”方法则使用金属和有机物前驱体(如金属有机框架、金属-卟啉分子、金属-有机小分子)热解碳化的方式获得负载金属单原子的碳材料。在金属负载量过大时,金属原子之间将因为没有足够的隔离空间而导致热解过程中团簇或者颗粒的产生。 鉴于此,该团队发展了区别于现有“自上而下”和“自下而上”工艺的单原子催化材料制备方法(图1c),以突破单原子负载量的限制。该团队创新性地使用比表面大、热稳定性高的石墨烯量子点作为碳基底,对其进行-NH2基团修饰,使其对金属离子具有高配位活性。引入金属离子后可得到以金属离子作为节点、功能化石墨烯量子点作为结构单元的交联网络,最后热解即可得到高载量的金属单原子材料。相较于传统“自上而下”和“自下而上”的单原子催化剂合成方法,该研究报道的方法既保证了高含量金属离子初始锚定时的高分散性又能有效抑制后续热解过程基底烧结重构引起的金属原子团聚。 XAFS、HADDF-STEM等多种表征手段证明,由该法制得的负载型金属单原子催化材料在保证金属原子单分散的同时还能实现远超现有文献报道水平的金属载量。借助该方法,该团队成功制备出质量分数高达41.6%(原子分数为3.84%)的Ir单原子催化材料(图2),该负载量相较于文献报道的Ir单原子最高载量提升了数倍。 另外,该合成策略还具有普适性,能够用于制备其他贵金属或非贵金属的高载量金属单原子催化材料。例如,在碳基底材料上,Pt单原子的负载量最高可达32.3 wt.%,Ni单原子负载量可达15 wt.%(图3)。 夏川,电子 科技 大学材料与能源学院教授,国家青年人才。研究方向为基于新能源的电催化、电合成、电化学生物合成,致力于实现碳平衡的能量与物质循环。在“液体燃料与基础化学品现场合成”这一特色方向开展了深入、系统的研究,在反应器与催化剂设计领域均取得丰硕成果,共发表学术论文50余篇,授权美国专利3项,H因子34,引用5200余次。近五年来,以第一作者/通讯作者身份在Science、Nat. Energy、Nat. Catal.、Nat. Chem.等国内外高水平期刊共发表论文20余篇,其中ESI高被引论文9篇,热点论文2篇。

我觉得之所以能够创造校史,都是因为他的创造力是非常强的,而且也比其他人有更多的耐心。

个人简介: Edward H. Sargent,加拿大多伦多大学副校长、加拿大皇家科学院院士、加拿大工程院院士,是多伦多大学电子与计算机工程系教授。他是加拿大纳米技术领域的首席科学家,是胶体量子点光探测领域的开拓者,也是量子点PN结太阳能电池的发明者和光电转换效率的世界纪录的保持者,并通过所领导团队的努力,每年都在刷新纪录。迄今为止,已在Nature和Science等国际顶级期刊发表论文多篇团队已经发表超过300篇论文,论文被引用超过20000次,H因子72。

团队合照

接下来,我列举了Edward H. Sargent教授近期发表在Nature/Science系列期刊的工作!希望借此机会向大佬学习一下!

通过将二氧化碳电化学还原为化学原料,如乙烯,可同时达到二氧化碳减排和生产可再生能源的目的,目前,Cu是CO2RR的主要电催化剂。然而,迄今为止所达到的能源效率和生产率(目前的密度)仍然低于以工业生产乙烯所需的值。

鉴于此,卡内基梅隆大学的Zachary Ulissi、多伦多大学的Edward H. Sargent等人通过密度泛函理论计算结合主动机器学习来识别,描述了Cu-Al电催化剂能有效地将二氧化碳还原为乙烯,具有迄今为止所报道的最高的法拉第效率。与纯铜相比,在电流密度为400mA/cm2下Cu-Al电催化剂的法拉第效率超过了80%,以及在150mA/cm2下,在其阴极乙烯的能量转换效率则达到了~55%。理论计算表明,铜铝合金具有多个活性位点、表面定向和最佳CO结合能,有利于高效的、高选择性地还原CO2。

此外,原位X射线吸收光谱表明,铜和铝能够形成良好的铜配位环境,从而增强C-C二聚作用。这些发现说明了计算和机器学习在指导多金属系统的实验 探索 方面的价值,这些系统超越了传统的单金属电催化剂的局限性。

Accelerated discovery of CO2 electrocatalysts using active machine learning,

电解二氧化碳电还原反应(CO2RR)可用于绿色生产乙醇,然而,该反应的法拉第效率目前仍然不高,特别是在总电流密度超过10mA cm−2下。

鉴于此,多伦多大学的Edward H. Sargent团队报道了一类催化剂,其产乙醇的法拉第效率高达52.1%,阴极能量转化效率为31%。作者发现通过抑制中间体HOCCH*的脱氧作用,可以降低乙烯的选择性,促进乙醇生产。密度泛函理论(DFT)计算表明,由于封闭的N-C层具有很强的供电子能力,在Cu表面涂覆一层氮掺杂碳(N-C)可以促进C-C耦合,抑制HOCCH*中碳氧键的断裂,从而提高CO2RR中乙醇的选择性。

Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation,

堆叠具有较小带隙的太阳能电池形成双结膜,为克服单结光伏电池的Shockley-Queisser极限提供了可能。随着溶液处理钙钛矿的快速发展,有望将钙钛矿的单结效率提高>20%。然而,这一工艺仍未实现与行业相关的纹理晶体硅太阳能电池进行整体集成。

来自多伦多大学的Edward H. Sargent 和阿卜杜拉国王 科技 大学的Stefaan De Wolf团队,报道了将溶液处理的微米级钙钛矿顶部电池与完全纹理化的硅异质结底部电池相结合,进行集成双叠层电池的方法。为解决微米级钙钛矿中电荷收集的难点,作者将硅锥体底部的耗尽宽度提高了三倍。此外,通过在钙钛矿表面固定一种自限型钝化剂(1-丁硫醇),增加了扩散长度且进一步抑制了相偏析。这些多方位的结构改善,使钙钛矿—硅串联太阳能电池的整体效率达到了25.7%。在85°C下进行400小时的热稳定性测试,以及在40°C、在最大功率点下工作400小时后,发现其性能衰减可忽略不计。

Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon,

在这里,作者首先讨论了四类分子强化策略:①分子加成修饰的多相催化剂、②有机金属络合物催化剂、③网状催化剂和④无金属聚合物催化剂。作者介绍了目前在分子策略方面的挑战,并描述了电催化CO2RR产多碳产品的前景。这些策略为电催化CO2RR提供了潜在的途径,以解决催化剂活性、选择性和稳定性的挑战,进一步发展CO2RR。

Molecular enhancement of heterogeneous CO2 reduction,

目前通过优化钙钛矿的组成经过组合优化,在最先进的钙钛矿太阳能电池中通常含有六种成分(AxByC1−x−yPbXzY3−z)。关于每个组成部分的精确作用仍然存在许多不清晰,如何正确理解和掌握钙钛矿材料中不同组分对晶体结构、性能的影响关系,对于制备新型的高性能钙钛矿材料而言具有重要的指导意义。

鉴于此,多伦多大学的Edward H. Sargent与麻省理工学院的William A. Tisdale等人利用瞬态光致发光显微镜(TPLM),并结合理论计算,探究了钙钛矿材料中组分—结构—性能之间的关系。研究表明,单晶钙钛矿材料内部载流子的扩散率与结构组成无关;而对于多晶钙钛矿,不同的成分对载体扩散起着至关重要的作用。与CsMAFA型钙钛矿相比,不含MA的CsFA型钙钛矿载流子扩散率要低一个数量级。

元素组成研究表明,CsFA颗粒呈级配组成。在垂直载流子输运和表面电位研究中可以看到,CsFA型钙钛矿由于其非均匀结晶,从而引起晶粒的元素分布不一致,形成了不利于载流子扩散的“壳核结构”。而掺入MA可以有效改善颗粒成分的均匀性,在CsMAFA薄膜中产生了高的扩散系数。

Multi-cation perovskites prevent carrier reflection from grain surfaces, /10.1038/s41563-019-0602-2

电解二氧化碳还原(CO2RR)转化为有价值的燃料和原料,为这类温室气体的利用提供了一条有吸引力的途径。然而,在这类电解装置内,往往是由有限的气体通过液体电解质扩散到催化剂的表面,电解效率仍然不高。

鉴于此,多伦多大学的David Sinton和Edward H. Sargent等人提出了一种催化剂:离聚物本体异质结结构(CIBH),可用于分离气体、以及离子和电子的传输。CIBH由金属和具有疏水和亲水功能的超细离子层组成,可将气体和离子的输运范围从数十纳米扩展到微米级。采用这种设计策略,作者实现了在7 M KOH电解液中,以铜为催化剂进行电还原CO2,在阴极法拉第效率为45%下,产乙烯的偏电流密度高达1.3A cm-2。

CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2,

手性材料在推动生物标记、手性分析和检测、对映异构体选择性分离、偏振相关光子学和光电子学应用等领域的发展具有重要意义。一维半导体的区域选择性磁化可以实现室温下的各向异性磁性,以及自旋极化——这是自旋电子学和量子计算技术所必需的特性。

鉴于此,中国科学技术大学俞书宏院士团队与国家纳米科学中心唐智勇研究员课题组、多伦多大学Edward Sargent教授团队等人利用局域磁场调控电偶极矩与磁偶极矩之间的相互作用,成功合成了一类新型手性无机纳米材料。

利用这一策略,作者将具有不同晶格、化学成分和磁性能的材料,即一个磁性成分(Fe3O4)和一系列半导体纳米棒结合在一起,在特定的位置吸收紫外线和可见光谱。由此产生的异质纳米棒表现出由特定位置磁场诱导的光学活性。本文提出的区域选择性磁化策略为设计手性和自旋电子学的光学活性纳米材料提供了一条途径。

Regioselective magnetization in semiconducting nanorods,

电催化CO2还原反应(CO2RR)为温室气体的利用、化学燃料的生产提供了一种可持续的、碳中性的方法。然而,从CO2RR高选择性地生产C2产品(例如乙烯)仍然是一个挑战。

鉴于此,多伦多大学Edward H. Sargent教授、加州理工学院Theodor Agapie教授、Jonas C. Peters教授等人提出了一种分子调控策略,用有机分子使电催化剂表面功能化,用于稳定反应中间产物,使CO2RR高选择性地产乙烯。

通过电化学、操作/原位光谱和计算研究,研究了通过芳基吡啶的电二聚作用衍生的分子库对Cu的影响。结果发现,粘附分子提高了CO中间体的稳定性,有利于进一步还原成乙烯。在中性介质的液流电池中,在偏电流密度为230 mA cm-2下,电催化CO2RR产乙烯的法拉第效率高达72%。

Molecular tuning of CO2-to-ethylene conversion,

湘潭大学nature发表论文

在第二轮“双一流”建设高校名单出炉前,关于哪些普通高校会脱颖而出的预测,相信不会停止。综合目前各方情况来看,有一些普通高校已经被视作跻身第二轮“双一流”的大热门,比如说燕山大学、山西大学、湘潭大学等。不过,在正式名单没有发布前,这些都仅停留在可能性层面。

今天给各位高考生及家长推荐的这所普通高校,它因为半个月时间内,连续在全球顶尖期刊Nature/Science上发表了3篇论文而备受关注。没错,它就是地处“六朝古都”的南京工业大学。

3篇顶尖期刊论文提振入围“双一流”呼声

Nature和Science,是全球公认的两大顶尖水平期刊,各大高校均能以在其中发表论文而骄傲、自豪,即便是“双一流”名校,一年也很难在Nature和Science中有所建树,有些甚至是颗粒无收。所以,南京工业大学半个月内能产出3篇,足见其有不俗实力。

最早一篇是3月11日,出自南工大邵宗平、周嵬教授团队,发表在Nature当中。仅一天之后,Science上出现了南工大先进化学制造研究院赵莉莉教授的共同通讯单位文章。3月26日,南京工业大学先进材料研究院黄维院士和陈永华教授团队的最新研究成果,出现在了Science上。

优势学科具备成为世界一流的基础

一所普通高校,要想入围“双一流”,公认度较高的基本标准是有在高校圈领先的优势特色学科。在这方面,南京工业大学已经具备。

由于第五轮学科评估结果还没出来,这里暂且以第四轮学科评估结果来佐证。南工大的化学工程与技术学科在第四轮学科评估中获评为A档,这已经是排名全国前5%的实力。上文介绍的在Nature上发文的赵莉莉教授,正是南工大化学工程与技术学科的优秀代表教师。

除了化学工程与技术学科很优秀外,南工大黄维院士所在的材料科学与技术学科也有不俗实力。

国家科技三大奖表现亮眼

在高校圈,南京工业大学还有一大优势特色,那就是在历年国家科技三大奖中都有不错表现。以“双一流”启动建设以来的前四年(2016年度-2019年度)为例,南工大的“三大奖”折合数排名国内第45位,高于不少“双一流”名校,相信这也会给南工大冲击新一轮“双一流”加分不少。

除了顶尖期刊论文方面连连出彩之外,南京工业大学在近日发布的ESI、校友会等各类榜单中也有不俗表现。以校友会2021大学排名为例,南工大位列国内第77位、“四非”高校第9位。

总得来说,不论是从综合实力,还是学科优势特色和科技(科研)成果产出来看,南京工业大学已经达到了“双一流”高校标准。不过,在江苏省内,江苏大学、扬州大学、南京医科大学等高校同样很有竞争力,所以南工大要想跻身名校方阵,还是颇具难度的,毕竟省内的竞争就非常激烈。

小伙伴们,对于南京工业大学在新一轮“双一流”中的前景,你怎么看呢?欢迎留言交流分享!

近三年在science、nature、Nano. Lett.、 PRL、 APL、PRB、 JPC、 IJSS、 Acta Mater. 等国内外重要刊物发表学术论文400多篇(三大检索系统)。先后主持了包括国家自然科学基金杰出青年基金、国家自然科学基金重点项目、国家“863”项目、“973”项目子课题、国家自然科学基金面上项目在内的60余项国家和省部级科研项目,获得校企联合研究和开发课题10项,获得中国科学院科技进步一等奖和自然科学三等奖各1项,教育部科技进步三等奖2项,湖南省科技进步二等奖3项,中国航空工业总公司科技进步二等奖1项。组织了国际力学与材料工程青年学术会议、第五届先进材料及技术国际学术会议等国际学术会议和国家杰出青年科学基金学术交流暨评估会、中国青年科学家论坛第96次活动等国内学术会议,每年到美国、德国、荷兰、加拿大、香港等国家和地区参加国际会议20多人次,出版教材8部,获得国家专利8项。 现有1个教育部科技创新团队,1个湖南省首批自然科学创新研究群体,1个湖南省高校科技创新团队,1个湖南省高校产学研合作示范基地。有现代物理研究所、量子工程与微纳能源技术研究所、智能光电技术研究所、纳米物理与稀土发光研究所、微光电与系统集成研究所等校级研究机构。

我觉得有可能。因为这所大学的实力也是非常强的,每年的学生质量很高,现在又有这么高质量的论文出现,定会可以成为双一流学校。

我认为有希望,他们的学生质量都非常高,学校的专业是越来越好。

南华大学nature发表论文

一般普通本科院校党委书记和校长都是正厅级,985和211一般是副部级,比较牛的像北大清华之类的都是正部级。专科院校的一般是副厅级!

南华大学校长张灼华,现任湖南省政协副主席,农工党中央常委、湖南省委主委,南华大学校长。

张灼华,主要从事中枢神经系统的分子与细胞生物学和神经退行性疾病的分子病理机制研究。

张灼华分别在Cell、Nature和Nature Cell Biology,Nature Neuroscience 等杂志发表论文30多篇,被引用1700 多次。

他的研究在国际上率先证明整合素(integrin)介导的细胞粘附是贴壁细胞生存的必备条件(PNAS 1995);发现了第一个活化整合素的细胞内信号传导途径—R-ras 对整合素活性的调节途径(Cell 1996)。

他的研究还证明早老素(presenilins)是淀粉样蛋白形成的关键酶的组分, 为老年痴呆症的Aβ假说提供了重要的实验依据(Nature 1998; Nat Cell Biol 2000)。

我们先来看一份简历: 重庆人,1990年出生。 2011年本科毕业于英国布里斯托大学; 22岁硕士毕业于剑桥大学; 23岁在《Nature》主刊以第一作者发表论文,成为在《Nature》上以第一作者发表论文的最年轻中国女学者之一; 博士毕业于牛津大学; 25岁回国工作,被 电子科技大学 聘为教授; 26岁入选国家第十二批青年…… 相信每个人都会很好奇,她是谁?怎么这么厉害? 她就是最近频频刷屏网络的“90后”美女学霸——刘明侦。如今,她已是 电子科技大学 新成立的材料与能源学院副院长,继续刷新“最年轻”记录。电子科技大学 材料与能源学院党政领导。刘明侦任副院长全职回到 电子科技大学 后,刘明侦高效组建了自己的团队,并且依托于“电子薄膜与集成器件国家重点实验室”、“微电子与固体电子学”国家重点学科及“国家电磁辐射控制材料工程技术研究中心”等平台,努力推动新型太阳能电池及相应新材料在其他光学器件的应用,促进产业化生产,并且积极地突破国内当前传统太阳能产业困境。 3月,刘明侦凭借自己所取得的成果,入选了第十二批国家“青年项目”。另外,通过半年时间准备筹谋,她又于7月牵头成立了“应用化学研究中心”。这一中心成为连接 电子科技大学 化学相关的优势团队与学科的纽带,使化学与材料、能源、电子等热点方向强强联合,助推 电子科技大学 化学学科成功进入ESI前1%。 2017年5月3日,第20届“四川青年五四奖章”表彰个人和集体名单出炉,刘明侦获此殊荣。“能荣获四川青年五四奖章,我肯定深感高兴。”谈及此次斩获第20届“四川青年五四奖章”的感想,刘明侦仍然还是一如既往地低调。 “成为一名‘有理想、有责任、能坚持、有担当’的人,是我对自己的要求和期盼。” 2018年1月,刘明侦教授通过了组织考察和干部任职公示,正式成为 电子科技大学 材料与能源学院的副院长,也是该学院最年轻的副院长。 “当时受聘就曾引起众多媒体的关注,但她却非常低调。”电子科大宣传部相关工作人员表示,作为科研工作者的刘明侦,向来都是低调做事,潜心学术。 刘明侦: “作为重庆人,我一直有着浓厚的川渝家乡情结,这也是我当初愿意放弃在英国的职位回到祖国,来到 电子科技大学 的初衷。”刘明侦说。 我们看到了开挂的“学霸”表面的光鲜,背后付出的努力谁又能知呢?

1. 中国科学技术大学 (USTC):中国科学技术大学是中国最大的综合性大学之一,它在物理学、化学、材料科学、生命科学等领域都有很高的研究水平和声誉。近年来,中国科学技术大学在 Nature 上发表了多篇论文

2. 清华大学 (Tsinghua University):清华大学是中国最著名的综合性大学之一,它在物理学、化学、材料科学、生命科学等领域都有很高的研究水平和声誉。近年来,清华大学在 Nature 上发表了多篇论文。3. 北京大学 (Peking University):北京大学是中国最著名的综合性大学之一,它在物理学、化学、材料科学、生命科学等领域都有很高的研究水平和声誉。近年来,北京大学在 Nature 上发表了多篇论文。4. 中国科学院 (CAS):中国科学院是中国最高的科学技术研究机构之一,它在物理学、化学、材料科学、生命科学等领域都有很高的研究水平和声誉。近年来,中国科学院在 Nature 上发表了多篇论文。

5. 上海交通大学 (Shanghai Jiao Tong University):上海交通大学是中国最著名的综合性大学之一,它在物理学、化学、材料科学、生命科学等领域都有很高的研究水平和声誉。近年来,上海交通大学在 Nature 上发表了多篇论文。

武汉大学发表nature论文

他后来挺好的,因为重视家庭了,很少出现在聚光灯下,也不见自媒体发布信息,而且周边消息报道也没有,所以没什么消息。

青年是早晨时刚升起的太阳,明亮温暖;青年是茁壮成长的树木,蓬勃朝气;青年是盛开灿烂的花朵,洋溢着笑脸。青年是国家的栋梁,他们有着这个时代最先进的思想,有自己独立的人格,有最强壮的体魄,他们是“心怀猛虎,细嗅蔷薇”最好的写照!

天才少年

曹原小时候就表现出了异于常人的非凡智力,初中读了不到一年就参加中考,考上了深圳耀华实验中学。在这个学校里,不缺乏天才,但是同学老师都认为他是“天才中的天才”。曹原对物理化学非常有兴趣,并且因为他小时候喜欢对电路非常感兴趣,经常拆拆卸卸。这让他锻炼出了极强的动手能力,这为他做实验打下了良好的基础。他甚至在家里和学校里都搞了一个实验室。当时,硝酸银比较贵也比较难买,作为一个学生没有那么多钱和渠道去买。他为了获取硝酸银,偷偷把妈妈的银镯子放在硝酸中来做实验提取硝酸银。

2010年,年仅14岁的曹原以669分的高分考入中科大“严济慈物理英才班。”来自各个地方经过层层选拔的天才少年们只要一提到曹原就会发自内心地敬佩和感叹!当然,曹原的兴趣爱好有很多,不是一个书呆子。曹原喜欢摄影,天文,经常发一些非常美丽的天文照片。

曹原的人生就像开挂了一样:2012年,曹原被邀请到密歇根大学学习;2013年,被牛津大学邀请做实验项目;2014年获得郭沫若奖学金,这是本科生最高级别的奖学金。此后,他去美国麻省理工学院深造。曹原再接再厉,先后发表了两篇论文。但是面对夸奖曹原非常谦虚地说自己与别人没有什么不同的地方,只是自己对这方面非常有兴趣,小时候读了许多科普读物,打下了基础。

重大突破

在美国,曹原开始攻克世界性难题—石墨烯导电问题的研究,这个研究相当有经济价值和社会价值。在18世纪人类第一次发现超导体,这是一种电阻为零的特殊材质,可以极大地减少在发电过程中产生的损耗。但是令人头疼的是,想要实现这种传输并不是一件容易的事,环境必须在零下273摄氏度才能实现超导体。

但是,这在现实世界中没有办法和环境可以实现。此后,超导体的研究日渐深入,如果材料能在常温下实现超导,就能大大减少一系列不必要的费用!,但是1980年以后,科学家们遇到了难题,超导体的研究陷入了停滞,毫无进展。这是一个相当的黑暗时代。

后来有一道强烈的光撕破了这个黑暗!在2017年,年仅21岁的曹原及其团队发现了突破性理论:只要将两层石墨烯旋转到特定的“魔法角度”(1.1度)叠加时,它们就可以在电阻为零的情况下传导电子,效果立竿见影,立刻显示超导特性,这是一件非常令人高兴的事情!是超导理论的一个重大进步!但如果真正实施起来,是一件比较困难的事。所幸曹原很快就掌握了比较可靠的方法。通过这个方法达到了超导体比较显著的温度!

而曹原的这个操作,成功实现了石墨烯超导电实验,解决了令全世界物理学界科学家们心心念念想要解决的难题,物理界迎来一道明亮的曙光!在最新一期的Nature中,曹原和他的导师连发两篇Nature,介绍石墨烯研究的新的突破口。有点常识的人都知道在Nature发表论文是多么的难,在Nature发表文章难度相当之大!武汉大学在整个2018年也只发出了一篇nature和一篇science。能在Nature发文章意味着你可以去当一个大学教授,成为学术界的权威,也可能会评上院士。

曹原的这个重大发现引爆了全球,让全世界学者望尘莫及的Nature在一天之内发布了曹原的两篇论文。而曹原的论文还没来得及排版破天荒地直接就被Nature发布在网上了。当时还有网友评论说:Nature杂志应该能为曹原论文的发表感到荣幸。但是曹原并没有原地踏步没有被名誉和利益冲昏了头脑,依然坚守本心!

曹原再次在Nature上连续发表两篇关于石墨烯的论文!别人是以登上Nature杂志为荣,而Nature杂志则是以登上曹原的文章为荣!少年天才,令人望尘莫及!Nature将他评为影响世界的十大科学人物之首。少年时期,功成名就,意气风发,但是他没有因此而骄傲!他依然勤勤恳恳地做着实验和研究,他与平常青年似乎没什么两样,比较害羞和腼腆。

曹原厉害到了什么程度呢,知乎上有人这样评价:“施一公离诺奖差一个冷冻电镜,潘建伟离诺奖差一个量子纠缠,曹原离诺奖最近,就差常温两字。”虽然只是一个调侃,我们也能够知道曹原为物理界做了巨大的贡献,曹原有着异于常人的智力,并且有着坚忍不拔的毅力,并且非常谦虚,这样的人怎么会不成功呢?

曹原也是一个非常具有爱国心的人,在美国攻读博士的时候,曹原曾经得到过加入美国国籍的机会。但是他没有选择接受邀请,他想着想要回国报答祖国,为祖国的科技发展贡献自己的力量。而曹原也希望更多的人和自己一样,学习西方先进的知识,回国报效祖国。

曹原在发表论文的过程中有很多人冷嘲热讽,可是他并没有听闲言碎语,依旧向上。我们青年也应该不断进步,能做事的做事,能发声的发声。我们是国家建设中最坚固的栋梁,我们是拥有这个时代最先进的思想,我们是黑暗中的炬火照亮着前方的道路,让我们青年撕破黑暗,让更多的阳光冲破黑暗洒在更多的角落,我们的国家才会建设的越来越好。

学院建有仪器设备共享中心,拥有一流的仪器设备和研究条件,包括质谱分析仪、透射电子显微镜、扫描电子显微镜、激光共聚焦显微镜、分析及分选型流式细胞仪、激光显微切割仪、膜片钳、微量热分析仪、超速离心机等大型仪器设备,建有三级生物安全实验室(P3实验室)、有由世界知识产权组织(WIPO)认可的国际保藏机构(IDA)--中国典型培养物保藏中心,还建有标准化的实验动物饲养室、植物生长温室,为进行生命科学各领域研究搭建了优良平台。作为研究型学院,武汉大学生命科学学院一直秉承追求卓越的办院宗旨,提供一流的教学服务,开展高水平的学术研究,所培养的毕业生以其素质高、基础厚、创新性强赢得海内外的赞誉,很多人已经成为欧美著名大学的终身教授。学院具有从事创新研究的优良传统,早在二十世纪三十年代,原生物系汤佩松教授就在国际著名期刊Nature和Science不断发表学术论文;杨弘远院士八十年代创立的植物离体受精技术在国际上具有重要影响。进入二十一世纪后,学院又进入了快速发展的轨道,众多在欧美国家学有所成的年轻学者的加入,使学院的研究水平和国际地位不断提升,近年来作为首席科学家主持7项国家“973项目”,还承担数项“863项目”、国家自然科学基金项目、国家转基因专项项目等的研究工作,在国际重要学术期刊上发表了系列研究论文,学术成果不断获得重要奖项,如杨弘远院士主持的“植物性细胞、受精及胚胎发生离体操作系统的创建与实验生物学研究”获得国家自然科学二等奖、朱英国院士主持的“中国水稻农家品种马尾粘败育株发现与马协CMS(马协A)选育和利用”获得国家技术发明二等奖,舒红兵教授等完成的成果“细胞凋亡与抗病毒反应的信号转导研究”获得国家自然科学二等奖。目前全院师生正以饱满的热情和不断进取的姿态,励精图治,发奋图强,为生命科学和生物医学的进步、国家经济的发展和武汉大学的建设做出更大贡献。

  • 索引序列
  • 大学发表nature论文
  • 发表nature论文的大学
  • 湘潭大学nature发表论文
  • 南华大学nature发表论文
  • 武汉大学发表nature论文
  • 返回顶部