首页 > 职称论文知识库 > 高校发表论文统计分析方法

高校发表论文统计分析方法

发布时间:

高校发表论文统计分析方法

调查法、观察法、实验法、文献研究法、实证研究法、定量分析法、定性分析法、跨学科研究法、个案研究法、功能分析法、模拟法(模型方法)、探索性研究法、信息研究方法、经验总结法、描述性研究法、数学方法、思维方法、系统科学方法

论文数据方法有多选题研究、聚类分析和权重研究三种。

1、多选题研究:多选题分析可分为四种类型包括:多选题、单选-多选、多选-单选、多选-多选。

2、聚类分析:聚类分析以多个研究标题作为基准,对样本对象进行分类。如果是按样本聚类,则使用SPSSAU的进阶方法模块中的“聚类”功能,系统会自动识别出应该使用K-means聚类算法还是K-prototype聚类算法。

3、权重研究:权重研究是用于分析各因素或指标在综合体系中的重要程度,最终构建出权重体系。权重研究有多种方法包括:因子分析、熵值法、AHP层次分析法、TOPSIS、模糊综合评价、灰色关联等。

拓展资料:

一、回归分析

在实际问题中,经常会遇到需要同时考虑几个变量的情况,比如人的身高与体重,血压与年龄的关系,他们之间的关系错综复杂无法精确研究,以致于他们的关系无法用函数形式表达出来。为研究这类变量的关系,就需要通过大量实验观测获得数据,用统计方法去寻找他们之间的关系,这种关系反映了变量间的统计规律。而统计方法之一就是回归分析。

最简单的就是一元线性回归,只考虑一个因变量y和一个自变量x之间的关系。例如,我们想研究人的身高与体重的关系,需要搜集大量不同人的身高和体重数据,然后建立一个一元线性模型。接下来,需要对未知的参数进行估计,这里可以采用最小二乘法。最后,要对回归方程进行显著性检验,来验证y是否随着x线性变化。这里,我们通常采用t检验。

二、方差分析

在实际工作中,影响一件事的因素有很多,人们希望通过实验来观察各种因素对实验结果的影响。方差分析是研究一种或多种因素的变化对实验结果的观测值是否有显著影响,从而找出较优的实验条件或生产条件的一种数理统计方法。

人们在实验中所观察到的数量指标称为观测值,影响观测值的条件称为因素,因素的不同状态称为水平,一个因素可能有多种水平。

在一项实验中,可以得到一系列不同的观测值,有的是处理方式不同或条件不同引起的,称为因素效应。有的是误差引起的,称做实验误差。方差分析的主要工作是将测量数据的总变异按照变异原因的不同分解为因素效应和试验误差,并对其作出数量分析,比较各种原因在总变异中所占的重要程度,作为统计推断的依据。

例如,我们有四种不同配方下生产的元件,想判断他们的使用寿命有无显著差异。在这里,配方是影响元件使用寿命的因素,四种不同的配方成为四种水平。可以利用方差分析来判断。

三、判别分析

判别分析是用来进行分类的统计方法。我来举一个判别分析的例子,想要对一个人是否有心脏病进行判断,可以取一批没有心脏病的病人,测其一些指标的数据,然后再取一批有心脏病的病人,测量其同样指标的数据,利用这些数据建立一个判别函数,并求出相应的临界值。

这时候,对于需要判别的病人,还是测量相同指标的数据,将其带入判别函数,求得判别得分和临界值,即可判别此人是否属于有心脏病的群体。

四、聚类分析

聚类分析同样是用于分类的统计方法,它可以用来对样品进行分类,也可以用来对变量进行分类。我们常用的是系统聚类法。首先,将n个样品看成n类,然后将距离最近的两类合并成一个新类,我们得到n-1类,再找出最接近的两类加以合并变成n-2类,如此下去,最后所有的样品均在一类,将上述过程画成一张图。在图中可以看出分成几类时候每类各有什么样品。

比如,对中国31个省份的经济发展情况进行分类,可以通过收集各地区的经济指标,例如GDP,人均收入,物价水平等等,并进行聚类分析,就能够得到不同类别数量下是如何分类的。

五、主成分分析

主成分分析是对数据做降维处理的统计分析方法,它能够从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。

在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。

六、因子分析

因子分析是主成分分析的推广和发展,它也是多元统计分析中降维的一种方法。因子分析将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。

在主成分分析中,每个原始变量在主成分中都占有一定的分量,这些分量(载荷)之间的大小分布没有清晰的分界线,这就造成无法明确表述哪个主成分代表哪些原始变量,也就是说提取出来的主成分无法清晰的解释其代表的含义。

因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。

例如,为了了解学生的学习能力,观测了许多学生数学,语文,英语,物理,化学,生物,政治,历史,地理九个科目的成绩。为了解决这个问题,可以建立一个因子模型,用几个互不相关的公共因子来代表原始变量。我们还可以根据公共因子在原始变量上的载荷,给公共因子命名。

例如,一个公共因子在英语,政治,历史变量上的载荷较大,由于这些课程需要记忆的内容很多,我们可以将它命名为记忆因子。以此类推,我们可以得到几个能评价学生学习能力的因子,假设有记忆因子,数学推导因子,计算能力因子等。

接下来,可以计算每个学生的各个公共因子得分,并且根据每个公共因子的方差贡献率,计算出因子总得分。通过因子分析,能够对学生各方面的学习能力有一个直观的认识。

七、典型相关分析

典型相关分析同样是用于数据降维处理,它用来研究两组变量之间的关系。它分别对两组变量提取主成分。从同一组内部提取的主成分之间互不相关。用从两组之间分别提取的主成分的相关性来描述两组变量整体的线性相关关系。

论文常用数据分析方法

论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!

论文常用数据分析方法分类总结

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

高校发表论文统计分析

描述性分析是数据分析的重要步骤。进行描述性统计分析前,首先应理解搜集数据、分析数据,以及识别一些常见数据来源的必要性;然后,应该了解实践中常见的数据类型,数据汇总的方法;最后,再确定单变量的数值描述方法,以及两个或两个以上的数据分析方法。

1. 数据:定义和目标

首先,我们应该确定一些定义。

数据:用来展示和解释所搜集、分析和提炼和事实和数字;

变量:可以取不同值的标志或指标。如:行业、股价、市值;

决策变量:变量的取值直接受决策人的控制;

随机变量/不确定性变量:变量的取值不受决策人直接控制的因素的影响,可能会出现不确定性波动;

观察/观测:一组变量对应的一组值;

描述性分析,即通过对搜集的数据进行分析,以获得对变异及其商务环境影响很好的认识。

2. 数据的类型

(1)总体数据和样本数据:许多情况下,从总体(感兴趣的元素的集合)中搜索数据是不可行的。此时,可以从总体的子集(样本)中搜集数据。搜索那些能够代表总体的样本数据很重要,只有这样才能把那些样本数据推广到总体情况的认识。

(2)数量数据和属性数据:数量数据指能够进行加减乘除等数值和算术运算的数据,如:公司的市值;属性数据指那些不能进行算术运算的数据,对这些数据进行描述性分析,只能进行计数或计算每一个类别观察值的比例,如:公司所属的行业。

(3)截面数据和时间序列数据:截面数据是指在同一时间或几乎相同的时间搜集来一些个体的数据;时间序列数据:指几个时期的数据。时间序列数据图能够帮助分析人员了解过去发生了什么,识别随着时间变化而发生变化的趋势,并且可以对未来进行预测。

如果研究一个X或多个X对Y的影响关系,其中Y为定量数据,可使用线性回归分析,构建回归模型。如果研究一个X或多个X对Y的影响关系,其中Y为定类数据,可使用Logistic分析,构建Logistic回归模型。如果要分析1组X与一组Y之间的关系情况,可使用典型相关分析。如果要分析多个X与多个Y之间的影响关系情况,且样本量较小(通常小于200),可使用PLS回归分析。

高校发表论文统计分析报告

经常有人问到在论文或标书中应该如何写作统计分析部分。标准的答案是:你怎么做的就怎么写,每篇文章都是唯一的存在。好装,汗……。如果我们尝试去归纳和小结,这部分内容的写作其实是有一定规律的。我曾经听过Thomas Allen Long教授关于论文写作的课,人很和蔼,他主编的书也不错,操作性很强。在他的书稿《How to Write, Publish & Present in the Health Sciences》第154页中他小结到,统计分析部分应该包括如下内容:统计描述部分、所有的基本统计方法以及分析方案(如ITT或PP等)、样本量的说明、分组方法、检验水准的设定和所使用的统计分析软件。同样在本书的第155页中也写得:统计分析人员可以帮助作者对数据进行合理的分析、对分析结果进行正确解读,同时可以负责统计分析部分的撰写。他建议将统计分析人员作为作者之一,也许这样统计分析人员就不会粗枝大叶、不负责任了。关于医学统计分析的写作,其实他还有一本书《How to Report Statistics in Medicine》,在统计分析的报告上写得更专业。言归正传,本文既然是要小结“统计分析”部分,那就小结吧。个人觉得“统计分析”部分写作时应该包括以下几个内容:(1)样本量估算及随访/数据收集情况;(2)数据录入和管理的软件和方法;(3)本研究所使用的统计分析软件和分析方案;(4)统计描述的方法,分计量和计数资料两种;(5)统计推断的方法,分单因素和多因素两种;(6)检验水准的选取。由于某些“你懂的”原因,很多普通的论文没有进行样本量估算和区分不同的分析方案(ITT/PP)。所以简单举例如下:本研究采用……数据库进行数据录入和管理,数据录入采用双录入核查方式进行。采用……软件对研究数据进行统计分析。计量资料采用……对其进行正态性检验,符合正态分布的计量资料采用均值±标准差的形式进行描述,不符合正态分布的计量资料采用中位数(25%位数,75%位数)进行描述,计数资料采用例数(百分比)进行描述。符合正态分布的计量资料组间比较采用独立样本t检验或单因素ANOVA进行,不符合正态分布的计量资料组间比较采用非参数检验进行,计数资料组间比较采用卡方检验进行。在多因素分析上,采用多重线性/逻辑回归分析……的影响因素。所有检验以双侧p<0.05为差异有统计学意义。有人说我要写英文的“统计分析”部分,该怎么办?同样,你需要多阅读别人的优秀文章,然后用它们的句式来构建属于你自己统计分析内容。可供参考的句式有:(1)数据采集:Study data were collected on standard forms, checked for completeness, and double keyed into an …… database.(2)统计软件:All statistical analyses were performed using SAS version 9.2 (SAS Institute Inc, Cary, North Carolina).(3)统计描述:…… were described using mean, median, standard deviation, and 25thand 75th percentiles for continuous variables; frequencies and proportions were used for categorical variables.(4)单因素分析:A two sample independent t test/ one-way analysis of variance (ANOVA)/ Nonparametric tests(Kruskal-Wallis test)/ Pearson’s x2 tests or Fisher exact tests was used to compare the differences between …….(5)多因素分析:Multivariable linear regression/ Multivariable binary logistic regression/ Cox proportional hazards were used to estimate …….(6)检验水准:A p value of less than 0.05 (2-sided significance testing) was considered statistically significant in all analyses.

描述性分析是数据分析的重要步骤。进行描述性统计分析前,首先应理解搜集数据、分析数据,以及识别一些常见数据来源的必要性;然后,应该了解实践中常见的数据类型,数据汇总的方法;最后,再确定单变量的数值描述方法,以及两个或两个以上的数据分析方法。

1. 数据:定义和目标

首先,我们应该确定一些定义。

数据:用来展示和解释所搜集、分析和提炼和事实和数字;

变量:可以取不同值的标志或指标。如:行业、股价、市值;

决策变量:变量的取值直接受决策人的控制;

随机变量/不确定性变量:变量的取值不受决策人直接控制的因素的影响,可能会出现不确定性波动;

观察/观测:一组变量对应的一组值;

描述性分析,即通过对搜集的数据进行分析,以获得对变异及其商务环境影响很好的认识。

2. 数据的类型

(1)总体数据和样本数据:许多情况下,从总体(感兴趣的元素的集合)中搜索数据是不可行的。此时,可以从总体的子集(样本)中搜集数据。搜索那些能够代表总体的样本数据很重要,只有这样才能把那些样本数据推广到总体情况的认识。

(2)数量数据和属性数据:数量数据指能够进行加减乘除等数值和算术运算的数据,如:公司的市值;属性数据指那些不能进行算术运算的数据,对这些数据进行描述性分析,只能进行计数或计算每一个类别观察值的比例,如:公司所属的行业。

(3)截面数据和时间序列数据:截面数据是指在同一时间或几乎相同的时间搜集来一些个体的数据;时间序列数据:指几个时期的数据。时间序列数据图能够帮助分析人员了解过去发生了什么,识别随着时间变化而发生变化的趋势,并且可以对未来进行预测。

统计分析是运用统计 方法 与分析对象有关的知识,从定量与定性的结合上进行的研究活动。下文是我为大家整理的关于统计分析论文的 范文 ,欢迎大家阅读参考!

浅谈统计分析与决策

[摘要] 统计分析与决策二者有联系又有区别。统计要参与决策,必须搞好统计分析。搞好统计分析,需要解决选题、分析、撰写 报告 三个问题。

[关键词] 统计分析 分析方法 决策

统计工作的全过程分为四个阶段,即统计设计,统计调查,统计整理,统计分析。其中,统计分析是统计工作的最后一个阶段,是出统计成果的阶段。现在倡导统计要参与决策,这是不是说统计工作还要增加一个决策阶段呢?如果不是,那么,统计分析与决策是什么关系呢?

狭义的说,统计分析与决策是有区别的。统计分析是以统计数字为基础,以统计方法为手段,对社会经济情况进行科学的分析和综合研究,以认识其本质和规律的过程。而决策则是为了达到某一预定目标,运用逻辑方法和统计方法,对两种或两种以上可能采取的方案进行比较、分析、研究,以做出合理的、科学的抉择的行为过程。假若把统计分析与决策比作医生看病,统计分析就是对病情的诊断,决策就是开处方,“诊断”和“处方”是有区别的。

广义的讲,统计分析与决策是密不可分的。一方面,统计分析贯穿于决策过程之中。一个决策过程大体上可分为下列三个大步骤:第一,诊断问题所在,确定决策目标;第二,探索和拟定各种可能的备选方案;第三,从各种备选方案中选出最合适的方案。从这三大步骤看,尽管要用到多种方法和手段,但哪一步也离不开统计分析,第一步就是通过统计分析,诊断问题所在,并在分析的基础上确定决策目标;第二步拟定备选方案,要经过“轮廊设想”和“细部设计”这个阶段对轮廊设想的方案要做初步筛选,对每一方案要充实具体内容,“筛选”和“充实”都要经过统计分析;第三步选择最佳方案,首先要对各个备选方案进行评价、论证,这又需要统计分析。因此可以说,没有统计分析,也就没有科学决策。另一方面,从某种意义上讲,决策是统计分析的结果。一般来说,统计分析报告是提出问题、分析问题、指出解决问题的办法,其实,决策方案也就是解决问题实现决策目标的办法,只不过比“今后意见”“几条 措施 ”之类的办法更全面、更详细、更科学罢了。医生诊断是为了正确处方,治病救人,不能只诊断不处方。统计分析是为了发现问题,解决问题,推动社会经济的顺利发展;也不能只提出问题,而不寻找解决问题的办法。从这个意义上讲,统计分析也就包括预测和决策。我们不能为统计而统计,也不能为分析而分析。统计应该参与决策,为了决策科学化,必须搞好统计分析。

搞好统计分析,需要解决选题、分析、撰写报告三个问题。

一、统计分析选题

所谓选题,就是在复杂的社会经济现象中,确定统计分析的内容和范围。进行统计分析,选题很重要。成功的选题是成功的分析的前提。

怎样选好题呢?选好题标准有两条:―是分析对象有意义,二是适合决策层和群众需要。关键是抓住党和国家的方针政策和企业的经济效益。

统计分析课题是很广泛的。工业统计分析课题如:计划执行情况分析、工业净产值统计分析、工业产品销售统计分析、工业原材料供应和消耗统计分析、工业能源消耗统计分析、工业生产设备统计分析、工业劳动与工资统计分析、成本利润统计分析、综合经济效益统计分析等。商品流通企业统计分析课题如:市场供求状况分析、市场占有率分析、主要商品经济寿命周期分析、市场商品价格分析、计划执行情况分析、购销合同执行情况分析、商品购进质量分析、商品销售动态分析、商品销售构成分析、商品库存分析、企业经济效益分析等。对于以上内容,可根据不同的时间、地点、条件,按两条选题标准适当选择。

统计分析有专题分析与综合分析之分。在一定的总体范围内,研究总体的各个方面及其相互关系,或研究总体的主要方面的统计分析,属于综合分析;只研究其中某一方面,或某一部分的统计分析,属于专题分析。两者各有不同的特点,都是必要的,但专题分析宜多,综合分析宜少。

二、统计分析方法

统计分析的关键是分析,怎样进行统计分析呢?统计分析有两个特点:一是以统计数字为基础,二是以统计方法为手段。因此,统计分析在选题之后,就要根据分析的需要,搜集整理有关数字资料及具体情况,在充分占有材料的基础上,灵活运用统计方法进行分析。

统计分析方法很多。统计学原理中除了有关统计调查、统计整理的内容外,综合指标、统计指数、时间数列、抽样推断等内容全部是统计分析方法。从方法角度上讲,统计分析就是统计学原理的运用。

统计方法与人们的认识过程是相适应的。人们的认识分感性认识和理性认识两个阶段。感性认识阶段所认识的是事物的现象,可采用统计调查和统计整理。理性认识阶段所认识的是事物的本质和规律,这个阶段要经过形成概念、进行判断和推理等思维活动。与此相适应,要分别采用不同的统计分析方法。

形成概念一般用描述性的综合指标法,即总量指标、相对指标和平均指标,以说明现象的规模大小、水平高低、速度快慢、内部结构以及比例关系等。判断推理就是要判断事物的性质,分析事物变化的原因,找出事物发展的规律。这一般要用分组分析法、动态分析法、因素分析法、相关回归分析法、平衡分析法等。

对统计学原理中的各种统计分析方法要熟练地掌握,灵活地运用。怎样灵活运用呢?这里有个技巧问题。技巧就是定性分析与定量分析巧妙结合。

所谓定性分析是指对事物的性质和影响事物发展变化的因素进行分析。定量分析就是分析事物的规模、水平、速度、结构、比例,以及各个因素对事物总体变化的影响方向和影响程度。定性分析与定量分析巧妙结合有两层含义,一是二者不可偏废,二是二者密不可分,

没有定性分析,定量分析就没有方向。没有定量分析,定性分析就不准确。结合的目的是在质与量的辩证统一中探寻事物的内在联系。

从根本上讲,统计分析就是完成从感性认识到理性认识,从现象到本质的飞跃。完成了这―飞跃,才是高质量的统计分析。有些统计分析质量不高,往往就是没有完成这一飞跃,仍然停留在表面现象上。

三、统计分析报告的撰写

统计分析报告是统计的最终产品。如果说统计数字的准确性是统计的生命,那么,统计分析报告的质量则关系到统计作用的发挥。对高质量的统计分析报告的要求,可以概括为五个字,就是“准、快、新、深、活”。

准:就是实事求是地反映客观实际。做到数字准确,情况准确,论点准确。

快:就是在决策层决策之前,不失时机地及时提供分析报告。

新:就是不断创新。要求不断开拓新领域,钻研新课题,反映新情况和新问题。

深:就是要在充分占有材料的基础上,提高分析的深度,使认识不只停留在反映现象上,而要揭示事物的本质和规律,并且用观点统帅材料,用材料说明观点,做到材料和观点的统一。

活:就是文字生动活泼,形式灵活多样。资料要多样化和生动具体,要有群众语言,要通俗易懂,文字要精精炼。

统计分析报告是在统计分析的基础上撰写出来的。没有好的分析,不可能写出好的报告。经过分析阶段,弄清了事实,判明了性质,探索出规律,得出了结论,在此基础上就可以撰写统计分析报告。但分析得好,并不等于报告写得好,这里还有个撰写的技巧问题,那就是准确地表述事实,透彻地阐明本质,深刻地揭示规律,恰当地提出建议。

1.准确地表述事实

每一篇统计分析报告,都需要表述所分析的现象,即说明“是什么”。准确地表述事实,才能给读者一个明确的概念。为此,须注意如下几点:(1)数字要真实;(2)运用数字要适当,不要堆砌数字,搞数字文字化;(3)语言要素准确。

2.透彻地阐明本质

现象只说明事物的各个片面,本质才说明事物的整体。撰写统计分析报告,必须深刻地揭示事物的本质,它是统计认识事物的正确程度和深度的反映。如果不能深刻地阐明事物的本质,那只能是现象罗列,没有多大价值。

阐明事物的本质,也就是阐明事物的基本性质。事物的性质是由事物内部矛盾的主要方面决定的。例如,某企业利润增加,是靠涨价,还是靠降低成本?经过分析,认识到利润增加主要是靠降低成本,这是矛盾的主要方面,这就反映出事物的性质。因此,在报告中就应阐明降低成本在提高经济效益中的重要作用。再如某企业,本质问题是钢材浪费严重,在报告中就应揭示浪费的若干方面和严重程度。

3.深刻地揭示规律

规律是事物内部固有的、本质的、必然联系。成本高低与产量多少有联系,经过推理,这种联系是事物内部固有的、本质的必然联系,反映了事物发展变化的规律性,而且存在一定的回归关系。而回归方程反映这种关系,所以在统计分析报告中,要利用回归方程揭示这种必然联系及其回归关系。

4.恰当地提出建议

认识世界的目的是为了改造世界。经过统计分析,透过现象认识到事物的本质和规律,还必须提出解决问题的建议,如“今后意见”、“几点建议”、“决策方案”等等。怎样才算恰当地建议呢?恰当的建议要符合三个条件:(1)符合分析目的;(2)合乎客观规律;(3)切实可行。

以上四点,一般可以作为分析报告的结构和顺序,但不能千篇一律。

统计分析报告是统计分析结果的反映。既要注意提高写作水平,更要努力锻炼分析问题和解决问题的能力。

试谈统计分析方法应用

【摘要】统计分析方法应用于各个领域,解决了很多工业、农业、经济、医学等领域的实际问题,本文分析多元统计分析方法的主要应用和构建多元统计方法检验体系的必要性,针对性的提出了需要引起注意的共性问题,具有很强的现实意义。

【关键词】统计分析方法;应用;检验体系;共性问题;现实意义前言

随着信息技术的普及和广泛应用,它推动了社会、经济和科学技术的发展,多元统计分析方法的难题得到了攻破,各个领域广泛采用,推动了各行各业经济的快速发展。

二、多元统计分析方法的主要应用

统计方法是科学研究的一种重要工具,其应用颇为广泛。在工业,农业,经济,生物和医学等领域的实际问题中,常常需要处理多个变量的观测数据,因此对多个变量进行综合处理的多元统计分析方法显得尤为重要。随着电子计算机技术的普及,以及社会,经济和科学技术的发展,过去被认为具有数学难度的多元统计分析方法,已越来越广泛地应用于实际。

聚类分析

它是研究分类问题的一种多元统计方法,聚类分析的基本思想是首先将每个样本当作一类,然后根据样本之间的相似程度并类计算新类与 其它 类之间距离,再选择近似者并类每合并一次减少一类,继续这一过程直到所有样本都合并成为一类为止。所以聚类分析依赖于对观测间的接近程度或相似程度的理解,定义不同的距离量度和相似性量度就可以产生不同的聚类结果。企业制定 市场营销 战略时要弄清在同一市场中哪些企业是直接竞争者,哪些是间接竞争者是非常关键的一个环节。要解决这个问题,企业首先可以通过 市场调查 ,获取自己和所有主要竟争者,从而寻找企业在市场中的机会。

判别分析

判别分析是已知研究对象分成若干类型,并取得各种类型的一批已知样品的观测数据、在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析,企业在市场预测中往往根据以往所调查的种种指标,用判别分析方法判断下季度产品是畅销平销或滞销。一般情况下判别分析经常与聚类分析联合起来使用。

主成分分析

主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标,来代替原来指标,同时根据实际需要从中可取几个较少的综台指标,尽可能多反映原来指标的信息,在市场研究中常常利用主成分析方法分析顾客的偏好和当前市场的产品与顾客之间的差别,从而提供给生产企业新产品开发方向的信息。

因子分析

因子分析是主成分分析的推广和应用。它是将错综复杂的随机变量综合为数量较少的随机变量去描述,多个变量之间的相关关系以再现原始指标与因子之间的相互关系。也可以认为因子分析是将指标按原始数据的内在结构分类。例如:对Y个调查区的商业网点数、人口数、金融机构服务数、收入情况等N个指标进行因子分析,如果按照一般的分析方法,我们就需要处理N个指标,并给它们以不同的权重。这样不仅工作量变大而且由干指标之间存在比较高的相关性,会给分析结果带来偏差另外给具有较高相关性的众多指标,从而计算出各个调查区平均综合实力得分以便决定在某个调查区拟建何种类型的销售点。

三、构建多元统计分析方法检验体系的必要性

(一)构建多元统计分析方法检验体系,提高多元统计分析应用质量

多元统计分析方法已经越来越为人们广泛应用,但应用中盲目套用分析方法的情况很多,只关心模型方法的应用。许多教科书也只侧重介绍多元统计分析方法的思想、原理和分析步骤,对多元统计分析方法应用结果的统计检验叙述不多。这就直接影响了多元统计分析方法的应用效果和可信性。因此,本文拟对多元统计分析方法的统计检验问题进行探讨。构建多元统计分析方法检验体系的目的在于进一步丰富和完善多元统计分析方法的内容体系;实践上,使多元统计分析方法的应用更加合理、规范。推动多元统计分析方法应用质量的提高,推动多元统计分析方法获得更广泛的应用。

(二)多元统计分析统计检验体系的基础理论

多元正态分布总体的样本分布,即维希特分布,霍特林分布,威尔克斯分布,多元正态总体均值向量假设检验,包括一个正态总体均值向量假设检验,两个正态总体均值向量假设检验,多个正态总体均值向量假设检验;多元正态总体协方差阵假设检验,包括一个正态总体协方差阵假设检验,多个协差阵相等假设检验。

(三)关于统计检验体系

将上述统计检验体系有机结合在一起,就构成了多元统计分析方法检验体系的基本框架。多元统计分析方法检验体系的构建,用多元统计分析方法,充分发挥多元统计分析方法的应用价值,提高应用质量,我们建议,在应用时,应该按照上述框架进行相应的统计检验。当然。上述统计检验体系还是一个初步的框架,随着多元统计分析方法理论的逐步完善,上述检验体系也需要不断完善,也需要更多的同行关注此类问题并不断加以研究。另一方面,在实际应用中,即便是某种方法根据上述内容都进行了统计检验,由于各种方法自身存在的缺陷或局限性,也还会存在许多应用中考虑不周之处。应该引起注意。但是,因子分析结果还是具有较大主观性。特别是对公共主因子在专业方面实际意义的解释上,仍然保留着一种艺术气息,并没有统一做法,因此很多情况下也是不能令人满意的。总之,我们在应用时,对因子分析的适用性、公因子的估计方法、公因子选取的数目。公因子的实际意义的解释等一系列问题都要引起足够注意。检验体系有如下几个分类:

a.主成分分析统计检验体系

b.因子分析统计检验体裂引

c.系统聚类分析统计检验体系

d.判别分析统计检验体裂

e.对应分析统计检验体系

f.典型相关分析统计检验体系

四、多元统计分析方法应用中需要注意的几个共性问题

1.关于原始数据变量的总体分布问题。

对原始变量的总体分布各种方法各有不同的要求。有的方法对原始数据变量总体分布没有特殊的要求,如主成分分析、聚类分析、对应分析。有的方法在不同情况下,对原始变量分布有不同的要求,如因子分析中,公共因子的估计方法不同,对原始变量分布要求不同,采用极大似然估计方法估计主因子时,是假定原始变量是服从多元正态分布的,因此,应用时要引起重视,如典型相关分析要求原始变量服从正态分布,但在严格意义上,如果变量的分布形式比如高度偏态不会降低其他变量的相关关系,典型相关分析是可以包含这种非正态变量的。

样本容量问题。

进行多元统计分析时,样本容量n达到多少为宜,目前尚没有统一的结论。有的认为样本容量应是变量个数的10~20倍,有的认为样本容量要在100以上比较合适,有的认为进行巴特莱特检验时的样本容量应该大于150方可,也有的认为不必苛求太多的样本容量,如在进行主成分分析和因子分析时当原始变量之间的相关性很小时,即使再扩大样本容量,也难以得到满意效果。

原始变量之间的相关性以及非线性关系问题。

多元统计分析方法中,有的是的要求原始变量中要具有相关性。有的则不要求原始变量具有相关性。如聚类分析中,进行Q型系统聚类分析时对原始数据变量之间的相关性也是有要求的,如选择欧式距离、明氏距离、兰氏距离时,则要求原始变量之间是不相关的。只有对原始数据的相关性进行了处理后,才可以选择使用上述距离。若原始变量存在相关性,则选择马氏距离比较合适。另外原始变量之间的非线性关系也是需要注意的问题。如主成分分析、因子分析以及典型相关分析当基于相关矩阵来进行计算时,这里的相关矩阵实际上是Pearson的积差相关。但是,如果变量之间的关系不是线性的,而是非性相关关系,于是,所进行的分析以及结论也就失去应有的意义了。

数据处理问题。

多元统计分析中涉及多个变量,不同变量往往具有不同的量纲及不同的数量级别。在分析时,具有不同量纲的变量进行线性组合是没有意义的,不同的数量级别的变量之间进行分析时。会导致“以大吃小”,即数量级的变量的影响会被忽略,从而影响了分析结果的合理性。因此。为了消除量纲和数量级别的影响,进行多元统计分析时,必须对原始数据进行处里,最常用的是先作标准化变换处理,然后再作相应的分析。

五、结束语

在统计分析方法的应用中,会涉及到多个变量,因此,必须根据原来有的数量进行处理,然后才能得出相应的分析结论。本文结合多元统计分析方法的理论基础,对相关检验体系和分析体系进行了分析,具有现实的理论指导意义。

【参考文献】

[1]于秀林.多元统计分析[M].北京,中国统计出版社,1999:223—224.

[2]高惠璇.应用多元统计分析[M].北京,北京大学出版社 ,2005:343—366.

[3]郭志刚.社会科学分析方法一SPSS软件应用[M].,中国人民大学出版社,1999.

[4]傅德印.主成分分析中的统计检验问题 [J].统计 教育 ,2007(9):4—7.

采用统计学分析方法发表论文

我也没做过,关注一下,希望可以找到答案!

社会科学发展的进程中,统计学起了很大的推动作用。没有统计学,就没有现代的社会科学。下面是我为大家整理的统计学 教育 分析论文,供大家参考。

摘要:统计学是一门通用的 方法 论的科学,统计思想方法具有极其广泛的应用性。随着国家创新体系的建立,统计学的教育创新已经成为一个重要的议题。本文对统计学普及教育的创新问题进行一些探讨。

关键词:统计学;普及教育;创新

一、大规模的统计学普及教育势在必行

从世界发达国家的情况来看,都比较重视统计学和统计学教育。2006年6月,中国人民大学举办了“2006统计学国际论坛”,笔者参加了这一论坛,并专门就统计学普及教育问题向美国依利诺依大学何旭明教授了解了美国统计学教育的有关情况。何教授讲:“美国的高等院校几乎都开设《统计方法》选修课,而且学生中选《统计方法》课程的人数要多于选修《微积分》课程的人数,因为他们觉得统计更有用。”另外,从最近的英国、美国、日本以及港、台地区的中学教材来看,统计学与概率都是教学内容的重要组成部分,多数教材每个年级都有统计内容。

在国内,统计学也越来越受到重视。1993年12月,贺铿、袁卫两位教授提出的“大统计”的理念,在统计学界从认识上正趋于统一。1998年9月,教育部在将504个本科专业调整为249个的情况下,统计学从原来的二级学科反而被调整为理学类一级学科。这些都为统计学的发展和统计教育的大规模普及奠定了重要基础。

尽管如此,我国统计学教育与发达国家相比还是存在着很大的差距。我国所有的普通高等学校中,具有统计学专业或开设统计学课程的只有100多所,这与美国有成百上千所学校在提供统计教育的状况相比比例是较低的。从我国中学教材来看,统计的内容约占4%。相对上述国家的教科书来说比例也是较低的。

一个国家应用统计学知识的多少,反映一个国家的发达程度。随着我国社会主义市场经济和各项社会事业的快速发展,随着建设创新型国家战略目标的实施,随着高等教育的大众化进程,统计学提高教育和大规模的普及教育无疑都会得到长足发展。统计学教育也会在普及基础上进一步提高,在提高指导下进一步普及。因此笔者认为,较大规模的统计学普及教育已经势在必行。

二、高等院校是统计学普及教育的突破口

实际上,近年来我国的统计学教育已经开始突破统计学专业教育的界限,在一些理工农医以及社会学等大部分学科和专业中,开设了统计课程;统计知识还列入了中小学教学内容。这是可喜的,但笔者认为统计学普及教育还仅仅是初露端倪,大规模的统计学普及教育还未开始,还有许多工作要做。

目前,我国在一些 财经 类院校开设的基本是社会统计学,在理工类院校开设的基本是数理统计学,都还与“大统计”的理念和作为理学类一级学科的统计学存在着很大距离。中小学虽然在数学教材中加入了一些统计学的基本内容,但一方面比例较少,另一方面,据笔者了解,由于受应试教育和基层学校师资条件的制约,教育质量也还存在不少的问题。很多理科教师在大学仅学过数理统计课程,对抽样和描述统计的内容较生疏,因而感觉新教材内容体系较乱,内容不如老教材讲起来“顺溜”。于是知识可以传授给学生,也可以指导学生完成很多的练习题,但蕴涵在知识背后的统计思想能否也讲出来可能就要打很大的折扣了。

另外,国民的统计意识还不强,对统计学的认识也还不够,据笔者了解,一谈到统计,很多人就联想到统计局,联想到大量的统计数据和统计报表等。这些都说明,统计学的普及教育还任重道远。

大规模普及统计教育是一项浩大的系统工程,需要以强大的人力、物力、财力资源为基础。以人力资源为例,尽管我国有一支素质较高的统计学专家队伍,但由于他们承担着国家政府部门或科学研究机构的重要工作,因此显然不可能有过多的时间和精力从事大规模的普及教育工作。同样,国家目前也还不可能投入大量的物力和财力资源开展统计学的普及教育工作。那么,怎样解决人力、物力、财力的问题,开展大规模的统计学普及教育呢?

笔者认为,要进行全社会的统计学普及教育,首先应该在各类高等院校中普及统计学教育,即把高等院校作为统计学普及教育的突破口,而后推向全社会。各类高校现有专业教师可以承担统计学普及教育的教学工作,在学校教务部门的统一安排下,着力通过开设跨专业选修课的形式开展统计学普及教育。各类高等院校接受过统计学基础教育的成千上万名大学生会走向社会的众多工作岗位,他们会带着统计学的基本思想方法在各个岗位开花结果,同时也为他们进一步提高和继续进行全社会的统计学普及教育打下了基础。因此,把高等院校作为统计学普及教育的突破口是解决人力、物力、财力资源问题的最好方略和最佳途径。

当然,由中国统计教育学会、重点大学和一流专家牵头,以讲座班的形式开展对一般高等院校的师资培训工作,以研讨会的形式定期沟通和交流各高校统计学普及教育的情况和 经验 也是非常必要和重要的。

高等院校作为统计学普及教育的这个突破口一旦打开,全社会普及统计学教育的蓬勃局面也就很快到来了。笔者甚至认为,高等院校统计学普及教育的局面可能会很壮观,会受到学生的欢迎。

三、在高等院校进行统计学普及教育的一些思考

在各类高等院校中进行统计学普及教育实际上是相对现有教育体制来说的一项教育教学改革,是高等院校教学内容创新的一种尝试,需要领导的重视,教务部门的协调等基本条件作为保证。在这里,就有关教学指导思想和实施方法粗略地谈一下基本想法,以求抛砖引玉。

1、基本思想:将抽样技术、描述统计、概率初步、推断统计、非参数统计、 Excel 在统计分析中的应用结合在一起,并溶入案例教学,向学生较系统地介绍入门阶段最基本的统计思想和方法。

2、基本途径:通过在普通高等院校各专业开设《应用统计方法》选修课,解决统计意识的培养和统计方法普及教育问题,选修课一般为54~72学时为宜。

3、基本目标:各专业的学生通过《应用统计方法》的学习,初步树立统计意识,能够用基本的统计方法,借助于最普及的Excel统计分析软件解决工作中和生活中的实际问题。

4、教材选用:可以选用中国人民大学统计学院贾俊平等编著的《统计学》作为教材,也可以根据教学时间和 其它 具体情况,自编教材。

5、师资问题:各高等院校讲授统计学或者概率统计的教师承担统计学普及教育的教学工作,教务部门承担相关的教学管理工作都是没有太大问题的。当然教师很可能需要进行一些再学习,更新知识结构。例如,讲授概率统计的教师很可能需要学习实际的抽样技术和Excel统计分析软件的应用方法等。

6、学习评价:注重理论联系实际,将“学统计”转化为“做统计”,改革传统考试方法,通过撰写统计 报告 进行考核,从而使学生掌握从数据的收集、整理、分析、写出统计报告的全过程,提高教学效果。

在2004年8月教育部颁布的《普通高等院校本科教学工作水平评估方案(试行)》中,实践教学被视为专业建设与教学改革的重要方面,单独列为一项二级指标,强化了实践教学的地位。各类高等院校率先进行统计学教育的普及工作,不但增强了实践教学的环节,而且也为统计学的社会普及教育打开了突破口,是义不容辞的时代使命。同时,通过大规模地进行统计学普及教育,也会提高统计学在国民心目中的地位,提高统计工作者的社会地位,更重要的是可以提高适应社会主义市场经济的与世界发达国家接轨的国民基本科学素质。

参考文献:

[1]胡学锋.美国统计教育之考察[J].统计与决策.1997.12

[2]张国荣.在中国统计教育学会第四次会员代表大会开幕式上的讲话[J].统计教育,2004.4

[3]马赞军.大学统计学教学模式探讨[J].统计教育.2006.3[4]杨大成.统计 教学方法 当改[J].中国统计.2006.2

摘要:以上探讨了在建构主义理论指导下统计学课堂教学方法,统计教学是一门艺术,艺无止境。相信当建构主义理论真正走进统计课堂教学时,统计教学会取得更好的教学效果。

关键词:统计学;教育

一、建构主义理论学生“学”的特点

建构主义对学生学习活动的本质进行了科学的分析,认为学生学习有如下特点:

1、学生学习不是从零开始的,而是基于原有知识经验背景的建构。即学生在学习统计课程之前,头脑里并非一片空白。学生通过日常生活的各种 渠道 和自身的实践,对客观世界中各种自然现象已经形成了自己的看法,建构了大量的朴素概念或前学科概念。这些前概念形形色色,共同构成了影响学生学习统计学概念的系统。学生的前概念是极为重要的,它是影响统计学学习的一个决定性的因素。前概念指导或决定着学生的感知过程,还会对学生解决问题的行为和学习过程产生影响。

2、学生学习知识是一个主体建构的过程,要突出学习者的主体作用。学习不仅仅是知识由外到内的转移和传递,而是学习者主动地建构自己的知识经验的过程,即通过新经验与原有知识经验的反复的、双向的相互作用,充实、丰富和改造学习者原有的知识经验。在这种建构过程中,学生一方面对当前信息的理解要以原有的知识经验为基础,超越外部信息本身;另一方面,对原有知识经验的运用又不只是简单地提取和套用,个体同时需要依据新经验对原有经验本身也做出某种调整和改造,即同化和顺应两方面的统一。学生不是被动信息的吸收者,而是主动地建构信息,这种建构不可能由其他人代替。因此,教师不能直接将知识传递给学生,而是要组织、引导,使学生参与到整个学习过程中去。

3、学生学习既是个体建构过程,也是社会建构过程。虽然知识是在个体与环境的相互作用中建构起来的,但社会性的相互作用也很重要,甚至更重要。因为人的高级心理机能的发展是社会性相互作用内化的结果(正如统计的特点具有社会性)。此外,每个学习者都有自己的经验世界,不同的学习者对某种问题可以有不同的假设和推论,学习者可以通过相互沟通和交流,相互争辩和讨论,合作完成一定的任务,共同解决问题,从而形成更丰富、更灵活的理解。同时,学生可以与教师、统计专家等展开充分沟通。这种社会性相互作用可以为知识建构创设一个广泛的学习共同体,从而为知识建构提供丰富的资源和积极的支持。因此,课堂上师生交互和生生交互活动起到了很重要的作用,“学习共同体”的形成以及对课堂社会环境和情境的营建是学生获得学习成效的重要途径。

二、建构主义理论教师“教”的特点

建构主义理论认为教师在课堂中的作用,可以概括为教师是课堂教学的组织者、发现者和中介者。

1、教师是课堂教学的组织者,起主导作用和导向作用。教师应当发挥“导向”的作用和教学组织者的作用,努力调动学生的积极性,帮助他们发现问题,进而去“解决问题”。

2、教师是课堂教学的发现者。教师要高度重视对学生错误的诊断与纠正,并用科学的原理和原则,给予正确的引导与指引。

3、教师是课堂教学的中介者。教师是学生与教育方针及知识的桥梁。教师既要把最新的知识和分析方法提供给学生,也要注意提高学生的综合素质。

从辩证法的角度看,教学是一个不断发展的动态过程,教与学是对立统一的矛盾运动,随着教学活动的变化,矛盾的主要方面,或在教师,或在学生。分开来看,“教”的主体是教师,客体是学生,教师发挥主导作用,学生发挥能动作用;“学”的主体是学生,客体是教师,学生进行认识活动和实践活动,教师则对这些活动施加影响。合起来看,在教学活动这一不断发展、循环往复的全过程中,教师与学生的主体客体地位是相互依存、相互规定,又在一定条件下相互转化的。因此,“基于教师在课堂中组织者、发现者和中介者”的角色作用,教师可以实行“提出问题──探索问题──解决问题”的模式组织课堂教学。

“基于学生为主体,教师为主导”的教学思想,在教学过程中,“学”与“导”的活动、学生与教师之间的关系应该是互动的、融合的,在和谐中不断向前发展。因此,按照“学与导和谐发展”的教学要求,教师在课堂教学中按照“提出问题──探索问题──解决问题”的模式组织课堂教学时,可以采取“诱导试学——引导探学——开导活学”方法组织课堂教学。

(1)设置情境,提出问题,激发学生学习的兴趣和热情

教师引导学生学习首先要从现实的、有兴趣的、富有挑战性的真实问题情境开始。让学生一开始进入学习探索就真切地感受到统计就在自己身边,体验到学习统计的价值,从而激发起学习统计的兴趣,萌发积极主动探索统计理论和方法的求知欲望。教师要通过对课堂的组织,让学生对学习统计产生学习兴趣,“热爱是最好的老师”,兴趣盎然地进入了对统计学知识的探索,学生才能学有所长。(2)探索问题,增强学生主角意识,激励学生积极参与

“基于教师在课堂中组织者、发现者和中介者”的角色作用,课堂教学方式应从根本上改变原有的教师讲、学生听,教师指挥、学生操作的教学现象。学生要在自己生活经验的基础上不断地提出问题,分析问题,对各种信息进行加工转换,对新经验和旧经验进行综合概括,解释有关现象。在教学过程中,教师可以提供一定的支持和引导,设计有思考价值、有意义的问题。学生可以进行小组合作研究探索,教师允许学生从不同的角度去观察分析,允许学生用自己喜欢的方法学习,通过各自想法的交流、碰撞,发现学生有价值的建设性建议及方法 措施 ,及时制止学生运用统计方法计算分析问题时可能出现的偏差,使问题得到正确的解决。

(3)解决问题,培养学生创新能力,提高学生综合素质

在以往统计学教学中,我们关注比较多的是学生能否记住计算公式、方法、意义、应用条件,能否利用这些知识完成所设问题的正确计算。而“基于教师在课堂中组织者、发现者和中介者”的角色作用,教师在课堂中,就应该更加关注学生能否将科学知识与自己的生活经验紧密联系起来,关注学生在灵活应用统计学知识、创造性地解决实际问题时所表现出来的情感、态度和价值观。并通过实践活动,使学生对学习统计产生兴趣,变抽象的科学法则、科学方法为得心应手的工具,从而使学生在解决问题过程中,体验参与学习统计的快乐,享受成功解决实际问题的愉悦。

三、以建构主义理论为指导统计学教法探讨

1、设计课堂教学新模式

统计学课程旨在培养学生能够运用统计学基本理论和定量分析方法,对经济现象进行定性和定量的分析和评价。统计学课程内容基本分为三个模块两个层次。第一模块:研究统计学的一般问题,属于基础理论。第二模块:推断统计的理论与方法,相关与回归分析,属于一般的统计方法及其在社会经济领域的运用。第三模块:时间序列分析与预测,统计指数与因素分析,统计综合评价,属于社会经济统计方法的特有问题,侧重于各种统计分析方法运用。两个层

反映了知识、能力、素质培养的要求。在建构主义学习环境下,教师和学生的地位、作用和传统教学相比已发生很大变化。因而首先教师必须改变传统的教育思想与教育观念,以现代教育思想和学习理论为指导,利用多媒体等现代化技术优势,探索最优的课堂教学模式。课堂教学中应进一步发挥好学生的主体作用,让学生主动地参与到获取知识的过程中去,做到:(1)合理处理好教材,创造性地使用教材,充分展示学习内容的实用意义。(2)教学思路清晰,过程流畅、自然。(3)采用启发式、精讲多练式、答疑式、案例式等教学方法,构建情景逼近式的教学模式,努力提高课堂教学效果。

2、设计课内课外相融共生的大课堂

课堂教学不仅要教会想要传授给学生的知识,还要教会学生在书本之外查阅图书、报刊、杂志、网络等资料,以开阔视野,扩大知识面,吸取精华,为我所用,要教给学生发现问题、分析问题、解决问题的方法。此外,还要通过课内设计的实训教学内容激发学生主动参与的热情,实训教学内容主要包括统计调查方案的编制、调查问卷的设计、统计表统计图的制作、综合指标分析、统计案例分析等内容。统计实训的课内教学采用精讲、示范、多练、答疑的方式;课外教学采用学生自行分散复习和有组织分组制表、制图、社会调查、整理计算分析等方式。

3、实行点、线、面、体相结合的大统计

“点”是指让学生根据某一知识点完成作业、实习。“线”是指让学生针对某一问题进行深入分析。“面”是指让学生把若干知识点联系起来进行综合的分析和实训。“体”是指让学生能就学科体系及相关学科的内容进行深入、全面、综合的分析与应用。在讲授基本理论和基本知识的同时,注重学生基本技能培养、综合能力培养、设计能力的培养。使学生能从高度整体把握统计的思路和统计分析、评价思想。

4、充分发挥学生的主体作用

建构主义理论强调学习者在建构性学习中的积极作用,是要求教师在课堂教学中善于激发学生的好奇心和求知欲,使学生主动积极的学习。教学中应根据统计教学内容和学生特点,选择适当的教学方法,灵活运用适当的教学手段,设置悬念,使学生产生好奇心和强烈的求知欲。统计学教学过程中涉及到特有的概念及科学家,教学中可以适当拓展,开阔学生的视野,影响学生的心智,塑造学生的灵魂,在潜移默化中激发学生学习统计的兴趣;教师的教学语言要准确生动形象,善于设疑,启发学生思维,活跃课堂气氛,使学生充满求知思索的激情;做到理论联系实际,强化学习的动机,激发学生学习统计持久的浓厚的兴趣,激励学生不断提高对自己能力的欲求,不断增强自己的学习信心,不断地在自我实现中超越自我。

5、设置情境,在交互中实现教学目标

学校是社会的一个细胞,是社会的一个重要组成部分。课堂也不单纯是“老师教、学生学”的木讷课堂。课堂中的社会性环境主要包括两方面,一是师生之间的交互,二是学生之间的交互。建构主义认为,每个学习者都有自己的经验世界,不同的学习者可以对某种问题形成不同的假设和推论。师生在课堂上可以通过合作解决问题、小组讨论、意见交流、 辩论 等形式,促进学习者之间的沟通和互动。统计教学要从过去主要关注“人机交互”到关注“人际交互”;从只关注学生与教师、教学信息的交互到关注学生之间的交互以及学生与校外专家、实践工作者的交互;从关注个别化学习到同时关注学习共同体的建立。教学中要充分利用社会性资源,调动学生的学习情趣,拓展学生的知识面,在交互中实现最佳的教学效果。

6、构建科学的考核评价体系

建构主义理论强调学习是诊断性学习和 反思 性学习和自主性学习,这意味着学生必须从事自我监控、自我测试、自我检查、自我约束等活动,以诊断和判断学习中所追求的是否是自己设置的目标。在教学中,应该根据理论和实训教学的不同特点、不同教学内容的具体组织方式,不断的反馈,使学生自己及时评价。同时,在学生成绩考试评定中,应采取了灵活的考试方式

笔试、有口试,也有设计方案和调查报告,笔试内容也应着重考核学生运用所学知识分析问题解决问题的能力,注重知识、能力和素质的综合评价。

以上探讨了在建构主义理论指导下统计学课堂教学方法,统计教学是一门艺术,艺无止境。相信当建构主义理论真正走进统计课堂教学时,统计教学会取得更好的教学效果。

浅谈统计学教育分析论文相关 文章 :

1. 统计学教学专业论文范文

2. 统计学教学优秀毕业论文

3. 统计学专业课程建设模式探究论文

4. 统计学课程教学专业论文

5. 统计学教学专业优秀硕士论文

6. 统计学课程教学相关论文

统计在现代化管理和社会生活中的地位日益重要,随着社会经济和科学技术的发展统计在现代化国家管理和企业管理中的地位越来越重要,下文是我为大家整理的统计类论文投稿的范文,欢迎大家阅读参考! 统计类论文投稿篇1 我国档案资讯服务研究论文统计分析 摘 要:目前,档案资讯服务问题的研究论文主要集中在定性方面,但缺乏定量的统计分析。本文运用定量统计分析的方法,对我国档案资讯服务问题的研究论文的数量、年份分布、期刊分布、研究物件、主题内容分布等进行分析,以探索我国档案资讯服务问题研究的状况,了解档案资讯服务问题研究的总体概况和发展趋势,为档案资讯服务问题研究提供资料参考。 关键词:档案资讯服务;论文;定量分析 随着中国资讯化的深入,资讯被提高到和物质、能源一起构成人类社会不可或缺的三大资源的高度上,使得“资讯服务的学术研究如火如荼,且成果颇丰。但档案资讯工作一直强调保密性,长期受到‘重管理,轻服务’的思想的影响,档案资讯服务的研究成果还不多见,直接阐释档案资讯服务内涵的论述则更少”。[1]直到20世纪90年代开始,才有学者提出对档案资讯服务问题进行探讨,从此,这一问题逐渐成为档案学的研究热点被档案学界广泛关注。由此可见,我国对档案资讯服务的研究起步晚,基础薄弱,但发展比较迅速。特别是进入21世纪后,随着中国资讯化建设的深入开展,对档案资讯服务问题的研究出现了生机勃勃的局面,研究的广度和深度都有很大程度的提高,并取得可喜的成果。 本文以“档案资讯服务”为关键词,时间截止点为2010年,对《清华期刊全文资料库》和《维普科技期刊资料库》所收录的论文进行调查,分别查询到相关论文为347篇和253篇,删除其中重复收录的论文,实际得到论文448篇。通过对这448篇档案资讯服务问题的研究论文进行定量统计和分析,我们可以清楚地知道档案资讯服务问题研究的重点、研究方向的变化、未来的发展趋势以及目前档案资讯服务问题研究所取得的成果。 1 论文的数量和年份分布 论文的数量是研究成果的丰硕与否的重要评判标准之一,论文数量将直观体现当前研究的深度和广度。因此,统计论文数量和年份分布情况,大体上可以反映这些年来我国档案学界对档案资讯服务问题研究的水平、广度、深度以及发展趋势。《清华期刊全文资料库》和《维普科技期刊资料库》收录的448篇档案资讯服务问题研究论文数量及其年份分布情况统计如下表所示: 备注:以上比例资料的统计采用四舍五入 从上表我们可以看出,档案资讯服务问题研究开始于20世纪90年代。但在整个90年代,档案学界对档案资讯服务问题研究还不够重视,研究相当粗浅,不够深入,这一点,从所发表的论文数量就可以看出来。每年发表的论文数均在10篇以内,1996年、1998年只有2篇论文发表,1995年以前一共也只有9篇。由此可以看出,当时,对档案资讯服务问题的研究,仅是个别有敏锐社会洞察力的档案学者的初步研究。到了2000年以后,档案学界对档案资讯服务研究的深度不断加深,广度不断扩大,这一点,反映在论文数量上持续上升,每年发表的论文数量均在12篇以上,特别是从2002年开始,每年发表的论文数量都在30篇以上。其中,2007年、2010年论文数量更是超过了50篇。由此看出,档案学界对档案资讯服务问题的研究是不断深入的,并已经取得相当丰硕的研究成果。但即便如此,我们还应该清楚地看到,整个学界对这个问题的研究还有很大的空间,从每年所发表的论文数量上看,还不足以对这个问题进行有效、全面、深入的研究。 同时,从上表我们还可以清楚地看到,从档案资讯服务问题提出开始,档案学界对这一问题的研究是在持续深入,其总的趋势是在不断深入发展。 特别是随着时代的发展,资讯资源成为人类社会赖以生存和发展的三大资源之一,变成人们的劳动的物件和劳动产品,成为资讯经济形成和发展的生产力要素,对于未来社会的生产力结构变化起主导作用。档案馆作为国家最重要的档案资讯储存机构,其档案资讯服务能力和水平等问题研究的必要性和重要性都大大提高。作为重要的资讯来源的档案馆的地位和职能也发生了重要的变化,服务成为档案馆的重要职能也将极大程度地促进档案资讯服务问题的研究。在2004年全国档案局长馆长会议上,将档案馆定位为“档案安全保管基地、爱国主义教育基地、已公开现行档案集中向社会提供利用的中心和档案资讯服务中心”。将档案馆的资讯服务水平和能力摆在非常重要的位置,对其所提供的档案资讯服务的要求也越来越高,由此,必然带动档案学术界对档案资讯服务问题的研究持续深入,研究的广度继续扩大。不仅巨集观领域方面的研究将继续加强,而且微观领域方面的研究也必将得到广泛重视,成为研究的一个新热点。档案资讯服务问题的研究也必将取得更大的成果。 2 论文数量期刊分布 研究论文的期刊分布是了解该研究领域的主导力量、研究基础和掌握该领域期刊学术权威的最有效方法,将为以后的研究工作提供明确的向导和有效的资料支援。同时,也使得相关刊物明确自己所承担的责任,继续致力于该领域的研究,为推动档案资讯服务问题研究的发展作出应有的贡献。《清华期刊全文资料库》和《维普科技期刊资料库》所收集到的448篇论文的期刊分布情况统计如下表所示: 我们可以从上表看到这样一个现象,非专业刊物和各大学学报对档案资讯服务问题研究的论文数量合计达到151篇,约占总论文数的33.7%,达到相当高的比例。出现这个现象并不是偶然的,这是因为有相当多的档案学者在高校、 *** 等部门任职,因此,其必然首选自己所在的单位的档案资讯服务问题作为研究物件,发表论文的刊物也必然首选所在部门、单位主办的学术刊物。在大学学报、非专业刊物上发表论文的,大多是高校老师或其他部门的档案学者。由于高校老师、档案学者拥有各自相对有利研究条件,因此,其研究成果不容置疑,是档案资讯服务问题研究不可忽视的重要力量。未来学界在对档案资讯服务问题的研究中,不应该忽视非专业刊物和大学学报中的相关研究成果。 同时,从上面的统计我们可以看出,在档案资讯服务问题的研究上,并没有形成一个绝对主导的力量,各期刊论文发表的数量相对平衡。虽然,《兰台世界》发表的档案资讯服务问题研究的论文达到53篇,但其他档案学界公认的学术权威的《档案学通讯》、《档案学研究》、《中国档案》、《档案与建设》等核心刊物,其发表的论文数量还偏少,基本都是在10多篇。一方面,是由于目前档案学界对档案资讯服务问题研究还不够深入,研究水平还不是很高。另一方面,也说明档案学界对这个问题的研究还缺乏足够的重视。因此,对于档案资讯服务问题的研究还有很大的空间。在未来的研究中,《档案学通讯》、《档案学研究》、《中国档案》、《档案与建设》等核心刊物应该承担起自己的责任,致力于领导、推动档案学界对档案资讯服务问题的研究,提高档案资讯服务问题的研究水平,推动档案资讯服务工作的发展,为社会主义现代化建设事业的发展作出应有的贡献。 3 论文研究物件分布及其研究状况 考察档案资讯服务研究论文的研究物件分布情况,可以了解过去档案学界对这一问题从哪些主体对档案资讯服务展开研究,了解过去研究中的成果与不足,预测未来研究的发展趋势,使我们未来的研究工作有的放矢。通过对《清华期刊全文资料库》和《维普科技期刊资料库》所收集到的448篇档案资讯服务问题研究论文的研究物件进行归纳和统计,得到论文主要的研究物件分布情况如下表所示: 表三:我国档案资讯服务问题研究论文的研究物件分布情况表单位:篇 研究物件 数量 综合档案馆档案资讯服务 326 高校、科研单位档案资讯服务 59 数字档案馆档案资讯服务 22 城建档案资讯服务 14 企业档案资讯服务 13 医院档案资讯服务 9 军队档案资讯服务 5 通过表三,我们可以清楚地看到: 3.1 我国档案学界对档案资讯服务问题的研究主要集中在综合档案馆的资讯服务问题上,发表论文达到326篇之多,占所有的档案资讯服务问题研究的发表论文数量的72.8%。这是因为,综合档案馆是“档案安全保管基地、爱国主义教育基地、已公开现行档案集中向社会提供利用的中心和档案资讯服务中心”,在整个档案资讯服务中处于中心领导地位。因此,其资讯服务的能力、水平等各方面,必然成为档案学界研究的重点,研究成果丰富也就在情理之中。 3.2 高校、科研单位的档案资讯服务问题的研究占到相当高的比例,有59篇,约占13.2%。这是因为,有些档案学者除了在档案馆工作外,还在高校 *** 或者是高校档案专业的老师及其档案工作人员。他们精通档案的相关知识,熟悉档案学界整体的学术环境,拥有图书馆、整体学术氛围相对浓厚等有利的客观条件。同时,对于研究物件的选择必然首先选择自己熟悉的物件,因此,高校档案资讯服务问题的研究取得较大研究成果也就不足为怪了。 3.3 数字档案馆档案资讯服务问题的研究,从目前的实践工作来看,应该是属于综合档案馆的档案资讯服务问题研究当中的一部分,之所以独立出来,是因为数字档案馆的档案资讯服务将是未来发展的方向,从“数字档案馆”这一概念提出来到现在短短的时间内,发表的学术论文达到22篇,数字档案馆的资讯服务问题研究已经渐渐深入,成为档案学界研究的一个新热点。 3.4 城建档案资讯服务问题、企业档案资讯服务问题、医院档案资讯服务问题、军队档案资讯服务问题的研究则由于其各自独特的专业性,既有丰富的档案知识又了解各专业、各部门专业知识的档案学者数量有限,因此,研究成果较少,发表的论文数量分别只有14篇、13篇、9篇、5篇,在整个档案资讯服务研究的论文总量中所占的比例偏少。因此,未来的档案学研究应该加强微观领域的研究。 4 论文的研究主题内容分布及其研究状况 研究档案资讯服务研究论文的研究主题内容分布情况,可以了解过去档案学界对这一问题的研究成果,了解过去研究的重点和薄弱环节,预测未来研究的发展趋势和研究重点、研究热点,做到心中有数。通过对《清华期刊全文资料库》和《维普科技期刊资料库》所收集到的448篇档案资讯服务问题研究论文的研究主题内容进行归纳和统计,论文主要的研究主题内容分布情况如下表所示: 表四:我国档案资讯服务问题研究论文主要的研究主题内容分布情况表单位:篇 研究主题内容 数量 档案资讯服务理念 242 档案资讯服务方式、服务策略、服务手段 106 档案资讯服务社会化、产业化、个性化、网路化 76 档案资讯服务模式、体系、机制 45 档案资讯服务的法律和安全问题 17 通过表四,我们可以清楚地看到: 4.1 对于档案资讯服务问题研究,还集中于抽象的意识层面等巨集观领域,对于具体的实践层面等微观领域的档案资讯服务的研究还不够深入。这一点,从表四可以看出来,档案资讯服务理念方面研究达到242篇,约占总数的54%,达到了相当高的比例,说明当前档案学界对档案资讯服务的研究还集中于巨集观领域的研究。因此,在未来的研究中,除了应继续加强巨集观领域的研究外,还须特别注意微观领域的具体研究。 4.2 对于如何提高资讯服务方式、服务策略、服务手段等的研究还很不够,只有106篇,约占23.7%,这是因为,对档案资讯服务方式、服务策略、服务手段的研究与社会实践联络紧密,能够对当前的档案资讯服务工作产生立竿见影的效果。因此,必须加强与现实工作联络的相关主题的研究,以推动当前档案资讯服务的发展,树立档案馆全新的服务形象。 4.3 档案资讯服务的社会化、产业化、个性化、网路化是随时代发展而提出来,成为近几年来档案学界研究的一个新热点、新方向,并取得较好的研究成果,发表了76篇学术论文,约占论文总量的17%。这些研究成果已经对当前的档案资讯服务工作产生深远的影响。 4.4 档案资讯服务模式、体系、机制是整个档案资讯服务工作能否顺利、科学、有效进行的重要保证,但当前对这方面的研究还不够,这方面的学术论文只有45篇,约占论文总量的10%。因此,未来的档案资讯服务研究,应用系统的观点,对档案资讯服务的模式、体系、机制等客观层面加强研究,积极借鉴国外成功经验,结合我国实际情况,寻找适合中国档案资讯服务的服务模式、体系、机制。 4.5 档案资讯服务的法律和安全问题还未引起足够的重视。这一点,从发表的论文数就可以看出来,仅有17篇,约占论文总量的3.8%。造成这种现象的原因,一方面,是由于现有档案学者既精通档案学知识又精通计算机、法学知识的人数较少;另一方面,是因为现有档案资讯服务水平还停留在比较低的水平,相关法律和安全问题还未充分暴露出来。这一点,应该引起档案学界的高度重视,并致力于该领域的研究,未雨绸缪,以保证档案资讯服务始终走在正确的发展道路上。 通过以上统计,我们对于上世纪90年代中期提出档案资讯服务问题以来,档案资讯服务问题研究的研究状况、研究成果有了基本了解,同时,也明确地看到了研究过程中的不足,这将成为未来我们进一步深入研究的坚实基础。希望通过对我国档案资讯服务问题研究论文的定量分析,为推动档案学界科学全面地继续深入对这个问题的研究提供资料上的支援,最终,促进档案资讯服务工作的开展,为社会主义现代化建设事业作出应有的贡献。 统计类论文投稿篇2 农业科技中存在的统计学问题及分析 农业科技期刊作为实施国家科技兴农、科教兴国战略及推动中国传统农业转化成现代农业的重要智力支撑和资讯保障的重要阵地,在社会主义经济建设和精神文明建设中占有独特的地位并发挥着重要作用[1]。编辑工作是科研成果创作和传播过程中不可缺少的环节,而编辑的素质直接影响到期刊的质量和科技资讯的正确传播[2]。农业统计学是一门新兴而发展中的学科,与其他部门统计学相比,其研究物件农业经济现象的数量方面受自然条件影响较大;研究内容上具有较大的综合性,即研究农业多个部门农林牧副渔经济的综合发展及五业之间的相互关系;研究客体方面的农业所有制形式变动较大,研究范围较广[3]。农业统计学应是农业科技论文作者必备的基础知识。 1 农业科技论文中普遍存在的统计学问题 1.1 设计方法不合理 设计方法中存在样本量少、缺乏代表性或没有随机抽样,对照设定不合理,统计软体应用和统计方法错误等。如:“在一篇论文中对菠萝蜜蜜饯中二氧化硫残留的风险评估”一文中,菠萝蜜消费量采用水果的消费量资料,其中水果的种类繁多,不能代表菠萝蜜消费量。 1.2 统计学方法使用不当 结果与分析中资料不采用统计学分析,直接从资料的大小进行比较;所采用的统计学方法与设计方法的要求不符合;将重复结果作为独立变数进行分析;t检验与方差分析混用t检验是假设检验,用来检验一个正态总体或2个正态总体的均值假设,也可检验成对资料的均值假设问题,一般适用于2个变数均数间的差异检验,多于2个变数间的均数比较要用方差分析;多元统计分析不正确等[4],如下例。 “热研2号柱花草高效固氮根瘤菌的筛选”一文中对柱花草含氮量、茎叶干重、株高、鲜重、根瘤数、固氮酶活性、磷含量及根瘤鲜重等指标进行主因子分析,前2个因子的累积贡献率已达到72.5 %,因此,只要提炼2个公因子即可表1。第一主因子主要由茎叶干重、鲜重及根瘤鲜重决定。这3个变数在因子F1上有较高的正载荷,因此第一因子F1主要代表了产量性状,同时第一公因子F1对各变数的方差贡献率达58.3 %。第二公因子F2主要由含氮量、固氮酶活性及平均磷含量决定。因此,第二公因子F2主要代表了植株氮及磷的含量,代表了柱花草的品质性状。F2对各变数方差的贡献率占14.2 %。前2个公因子对8个指标变数的累积方差贡献率已达到58.30 %,说明这2个主因子基本上概括了8个变数的主要资讯表2。 此例运用因子分析结果存在以下错误:1一般情况下,累积贡献率超过75 %即可,前3个因子的累积贡献率达到81.74 %,可提炼3个公因子。2表1中F1-8表示错误,应为干重、含氮量、鲜重、株高、固氮酶活性、根瘤数、根瘤鲜重及平均磷含量等指标。3表1和表2资料可通过最大方差旋转法得到旋转因子载荷矩阵表3。一般情况下,将载荷绝对值大于0.4的视为高载荷;第一公因子F1包括干重、含氮量、鲜重、株高等4个指标;第二公因子F2包括固氮酶活性、根瘤数、根瘤鲜重等3个指标;第三公因子F3包括磷含量1个指标。 1.3 误解p值含义 误解p值含义、过分相信小样本研究得出的结果等。如: A、B两市随机抽取的桂圆肉,每个区各抽取25份样品,调查二氧化硫含量,其均值在 *** 标准以下,则认为2个市的桂圆肉中二氧化硫含量未超过食品新增剂使用标准规定100 mg/kg的 *** 标准。 2 论文出现统计学问题的原因分析 2.1 对农业统计学的作用认识不足 相关科研单位对统计学在科技和经济发展中的作用认识不足、重视不够,国家级重大科研课题在科研设计和统计分析上严重缺乏强有力的统计学指导和支撑[5]。近年来,某些单位或 *** 部门重视SCI源期刊发表的科技论文的数量,以SCI论文标准作为评价、考核、聘用科研人员和评审科技期刊的重要依据。而对学术论文的设计方法是否正确,分析结果是否严谨,调查或试验资料是否真实,结论是否能经得起推敲,科技成果的技术含量和学术水平如何等问题,却不够重视。高等农业院校对统计学教学不够重视,很多高等农业院校未开设农业统计学课程;或教学质量差,学起来枯燥;或教材与研究实际不符,导致学不能致用。 2.2 不重视统计学方法的应用 统计学是通过搜寻、整理、分析资料等手段,以达到推断所测物件本质的目的,甚至预测该物件未来规律的一门综合性科学[6],其公式概念多,逻辑性强,与数学联络紧密。部分农业科研人员由于对统计学知识掌握不够或不重视统计学方法的使用,导致对科技论文资料缺乏统计分析或统计方法使用不当。 2.3 编辑缺乏统计学知识 农业科技期刊编辑人员所学专业主要有农学、分子生物学、植物保护、质量检测等,有些专业并没有开设统计学这门学科,缺乏农业统计学知识的系统学习。而且,统计学原理的理解较难,统计方法使用灵活,编辑人员很难做到精通,难以判断科技论文中的设计方法、结果分析和结论等方面出现的问题,大大降低了科技论文的可靠性和科学性。 3 给作者的建议 3.1 增强统计学思维判断能力 作者在书写农业科技论文时,首先应考虑其研究方案、结果与分析、讨论与结论中是否应用统计方法以及如何应用统计学方法进行分析,做到合理、正确使用统计方法分析资料。 3.2 加强统计学知识学习 统计学是一门抽象难懂的学科,非统计学专业毕业人员一般很难做到精通。农业科技论文作者应加强农业统计学知识学习,其方法主要有:1积极参加培训。目前,有关统计学方面的培训主要有全国生物医学统计学培训、高校的统计学培训等。2利用业余时间自学。统计学基础薄弱的作者,可以看些简单易懂的统计学以及统计软体书籍,比如《统计学世界》戴维·S·穆尔著、《统计学》M·R·斯皮格尔 L·J·斯蒂芬斯著、《统计学原理》S·伯恩斯坦 R·伯恩斯坦著、《多元统计分析与SAS系统》、《SPSS中文版教程》等。 3.3 重视论文中的统计学问题 论文中是否应用统计学知识进行分析,已成为其科研成果是否具有科学性的一个重要标志[7]。农业科技论文中普遍存在不应用统计分析方法、乱用或错用统计分析方法等现象,从而影响论文的科学性、先进性、实用性和持续性。作者应重视农业科技论文中的统计学分析问题,按农业期刊稿约中明确规定的统计学要求规范论文书写。 作者应掌握农业统计学知识,增强统计学思维判断能力,这样才能写好一篇高质量的农业科技论文。作者倘若对统计学知识的掌握不够深入,忽略论文中统计学方法的应用,将会影响研究结果的可靠性和时效性。因此,作者掌握农业统计学知识是农业科技论文具备科学性和可靠性的重要保证。

去知网找,那里肯定有你要的论文,自己可以先搜搜看,不知道怎样找的话,可以去我百度空间里,有如何在网络上找论文的文章介绍

高学历发表论文统计分析

描述性分析是数据分析的重要步骤。进行描述性统计分析前,首先应理解搜集数据、分析数据,以及识别一些常见数据来源的必要性;然后,应该了解实践中常见的数据类型,数据汇总的方法;最后,再确定单变量的数值描述方法,以及两个或两个以上的数据分析方法。

1. 数据:定义和目标

首先,我们应该确定一些定义。

数据:用来展示和解释所搜集、分析和提炼和事实和数字;

变量:可以取不同值的标志或指标。如:行业、股价、市值;

决策变量:变量的取值直接受决策人的控制;

随机变量/不确定性变量:变量的取值不受决策人直接控制的因素的影响,可能会出现不确定性波动;

观察/观测:一组变量对应的一组值;

描述性分析,即通过对搜集的数据进行分析,以获得对变异及其商务环境影响很好的认识。

2. 数据的类型

(1)总体数据和样本数据:许多情况下,从总体(感兴趣的元素的集合)中搜索数据是不可行的。此时,可以从总体的子集(样本)中搜集数据。搜索那些能够代表总体的样本数据很重要,只有这样才能把那些样本数据推广到总体情况的认识。

(2)数量数据和属性数据:数量数据指能够进行加减乘除等数值和算术运算的数据,如:公司的市值;属性数据指那些不能进行算术运算的数据,对这些数据进行描述性分析,只能进行计数或计算每一个类别观察值的比例,如:公司所属的行业。

(3)截面数据和时间序列数据:截面数据是指在同一时间或几乎相同的时间搜集来一些个体的数据;时间序列数据:指几个时期的数据。时间序列数据图能够帮助分析人员了解过去发生了什么,识别随着时间变化而发生变化的趋势,并且可以对未来进行预测。

《统计学与应用》这本期刊上的文献,你可以去看看学习学习的

具体的统计学分析方法,我在网上看到过这方面的视频,是赵清波教授讲的,您可以去创新医学网上找他的视频。她从编辑、审稿的角度介绍避免此类错误的技巧,为医学论文的编审工作提供借鉴。

卡方检验你的数据应该用交叉列联表做,数据录入格式为:建立两个变量,变量1是组别,正常对照组用数据1表示,病例组用数据2表示;变量2是疗效等分类变量,用1表示分类属性1,用2表示分类属性2,还有一个变量3是权重,例数数据录入完成后,先加权频数后点analyze-descriptive statistics-crosstabs-把变量1选到rows里,把变量2选到column里,然后点击下面的statistics,打开对话框,勾选chi-squares,然后点continue,再点ok,出来结果的第3个表就是你要的卡方检验,第一行第一个数是卡方值,后面是自由度,然后是P值。

  • 索引序列
  • 高校发表论文统计分析方法
  • 高校发表论文统计分析
  • 高校发表论文统计分析报告
  • 采用统计学分析方法发表论文
  • 高学历发表论文统计分析
  • 返回顶部