首页 > 期刊论文知识库 > 数学建模论文引言

数学建模论文引言

发布时间:

数学建模论文引言

数学建模论文格式一般包括:①题目、②论文摘要和关键词、③目录、④引言(或序言)、⑤正文、⑥结论、⑦参考文献和注释、⑧附录。

注意事项:

一、论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。

二、论文第一页为承诺书,具体内容和格式见本规范第二页。

三、论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。

四、论文题目和摘要写在论文第三页上,从第四页开始是论文正文。

五、论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。

六、论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。

重点:数模论文的格式及要求 难点:团结协作的充分体现 一、 写好数模论文的重要性 1. 数模论文是评定参与者的成绩好坏、高低、获奖级别的惟一依据. 2. 数模论文是培训(或竞赛)活动的最终成绩的书面形式。 3. 写好论文的训练,是科技论文写作的一种基本训练。 二、数模论文的基本内容 1,评阅原则: 假设的合理性; 建模的创造性; 结果的合理性; 表述的清晰程度 2,数模论文的结构 0、摘要 1、问题的提出:综述问题的内容及意义 2、模型的假设:写出问题的合理假设,符号的说明 3、模型的建立:详细叙述模型、变量、参数代表的意义和满足的条件,进行问题分析,公式推导,建立基本模型,深化模型,最终或简化模型等 4、模型的求解:求解及算法的主要步骤,使用的数学软件等 5、模型检验:结果表示、分析与检验,误差分析等 6、模型评价:本模型的特点,优缺点,改进方法 7、参考文献:限公开发表文献,指明出处 8、 附录:计算框图、计算程序,详细图表 三、需要重视的问题 0.摘要 表述:准确、简明、条理清晰、合乎语法。 字数300-500字,包括模型的主要特点、建模方法和主要结果。可以有公式,不能有图表 简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论。还可作那些推广。 1、 建模准备及问题重述: 了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。 在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。 2、模型假设、符号说明 基本假设的合理性很重要 (1)根据题目条件作假设; (2)根据题目要求作假设; (3)基本的、关键性假设不能缺; (4)符号使用要简洁、通用。 3、模型的建立 (1)基本模型 1) 首先要有数学模型:数学公式、方案等 2) 基本模型:要求完整、正确、简明,粗糙一点没有关系 (2)深化模型 1)要明确说明:深化的思想,依据,如弥补了基本模型的不足…… 2)深化后的模型,尽可能完整给出 3)模型要实用,有效,以解决问题有效为原则。数学建模面临的、是要解决实际问题,不追求数学上的高(级)、深(刻)、难(度)。 ▲能用初等方法解决的、就不用高级方法; ▲能用简单方法解决的,就不用复杂方法; ▲能用被更多人看懂、理解的方法,就不用只有少数人看懂、理解的方法。 4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在 ▲建模中:模型本身,简化的好方法、好策略等; ▲模型求解中; ▲结果表示、分析,模型检验; ▲推广部分。 5)在问题分析推导过程中,需要注意的: ▲分析要:中肯、确切; ▲术语要:专业、内行; ▲原理、依据要:正确、明确; ▲表述要:简明,关键步骤要列出; ▲忌:外行话,专业术语不明确,表述混乱、繁琐,冗长。 4、模型求解 (1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,论证要尽可能严密; (2)需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,要说明采用此软件的理由,软件名称; (3)计算过程,中间结果可要可不要的,不要列出。 (4)设法算出合理的数值结果。 5、模型检验、结果分析 (1)最终数值结果的正确性或合理性是第一位的 ; (2)对数值结果或模拟结果进行必要的检验。 当结果不正确、不合理、或误差大时,要分析原因,对算法、计算方法、或模型进行修正、改进; (3)题目中要求回答的问题,数值结果,结论等,须一一列出; (4)列数据是要考虑:是否需要列出多组数据,或额外数据;对数据进行比较、分析,为各种方案的提出提供可依赖的依据; (5)结果表示:要集中,一目了然,直观,便于比较分析。(最好不要跨页) ▲数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲求解方案,用图示更好 (6)必要时对问题解答,作定性或规律性的讨论。 最后结论要明确。 6.模型评价 优点要突出,缺点不回避。若要改变原题要求,重新建模则可在此进行。推广或改进方向时,不要玩弄新数学术语。 7、参考文献 限于公开发表的文章、文献资料或网页 规范格式: [1] 陈理荣,数学建模导论(M),北京:北京邮电大学出版社,1999. [2] 楚扬杰,快速聚类分析在产品市场区分中的应用(J),武汉理工大学学报,2004,23(2),20-23. 8、附录 详细的数据、表格、图形,计算程序均应在此列出。但不要错,错的宁可不列。主要结果数据,应在正文中列出。 9、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题 问题以怎样的方式回答――结果以怎样的形式表示 每个问题要列出哪些关键数据――建模要计算哪些关键数据每个量,列出一组还是多组数――要计算一组还是多组数…… 10、答卷要求的原理 ▲ 准确――科学性 ▲ 条理――逻辑性 ▲ 简洁――数学美 ▲ 创新――研究、应用目标之一,人才培养需要 ▲ 实用――建模。实际问题要求。 四、建模理念 1. 应用意识:要让你的数学模型能解决或说明实际问题,其结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 2. 数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。相同问题上要能够推广。 3. 创新意识:建模有特点,要合理、科学、有效、符合实际;要有普遍应用意义;不单纯为创新而创新 五、格式要求 参赛论文写作格式 论文题目(三号黑体,居中) 一级标题(四号黑体,居中) 论文中其他汉字一律采用小四号宋体,单倍行距。论文纸用白色A4,上下左右各留出厘米的页边距。 首页为论文题目和作者的专业、班级、姓名、学号,第二页为论文题目和摘要,论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字“1”开始连续编号。 第四页开始论文正文 正文应包括以下八个部分: 问题提出: 叙述问题内容及意义; 基本假设: 写出问题的合理假设; 建立模型: 详细叙述模型、变量、参数代表的意义和满足的条件及建模的思想; 模型求解: 求解、算法的主要步骤; 结果分析与检验:(含误差分析); 模型评价: 优缺点及改进意见; 参考文献: 限公开发表文献,指明出处; 参考文献在正文引用处用方括号标示参考文献的编号,如[1][3]等。参考文献按正文中的引用次序列出,其中 书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:出版年 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日) 附录:计算框图,原程序及打印结果。 六、分工协作取佳绩 最好三人一组,这三人中尽量做到一人数学基础较好,一人应用数学软件和编程的能力较强,一人科技论文写作水平较好。科技论文的写作要求整篇论文的结构严谨,语言要有逻辑性,用词要准确。 三人之间要能够配合得起来。若三人之间配合不好,会降低效率,导致整个建模的失败。 在合作的过程中,最好是能够找出一个组长,即要能够总揽全局,包括任务的分配,相互间的合作和进度的安排。 在建模过程中出现意见不统一时,要尊重为先,理解为重,做到 “给我一个相信你的理由”和“相信我,我的理由是……”,不要作无谓的争论。要善于斗争,勇于妥协。 还要注意以下几点: 注意存盘,以防意外 写作与建模工作同步 注意保密,以防抄袭 数学建模成功的条件和模型: 有兴趣,肯钻研;有信心,勇挑战;有决心,不怕难;有知识,思路宽;有能力,能开拓;有水平,善协作;有办法,点子多;有毅力,轻结果。

数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。

数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用

一、高等数学教学的现状

(一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二) 教学 方法 传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体 措施

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献

[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.

[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.

[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.

数学建模论文范文二:数学建模教学中数学素养和创新意识的培养

前言

创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.

因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].

在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.

而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.

近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].

所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.

因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].

因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.

1掌握数学语言独有的特点和表达形式

准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.

用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.

现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.

2借助数学建模教学使学生学会使用数学语言构建数学模型

根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.

而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.

对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.

3借助数学实验教学,展示高度抽象

的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.

因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.

配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.

选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.

教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.

教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.

数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.

4突出学生的主体作用,循序渐进培养学生学习、实践到创新

实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.

在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.

再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.

同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.

通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.

5具体的教学策略和途径

数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:

1)注重背景的阐述

让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.

2)注重模型建立与求解过程中的数学语言的使用

在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.

3)注重经典算法的数学软件的实现和改进

由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.

参考文献:

[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.

[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。

[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.

[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.

[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.

[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.

建筑论文引言

根据学术堂的了解,建筑类的毕业论文主要由七个部分组成:1、题目.应能概括整个论文最重要的内容,言简意赅,引人注目,一般不宜超过20个字.2、论文摘要和关键词.论文摘要应阐述学位论文的主要观点.说明本论文的目的、研究方法、成果和结论.尽可能保留原论文的基本信息,突出论文的创造性成果和新见解.而不应是各章节标题的简单罗列.摘要以500字左右为宜.关键词 是能反映论文主旨最关键的词句,一般3-5个.3、目录.既是论文的提纲,也是论文组成部分的小标题,应标注相应页码.4、引言(或序言).内容应包括本研究领域的国内外现状,本论文所要解决的问题及这项研究工作在经济建设、科技进步和社会发展等方面的理论意义与实用价值.5、正文.是毕业论文的主体.6、结论.论文结论要求明确、精炼、完整,应阐明自己的创造性成果或新见解,以及在本领域的意义.7、参考文献和注释.按论文中所引用文献或注释编号的顺序列在论文正文之后,参考文献之前.图表或数据必须注明来源和出处.参考文献是期刊时,书写格式为:[编号]、作者、文章题目、期刊名(外文可缩写)、年份、卷号、期数、页码.参考文献是图书时,书写格式为:[编号]、作者、书名、出版单位、年份、版次、页码.

建筑工程技术管理在工程建设管理中具有至关重要的作用,其始终贯穿于建筑工程全过程中,其管理技术的优劣能直接对建筑工程的进度、质量、成本控制等方面产生影响。下面是我为大家整理的建筑工程技术管理论文,供大家参考。

[摘 要]技术管理事关建筑工程的质量、施工企业的成败,高效的技术管理需要有专业的科学理论指导,同时施工人员依照科学指导协同展开工作。本文首先从三个方面阐述了技术管理的意义,接着分析了技术管理的具体 方法 ,望本文对于相关人士有可取的参考或借鉴意义。

[关键词]建筑工程;技术管理;意义分析

中图分类号:TU757 文献标识码:A 文章 编号:1009-914X(2015)40-0117-01

1 建筑工程中技术管理的意义

技术管理反应整体管理水平

施工单位的技术管理水平高低直接决定着该企业的经济效益高低,因为一个企业若想长盛不衰,就须要打造现代型的施工企业,配备高技术的管理与装备等,由此可以显著提升企业的施工水平,确保企业可以在日趋激烈的市场竞争中立于不败之地,实现长足发展。建筑的风格类型种类繁多,并且不同规模的要求也有差别,天气状况也会严重影响施工作业的进度,特别是给需要多工种交叉施工、运用多项综合技术、工序搭结环节多的作业增加了难度。在进行这些生产工作当中,不仅要加强技术管理,而且要保障施工有条不紊的运行,方可实现预期的质量标准,完成低成本、高质量、综合功能完善的建设目标。

技术管理工作的主要职责是促使技术工作有效开展,科学地组织每项技术工作,确保整个生产流程符合技术规范,技术管理在整个建筑工程管理当中,其作用主要体现下三方面,其一是确保施工按照科学技术及其规律要求来进行,实现正确规范的施工程序;其二是利用技术管理,提升 企业管理 水平及其员工的专业素质与技术,在工作中能够有预见性,及早处理潜在问题,消灭质量或技术隐患,保障工程顺利进行;其三是挖掘并发挥施工人员、材料设备的能力,以工程质量为前提,合理缩减工程成本,相对提高经济效益,增强自身的市场竞争力。

技术管理能够提高建筑企业经济效益

日趋激烈的市场竞争,要求建筑工程不断改进,以扩大企业利润维以生存,因此企业必须检查自身管理的状况,只有提高施工技术管理与经营管理水平,适宜缩减施工成本,方可提高自身的经济效益。在施工当中难免会出现技术问题,有效的技术管理可以部门间的推诿、迅速找到问题出现的原由,增强了企业解决问题的效率。当发生因为供应商或外委施工问题引起的质量事故时,适宜的技术管理可以在谈判中直指问题原由,通过对合同管理中技术问题一项的事先审核等工作,确保企业的切身利益。

科学的技术管理不单是对施工过程中对影响施工质量的参数进行控制,更多的是对施工过程中的技术管理。通过对人员技术技能管理与培训,提高施工设备操作人员技术水平,降低设备故障与事故,减少施工故障费用,降低由于设备故障造成的进度减缓,在一定程度上降低了停工几率。减少了费用的增加,促进企业经济效益的提高。

技术管理可以提高施工质量

通过施工技术管理,强化工程测景,放线工作。强化施工过程中材料的监控,强化施工技术问题解决能力、强化施工技术参数控制能够有效保障工程质量。以施工技术监督监控为例,在进行高层建筑冲孔灌注桩施上过程中。科学的技术管理从测量方向、冲扎位置选择、混凝土灌注时间等多方面管理有效保障了灌注桩的施上质量。技术方案、工艺流程、组织 措施 、检测手段,施工组织设计等都对工程施工质量有着重要的影响。这些工作作为技术管理的重要内容,其有效实施是工程质鼍的基础保障。结合工程实际,从技术、管理、工艺、组织、操作、经济等方面进行全面分析、综合考虑,力求方案技术可行、经济合理,工艺先进、措施得力、操作方便,有利于提高质量、加快进度、降低成本。同时,应当大力推进采用新技术、新工艺、新方法,不断提高工艺技术水平,以保证工程质量提高。管理作为永恒的话题,是关系到企业成败兴衰的关键。要提高企业的竞争能力,提高经济效益,必须抓“管理”这个关键。而技术管理则是企业管理的重要组成部分。通过技术管理。才能保证施工过程的正常进行,才能使施工技术不断进步,从而保证工程质量,降低工程成本,提高劳动生产率。通过技术管理,可以逐步改变施r企业的生产和管理面貌,改变施工企业的形象,提高竞争能力。因此,企业管理者必须对技术管理工作予以足够的重视。

2 建筑工程中技术管理的方法

认真贯彻各项技术管理制度

贯彻好各项技术管理制度是搞好技术管理工作的核心,是科学地组织企业各项技术工作的保证。技术管理制度的主要内容有:施工图的熟悉、阅读和会审制度;编制施工组织设计与施工场地总平面图施工图技术交底制度;工程技术变更联系单管理制度;施工质量管理制度;材料及半成品试验、检验制度;隐蔽工程的检查和验收制度,工程质盛检验与评定制度;工程结构检查、验收与竣工验收制度,工程技术档案与竣工图管理制度。

不断加强对技术工作的管理

技术管理工作需持之以恒.因此,要不断地加强技术管理组织机构和技术责任制,充分发挥好技术人员,技术工人的才干和作用。工作重点主要依据国家和上级主管部门颁发的各项规范、规程、标准和规定,并针对企业特点,适时地制订、修订和贯彻各项技术管理制度,在生产实践中不断地完善和补充。严格做到技术工作有章可循,有法可依。

对技术管理工作建立定期检查制度,按建制开展施工项目的 总结 评比,达到肯定成绩,以利再战的目的。实行行政和经济手段相结合的方法,大力培养和提拔技术业务人员,充分调动技术人员和技术工人的积极性。现在有峰企业不往前人才培养,导致管理水平的下降,只有不断地发现人才,挖掘人才,同时不断地对现有人才的培训、学习,提高他们的生活待遇,才能使管理水平更上一个台阶。

3 结论

建筑工程技术管理是一项贯穿于整个工程的,需要企业长期坚持的工作,其对于企业的生存发展有着重要的影响。建筑工程技术管理的有效灾施对企业成本管理、质量管理、综合管理工作实施有着重要的促进作用。施工企业必须充分认识到技术管理工作的重要性,通过技术管理体系的建立、人才的培养为工程质量控制打下坚实的基础,为企业发展打下坚实的基础,为企业经济效益最大化打下坚实的基础。

参考文献

[1] __坚.建筑装饰技术管理要点[J].中国新技术新产品.2009(11).

[2] 杨伟贤.论如何加强建筑工程技术管理[J].科技信息.2009(11).

[3] 曲静波.浅谈建筑工程施工的安全技术管理[J].科技创新导报.2009(14)

摘要:建筑工程是与人们生活息息相关的系统工程,而技术管理是项目管理中的一项重要管理内容,它包括为完成项目的目标而进行技术路线策划、选择、监督及改进的全过程。在当今激烈的市场竞争环境下,为确保工程质量和现场施工的顺利进行,加强项目技术管理显得更为重要。

关键词:工程项目;技术管理;加强管理

引言:现代化的建设也要不断深入发展,所以建筑业就成了国民经济发展中的一项重要的支柱产业,在社会的发展中占有越来越重要的地位。与此同时,建筑业也面临着更加激烈的竞争,因此必须要加强对施工技术的管理,提高建筑业的综合竞争力。

一、工程管理中技术管理的重要性

建筑业作为国家重要支柱产业之一,是国民经济增长的主力军。对于施工企业来说,能够在合同规定期限内按质按量按时将工程项目交付给业主,并能够合理控制施工成本成为企业的经营目标。为确保这一目标的实现,项目部门必须将项目资金管理、合同管理、技术管理、信息管理、安全管理等要素列为项目实施过程中的综合项目技术管理中。

二、建筑施工现场技术管理遵循的原则

1、标准化

建筑工程现场施工管理基本要求为标准化与规范化。事实上,我们在施工现场坚持统一原则,杜绝盲目、随意性,只有这样,才可以确保建筑工程现场施工管理顺利的进行下去,以便提高整个施工质量与效率。

2、科学、合理性

关于建筑施工现场管理工作,要始终坚持科学、合理性原则,尽量将建筑施工现场进行科学化管理,使其满足现代社会发展的各项需求。除此之外,确保现场设置的合理性与科学性,合理利用有限的资源,通过运用合理的操作方法、激励政策等充分挖掘出建筑企业职工的内在潜能。

3、经济效益性

在建筑施工过程中,现场施工若只考虑到施工进度与施工质量是比较片面的,这只是表层的进度观念与生产观念,因此,我们必须强化建筑现场管理又要充分考虑到成本以及市场运行情况。特别是建筑企业的项目管理部门,应该充分考虑周全,尽量做到低投资高回报效果,减少不必要的浪费与开销。与此同时,更要降低成本消耗、不断开阔建筑市场。

三、加强建筑施工技术管理

1、建立健全质量管理制度

质量是企业立命之本。在建筑市场竞争日趋白热化的今天,如何提高施工质量管理水平是每一位企业管理者必须思考的问题。建筑工程的质量管理包括:明确各部职责,确定工程质量目标;将目标分解到项目各分部并详细交底;全工程跟踪把控,确保工程质量;定期对产品质量进行有效监测。

施工质量的自控与第三方质量监控是相辅相成的系统过程。两套质检机制共同组成控制建筑工程质量的完整体系,在施工全过程中相互依存、各尽其责、密切联系,又独立分工,共同推动着施工质量控制过程的展开和最终实现工程项目的质量总目标。

2、做好施工图纸审核

技术管理的一个重要环节就是要理解设计意图和施工项目关键部位的质量。在工程项目中标后,施工企业应认真做好项目范围的识别,明确工作范围与责任;做好施工前准备,特别是与建设单位委托的监理单位、设计单位进行图纸核实。施工单位和监理单位必须了解设计单位对施工项目的设计意图和对施工质量的要求。只有良好的沟通,才可以尽快了解设计方的意图和施工质量的要求,施工方才能正确选用建筑材料、规划施工进程以及对未来过程中出现的未知因素等可及时纳入控制管理范畴。

3、明确技术管理职责,提高技术管理水平

安全乃头等大事,容不得半点马虎。建筑工程项目部门的每一位施工员都肩负着重大使命。建筑企业应建立健全技术责任制度,将技术管理的责任细分到个人,让员工树立责任心。

除此之外,通过组织技术管理员学习施工现行规范以及验收规范,明确各项目分部分项施工技术要求和质量标准,可以提高企业的技术管理水平,保证工程质量和工程进度的顺利进行,加强施工成本控制,以此提高企业的效益。同时,各项目分部管理人员还应该学习先进的管理办法 经验 ,组织技术培训、技术交流活动,不断提高管理人员的管理水平和技术知识。提高对问题的预见性,保证施工质量。

4、加强建筑工程技术资料管理

建筑工程技术文件是保证工程开始,施工,交工系列环节的指导性文件,是工程质量的 保证书 之一,它还是建设单位未来改建、维修、管理的依据,其重要性非同一般。因此,工程资料的形成和管理成为项目工程施工过程中必不可少的工作。笔者认为企业可以通过以下几项措施优化管理:一是规范管理人员执业资格、 岗位职责 及资料管理流程。管理人员必须持证上岗,各管理人员依据资料管理制度流程填写各自施工过程中产生的资料,交由资料员及时收集,确保施工资料的与工程进度同步。二是明确工程资料标准化填写。依据《建设工程文件归档整理规范》及地方建设工程资料管理规范,对施工资料的编辑、整理、收集等进行标准化要求,从而可以提高资料员编制整理资料的工作效率。三是做好计划记录管理,这些管理,可以促进从质量上把控,以便合理并动态调整各个计划,让风险管理、成本管理、质量管理、进度管理等可控,避免潜在的危险与隐患遗留在项目工程中。

结束语:

建筑工程施工技术管理贯穿于工程实施全过程,在工程项目实施中呈现极其重要的地位,项目经理需要加强这方面的管理,同时做好每一部分的工作,确保建筑工程项目的质量,开展经常性质量知识的 教育 和培训,提高技术管理人员的技术素质和水平,科学的合理的组织各项技术工作,建立良好的技术秩序保证整个生产过程符合技术规范,以达到高质量的全面完成施工任务的目的。

参考文献:

[1] 梁明芳.论建筑工程施工技术管理[J]. 科技信息. 2010(19)

[2] 刘子洪.如何做好城市建设工程项目管理工作[J]. 山西建筑. 2013(19)

[3] 丁治.技术管理工作在企业管理中的作用[J]. 山西建筑. 2013(17)

[4] 于东海,刘丽霞.工程项目技术管理问题思考[J]. 交通企业管理. 2012(07)

【摘 要】随着我国建筑行业的迅猛发展,建筑业在我国经济发展中扮演着越来越重要的角色,已有无法撼动的地位。而建筑工程技术的管理水平是建筑行业中不容忽视的环节,它决定了建筑工程的质量、企业的效益,影响着人们的生产生活,对整个建筑行业的发展也有着重要的作用。但技术管理并不是一件简单的工作。本文将从建筑工程技术管理的重要性,目前存在的问题着手进行分析,并就实践体会探讨做好技术管理的方法。

【关键词】建筑工程 技术管理 体会

目前,我国大规模增加基础设施的建设,城市化进程也大步向前,建筑行业的地位逐渐提高。面对如此大的诱惑,许多人投身到建筑行业,建筑企业和单位也越来越多,如何让自己的企业在激烈的市场拼杀中生存下来,这是一个残酷的问题。所以,企业要从工程质量着手,通过提高工程技术管理的水平,加强管理力度,依靠先进的技术知识保证工程质量,向社会交出满意的作品,从而提高自己的经济效益和知名度,在竞争中立于不败之地。

一、建筑工程技术管理的重要地位

(一)建筑工程技术管理影响着企业的综合管理水平

建筑工程技术管理的水平直接体现着建筑企业的综合管理水平。好的技术管理方式不仅可以预防工程质量问题,还能降低企业的事故成本,从而使企业的经济利益得到大幅度提高。不仅如此,科学的建筑工程技术管理措施对工程的顺利进行、保证工程质量、控制工程成本、调度施工材料及人员等都有不可忽视的作用。

(二)建筑工程技术管理影响着企业的工程质量水平

在建筑工程进行中,企业技术管理水平的高低影响着工程质量的好坏。在这种情况下,企业应当加强施工技术管理力度,重视工程的测量和放线工作,加强材料管理、技术问题的解决能力。从工艺流程、检测方式、技术方案、组织手段等方面着手提高工程质量。并结合技术、工艺、操作、管理及经济等进行全方位的分析研究,确保技术管理方案真实可行。

二、我国建筑工程技术管理的现状

近年来,我国建筑行业已全面推行工程技术管理,但时间不长,发展不成熟,所以专业的系统、理论等并不完善。使得我国建筑过程在技术管理上出现了许多的问题和漏洞。主要表现为以下几个方面:

(一)建筑工程技术管理体制不健全

在建筑施工中,企业需要设立完备的项目管理部门,按工作需要安排不同的人员,这样做有助于满足技术管理中的各项工作需求。不过现实并不是这样的,现在大多数建筑施工企业为了以最低的成本换回最大的收益,便不顾后果地精简人员、节省开支、削减管理机构,许多工作得不到好的开展,甚至出现了技术管理员身兼数职的情况。这使建筑工程的技术管理效果大打折扣。

(二)建筑工程技术管理的人才不足

由于建筑工程技术管理体制的不健全,许多企业对技术管理水平并不是很重视。而技术管理人员自身对相关的技术掌握又不够,更缺乏专业的培训和学习,使得建筑行业中工程技术管理人才极度缺乏。企业依靠这些算不上技术管理人才的人员来进行技术管理工作,得到的结果只会是建造出不合格的工程,给公司造成损失,影响公司声誉,更严重影响使用者的生产生活。

(三)许多建筑工程存在质量隐患

施工中按照相关的技术管理制度来开展工作,还是有许多工程存在质量问题。工程质量问题是由多方面的因素造成的,比如建筑材料质量的不合格,开工许可证的不完整,施工图的问题等等,这些都有可能使工程质量出现问题。所以要做好工程的管理工作,是要考虑多方面因素才行的。

三、如何做好建筑工程的技术管理

(一)建筑企业工程项目外的措施

由上面的分析可以看出,要确保建筑工程技术管理工作正常有效地进行,就必须从整体上做好这些工作:1、优化健全建筑工程技术管理的体制。2、加强建筑工程技术管理人才的培养。3、将建筑工程技术管理工作落到实处。

(二)建筑企业自身在工程项目中的措施

除了开展大范围的制度完善、人才培养等工作之外,提高建筑工程技术管理水平的途径更多是在建筑工程的实施过程的前、中、后期。主要可以从以下几点进行把握:

1、做好施工图纸的会审工作。施工之前制定出符合要求的图纸是十分必要的,而相关施工人员更要熟悉图纸设计的意图,留心细节,找准工程施工的核心所在。施工企业要在项目中标后进行周密的准备,做好图纸的会审工作,留心可能存在的问题并及时发现解决。

2、落实技术责任制。在工程开始之前,就应该将技术管理责任划分到具体的负责人身上,促使责任人了解熟悉自己的工作内容,在工程技术管理中审核相关数据、管理材料设备、加强质量监督,以做好技术管理工作为己任。

3、做好施工过程中的技术管理工作。工程施工期间中最容易埋下质量隐患,所以对施工过程的技术管理是整个建筑工程施工技术管理的重头戏,这个阶段的技术管理工作容不得半点差池。具体的技术管理工作可以从几点着手进行:加强技术交底工作和加大工程质量管理力度。根据工程设计的要求、规范及合同来确定工程质量的标准,并依照此标准来进行技术管理,加大工程质量的管理力度。做好工程进度及成本的控制工作。监督工程进度,保证工程质量,控制工程成本,让整个建筑工程按时按质地进行,从而帮助建筑工程技术管理工作更好地开展。

四、结语

综上所述,建筑工程的质量直接关系着企业的综合水平及经济效益,更关系着人们生产生活的质量。所以对建筑工程进行技术管理是十分必要的事。而建筑工程技术管理是一项复杂的工作,不仅需要完善成熟的制度,相关人员在管理工作中做到细致、认真、负责,更要企业上下配合一致,齐心协力把好质量关。这样才能保证工程的质量,提高企业的经济效益,在残酷的竞争中赢得自己的位置。

参考文献:

[1]徐海平.关于建筑工程技术管理的体会[J].广东建材,2008,(9):220-222.

[2]许宇明.提高建筑工程施工技术管理水平的探讨[J].现代装饰(理论).2011(04)

[3]叶有泉.建筑工程施工技术管理研究[J].中华建设.2011(06)

建筑工程技术管理 毕业 论文相关文章:

1. 建筑工程管理毕业论文范文大全

2. 建筑工程管理毕业论文范文

3. 建筑工程管理论文范文

4. 建筑工程质量管理毕业论文范文

5. 建筑工程技术论文范文

前言是正文“章”之前的一章。前言的写作应该包括研究综述,提出自己论文的研究范围和研究观点。 1.研究综述 写作毕业论文一定要有研究综述,也叫综述报告。研究综述是梳理本论文研究对象的历史、现状、发展趋势,并且对这些研究作出评价。确定自己研究的逻辑起点,在别人研究的基础上自己将要做的探讨。 在我审阅的学位论文中,研究综述存在的问题主要表现在过于简略,缺少分析评价。有的只是开列出了别人研究的论著,没有任何分析,以开列篇目代替自己的综述。有的研究综述占了整个论文的一半内容,以综述代替自己观点的论述。 2.研究观点 前言除了写作研究综述外,还要陈述自己的研究观点,自己在本论文中将要讨论什么问题,提出的观点是什么。对涉及论文观点的关键词作出界定,自己是在什么范围讨论这个问题,怎样使用这个观点。这样做,可以使自己的观点明确,重点突出,别人看得明白。也避免了对讨论范围和关键词的歧义。 前言的内容要清楚明白,最好也有章节标题。 3.研究内容的总体描述 学位论文的分析方法,一般遵循两种程序,一是逻辑分析性程序:“分析—综合”,二是系统综合性程序:“综合——分析——综合”。我认为最好采用系统综合性程序,具有高屋建瓴,提纲挈领的作用。综合性程序的前一个“综合”是前言中,把研究对象看作一个综合体,对自己的观点进行总体描述。“分析”就是在综合的基础上,把各个部分按照章节进行分观点的探讨,每一次分析的结果都反馈到上一层次的综合上。后一个“综合”就是在论文的结语部分,总结全文的研究,概括自己的论文观点。 因此,前言提出自己的研究观点,还需要进一步从整体上阐述自己的研究内容,也就是对自己的论述内容做一个系统的总体描述。这种总体描述相当于论文的摘要。便于读者一目了然地把握自己论文的论述观点和论述内容。也为下文进入第一章的论述做准备。也许有同学会说,我已经在论文摘要中谈了自己的研究内容,不必在前言中再谈论述内容。两者是不同的,前言属于学位论文的正文,在正文中应该对自己的研究内容做一个综合描述。读者可以不看你的摘要,但是要看你的正文。如果你不在前言对自己的研究内容做一个总体描述,你就错过了让读者了解你的论文总貌的一个机会,增加了读者了解你的论文观点的困难。你让读者一头雾水,半天找不到你的观点是什么。读者看不明白,也许就不愿意或者不耐烦看了。

数学论文引言范文

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

2017大学数学论文范文

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。

几类特殊函数的性质及应用

【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。

【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分

1.引言

特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。

特殊函数定义及性质证明

特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。

特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。

2.伽马函数的性质及应用

伽马函数的定义:

伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。

Г函数在区间连续。

事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。

,伽马函数的递推公式

此关系可由原定义式换部积分法证明如下:

这说明在z为正整数n时,就是阶乘。

由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....

用Г函数求积分

贝塔函数的性质及应用

贝塔函数的定义:

函数称为B函数(贝塔函数)。

已知的定义域是区域,下面讨论的三个性质:

贝塔函数的性质

对称性:=。事实上,设有

递推公式:,有事实上,由分部积分公式,,有

由对称性,

特别地,逐次应用递推公式,有

而,即

当时,有

此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为

由上式得以下几个简单公式:

用贝塔函数求积分

解:设有

(因是偶函数)

例贝塔函数在重积分中的应用

计算,其中是由及这三条直线所围成的闭区域,

解:作变换且这个变换将区域映照成正方形:。于是

通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。

贝塞尔函数的性质及应用

贝塞尔函数的定义

贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。

贝塞尔函数的'递推公式

在式(5)、(6)中消去则得式3,消去则得式4

特别,当n为整数时,由式(3)和(4)得:

以此类推,可知当n为正整数时,可由和表示。

又因为

以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。

为半奇数贝塞尔函数是初等函数

证:由Г函数的性质知

由递推公式知

一般,有

其中表示n个算符的连续作用,例如

由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。

贝塞尔函数在物理学科的应用:

频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令

称为的Fourier变换。它的逆变换是

若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,

这就是Shannon取样定理。Shannon取样定理中的母函数是

由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:

以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。

首先建立取样定理

设:

其中是零阶贝塞尔函数。构造函数:

经计算:

利用分部积分法,并考虑到所以的Fourier变换。

通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:

类似地

经计算:

经计算得:

则有:设是的Fourier变换,

记则由离散取样值

因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。

例,利用

引理:当

因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式

首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:

(1)

其中

函数的幂级数展开式为:

则关于幂级数展开式为: (2)

由引理及(2)可得

(3)

由阶修正贝塞尔函数

其中函数,且当为正整数时,取,则(3)可化为

(4)

通过(1)(4)比较系数得

又由被积函数为偶函数,所以

公式得证。

3.结束语

本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。

参考文献:

[1] 王竹溪.特殊函数概论[M].北京大学出版社,,90-91.

[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)

[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.

[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.

[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.

[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.

[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,.

[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.

[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.

[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.

前言是正文“章”之前的一章。前言的写作应该包括研究综述,提出自己论文的研究范围和研究观点。 1.研究综述 写作毕业论文一定要有研究综述,也叫综述报告。研究综述是梳理本论文研究对象的历史、现状、发展趋势,并且对这些研究作出评价。确定自己研究的逻辑起点,在别人研究的基础上自己将要做的探讨。 在我审阅的学位论文中,研究综述存在的问题主要表现在过于简略,缺少分析评价。有的只是开列出了别人研究的论著,没有任何分析,以开列篇目代替自己的综述。有的研究综述占了整个论文的一半内容,以综述代替自己观点的论述。 2.研究观点 前言除了写作研究综述外,还要陈述自己的研究观点,自己在本论文中将要讨论什么问题,提出的观点是什么。对涉及论文观点的关键词作出界定,自己是在什么范围讨论这个问题,怎样使用这个观点。这样做,可以使自己的观点明确,重点突出,别人看得明白。也避免了对讨论范围和关键词的歧义。 前言的内容要清楚明白,最好也有章节标题。 3.研究内容的总体描述 学位论文的分析方法,一般遵循两种程序,一是逻辑分析性程序:“分析—综合”,二是系统综合性程序:“综合——分析——综合”。我认为最好采用系统综合性程序,具有高屋建瓴,提纲挈领的作用。综合性程序的前一个“综合”是前言中,把研究对象看作一个综合体,对自己的观点进行总体描述。“分析”就是在综合的基础上,把各个部分按照章节进行分观点的探讨,每一次分析的结果都反馈到上一层次的综合上。后一个“综合”就是在论文的结语部分,总结全文的研究,概括自己的论文观点。 因此,前言提出自己的研究观点,还需要进一步从整体上阐述自己的研究内容,也就是对自己的论述内容做一个系统的总体描述。这种总体描述相当于论文的摘要。便于读者一目了然地把握自己论文的论述观点和论述内容。也为下文进入第一章的论述做准备。也许有同学会说,我已经在论文摘要中谈了自己的研究内容,不必在前言中再谈论述内容。两者是不同的,前言属于学位论文的正文,在正文中应该对自己的研究内容做一个综合描述。读者可以不看你的摘要,但是要看你的正文。如果你不在前言对自己的研究内容做一个总体描述,你就错过了让读者了解你的论文总貌的一个机会,增加了读者了解你的论文观点的困难。你让读者一头雾水,半天找不到你的观点是什么。读者看不明白,也许就不愿意或者不耐烦看了。

离散数学论文引言

关于【组合数学】的论文 生活中矩阵的应用摘要:矩阵作为一种重要的工具,在生活的方方面面都存在应用。比如科学地选彩票号码,图形的变换处理,控制监控系统都存在了矩阵的痕迹。矩阵在各个领域的应用为我们展示了矩阵的广泛实用性。矩阵实现了对组合的优化,对质量的管理优化,会变得越来越重要。关键词:矩阵 应用 优化 一.矩阵的概念在开始讨论矩阵应用前,先了解一下矩阵及相关的一些概念。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵,这一概念由19世纪英国数学家凯利首先提出。一些矩阵在农业,经济,通信等领域都存在许多特别的应用。二.矩阵的特别的应用 1.矩阵应用在选彩票号码一些彩民由于未了解“旋转矩阵”的作用,都采取旧式的复式投注方式(即完全复式),完完整整地拿去打彩,一些对复式投注进行深入研究的彩民发现进行复式投注浪费了不少成本。据研究者发现约有三分之一号码组合,实际上是不可能中奖或极难中奖的。据说在美国彩票史上,Gail Howard运用一种叫做“旋转矩阵”投注选号法,奇迹般地中出了74个大奖。这种“旋转矩阵”法,是一种基于“旋转矩阵”数学原理构造的选号法,其核心是:以极低的成本实现复式投注的效果。那么如何以极低的成本实现复式投注的最佳效果呢?这是由“旋转矩阵”法优点决定的。实际上,旋转矩阵是教你如何科学地组合号码。与完全复式投注组合号码的方法相比,旋转矩阵有着投入低、中奖保证高的优点。举个例子讲,10个号码的中6保5型的旋转矩阵的含义就是,你选择了10个号码,如果其中包含了6个中奖号码,那么运用该矩阵提供的14注号码,你至少有一注中对5个号码的奖。本矩阵只要投入28元,而相应的复式投注需要投入420元。大家知道,用10个号码,只购买其中的14注,如果你胡乱组合的话,即使这10个号码中包含有6个中奖号码,你也很可能只中得一些小奖。而运用旋转矩阵的话,就可以得到一个对5个号码的奖的最低中奖保证。旋转矩阵是世界上著名的彩票专家、澳大利亚数学家底特罗夫研究的,它可以帮助您锁定喜爱的号码,提高中奖的机会。首先您要先选一些号码,然后,运用某一种旋转矩阵,将你挑选的数字填入相应位置。如果您选择的数字中有一些与开奖号码一样,您将一定会中一定奖级的奖。当然运用这种旋转矩阵,可以最小的成本获得最大的收益,且远远小于复式投注的成本。 (1)旋转矩阵的原理在数学上涉及到的是一种组合设计:覆盖设计。而覆盖设计,填装设计,斯坦纳系,t-设计都是离散数学中的组合优化问题。2.矩阵在透视投影应用三维计算机图形学中另外一种重要的变换是透视投影。与平行投影沿着平行线将物体投影到图像平面上不同,透视投影按照从投影中心这一点发出的直线将物体投影到图像平面。这就意味着距离投影中心越远投影越小,距离越近投影越大。 最简单的透视投影将投影中心作为坐标原点,z = 1 作为图像平面,这样投影变换为 x' = x / z; y' = y / z,用齐次坐标表示为:这个乘法的计算结果是 (xc,yc,zc,wc) = (x,y,z,z)。在进行乘法计算之后,通常齐次元素 wc 并不为 1,所以为了映射回真实平面需要进行齐次除法,即每个元素都除以 wc: 更加复杂的透视投影可以是与旋转、缩放、平移、切变等组合在一起对图像进行变换。比如给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转 这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。3.矩阵在质量问题中的运用 矩阵是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法。 在复杂的质量问题中,往往存在许多成对的质量因素.将这些成对因素找出来,分别排列成行和列,其交点就是其相互关联的程度,在此基础上再找出存在的问题及问题的形态,从而找到解决问题的思路。 矩阵图的形式:A为某一个因素群,a1、a2、a3、a4、…是属于A这个因素群的具体因素,将它们排列成行;B为另一个因素群,b1、b2、b3、b4、…为属于B这个因素群的具体因素,将它们排列成列;行和列的交点表示A和B各因素之间的关系。按照交点上行和列因素是否相关联及其关联程度的大小,可以从中得到解决问题的启示。 质量管理中所使用的矩阵图,其成对因素往往是要着重分析的质量问题的两个侧面,如生产过程中出现了不合格品时,着重需要分析不合格的现象和不合格的原因之间的关系,为此,需要把所有缺陷形式和造成这些缺陷的原因都罗列出来,逐一分析具体现象与具体原因之间的关系,这些具体现象和具体原因分别构成矩阵图中的行元素和列元素。 矩阵图法的用途十分广泛.在质量管理中,常用矩阵图法解决以下问题: ①把系列产品的硬件功能和软件功能相对应,从中找出研制新产品或改进老产品的切入点,进行多变量分析、研究从何处入手以及以什么方式收集数据 。②明确应保证产品质量特性及与管理机构或保证部门的关系,使质量保证体制更可靠; ③当生产工序中存在多种不良现象,且它们具有若干个共同的原因时,搞清这些不良现象及其产生原因的相互关系,进而把这些不良现象一举消除。 ④明确产品的质量特性与试验测定仪器、试验测定项目之间的关系,力求强化质量评价体制或使之提高效率;(2)三,对矩阵应用的感悟 上述的矩阵应用说明了矩阵不仅仅是解方程组的工具,而且它是一种有用的工具,不仅仅在数学领域,还在经济,计算机领域等领域。相信在不久的未来,矩阵会变得越来越重要。矩阵的作用会越来越多地让人们发现。在线性代数数学书中,方程组可以转换为矩阵,再通过矩阵来简单,快速地解决问题。在质量管理问题上,它采用矩阵图来找出切入点,了解原因,使质量效率提高。 相信在不久的未来,矩阵对于优化问题的应用会越来越广泛,触及面会越来越多。矩阵是生活变得更简单,方便。参考文献:[1] 《科学通报》蒋昌俊,吴哲辉..,1989. [2] 求解约束矩阵方程及其最佳逼近的迭代法的研究彭亚新.湖南大学,2005.

毕业论文是教学科研过程的一个环节,也是学业成绩考核和评定的一种重要方式。毕业论文的目的在于总结学生在校期间的学习成果,培养学生具有综合地创造性地运用所学的全部专业知识和技能解决较为复杂问题的能力并使他们受到科学研究的基本训练。标题标题是文章的眉目。各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨。毕业论文的标题一般分为总标题、副标题、分标题几种。总标题总标题是文章总体内容的体现。常见的写法有:①揭示课题的实质。这种形式的标题,高度概括全文内容,往往就是文章的中心论点。它具有高度的明确性,便于读者把握全文内容的核心。诸如此类的标题很多,也很普遍。如《关于经济体制的模式问题》、《经济中心论》、《县级行政机构改革之我见》等。②提问式。这类标题用设问句的方式,隐去要回答的内容,实际上作者的观点是十分明确的,只不过语意婉转,需要读者加以思考罢了。这种形式的标题因其观点含蓄,轻易激起读者的注重。如《家庭联产承包制就是单干吗?》、《商品经济等同于资本主义经济吗?》等。③交代内容范围。这种形式的标题,从其本身的角度看,看不出作者所指的观点,只是对文章内容的范围做出限定。拟定这种标题,一方面是文章的主要论点难以用一句简短的话加以归纳;另一方面,交代文章内容的范围,可引起同仁读者的注重,以求引起共鸣。这种形式的标题也较普遍。如《试论我国农村的双层经营体制》、《正确处理中心和地方、条条与块块的关系》、《战后西方贸易自由化剖析》等。④用判定句式。这种形式的标题给予全文内容的限定,可伸可缩,具有很大的灵活性。文章研究对象是具体的,面较小,但引申的思想又须有很强的概括性,面较宽。这种从小处着眼,大处着手的标题,有利于科学思维和科学研究的拓展。如《从乡镇企业的兴起看中国农村的希望之光》、《科技进步与农业经济》、《从“劳动创造了美”看美的本质》等。

你看看这个行不?【摘要】离散数学是计算机科学基础理论的核心,本文介绍了离散数学在人工智能、数据结构、数据库等方面的应用,显示了离散数学在计算机科学中的重要性。 【关键词】人工智能 二叉树的遍历 数据库 1 引言 离散数学是计算机专业的核心基础课,它在计算机科学中有着重要的应用。它是计算机专业课《数据结构》、《操作系统》、《编译原理》、《数据库系统原理》和《数字逻辑》等课的必备基础,因此离散数学是掌握计算机科学理论基础的重要数学工具。本文正是从这一角度出发,介绍离散数学在计算机科学中的重要应用。 2 离散数学在计算机学科中的应用 数理逻辑在人工智能中的应用 人工智能是计算机学科中一个非常重要的方向,离散数学在人工智能中的应用主要是数理逻辑部分在人工智能中的应用。数理逻辑包括命题逻辑和谓词逻辑,命题逻辑就是研究以命题为单位进行前提与结论之间的推理,而谓词逻辑就是研究句子内在的联系。大家都知道,人工智能共有两个流派,连接主义流派和符号主义流派。其中在符号主义流派里,他们认为现实世界的各种事物可以用符号的形式表示出来,其中最主要的就是人类的自然语言可以用符号进行表示。语言的符号化就是数理逻辑研究的基本内容,计算机智能化的前提就是将人类的语言符号化成机器可以识别的符号,这样计算机才能进行推理,才能具有智能。由此可见数理逻辑中重要的思想、方法及内容贯穿到人工智能的整个学科。 图论在数据结构中的应用 离散数学在数据结构中的应用主要是图论部分在数据结构中的应用,树在图论中占着重要的地位。树是一种非线性数据结构,在现实生活中可以用树来表示某一家族的家谱或某公司的组织结构,也可以用它来表示计算机中文件的组织结构,树中二叉树在计算机科学中有着重要的应用。二叉树共有三种遍历方法:前序遍历法、中序遍历法和后序遍历法。 前序遍历法:如果二叉树为空,则返回。否则(1)访问根节点(2)前序遍历左子树(3)前序遍历右子树,得到前序序列。 中序遍历法:如果二叉树为空,则返回。否则(1)中序遍历左子树(2)访问根节点(3)中序遍历右子树,得到中序序列。 后序遍历法:如果二叉树为空,则返回。否则(1)后序遍历左子树(2)后序遍历右子树(3)访问根节点,得到后序序列。 通过访问不同的遍历序列,可以得到不同的节点序列,通常在计算机中利用不同的遍历方法读出代数表达式,以便在计算机中对代数表达式进行操作。 集合论在数据库系统理论中的应用 集合论是离散数学中极其重要的一部分,它在数据库中有着广泛的应用。我们可以利用关系理论使数据库从网络型、层次型转变成关系型,这样使数据库中的数据容易表示,并且易于存储和处理,使逻辑结构简单、数据独立性强、数据共享、数据冗余可控和操作简单。当数据库中记录较多时,集合中的笛卡儿积方便了记录的查询、插入、删除和修改。 代数系统在通信方面的应用 代数系统在计算机中的应用广泛,例如有限机,开关线路的计数等方面。但最常用的是在纠错码方面的应用。在计算机和数据通信中,经常需要将二进制数字信号进行传递,这种传递常常距离很远,所以难免会出现错误。通常采用纠错码来避免这种错误的发生,而设计的这种纠错码的数学基础就是代数系统。纠错码中的一致校验矩阵就是根据代数系统中的群概念来进行设计的,另外在群码的校正中,也用到了代数系统中的陪集。 离散数学在生物信息学中的应用 生物信息学是现代计算机科学中一个崭新的分支,它是计算机科学与生物学相结合的产物。目前,在美国有一个国家实验室Sandia国家实验室,主要进行组合编码理论和密码学的研究,该机构在美国和国际学术界有很高的地位。另外,由于DNA是离散数学中的序列结构,美国科学院院士,近代离散数学的奠基人Rota教授预言,生物学中的组合问题将成为离散数学的一个前沿领域。而且,IBM公司也将成立一个生物信息学研究中心。在1994年美国计算机科学家阿德勒曼公布了DNA计算机的理论,并成功地运用DNA计算机解决了一个有向哈密尔顿路径问题,这一成果迅速在国际产生了巨大的反响,同时也引起了国内学者的关注。DNA计算机的基本思想是:以DNA碱基序列作为信息编码的载体,利用现代分子生物学技术,在试管内控制酶作用下的DNA序列反应,作为实现运算的过程;这样,以反应前DNA序列作为输入的数据,反应后的DNA序列作为运算的结果,DNA计算机几乎能够解决所有的NP完全问题。 3 结论 现在我国每一所大学的计算机专业都开设离散数学课程,正因为离散数学在计算机科学中的重要应用,可以说没有离散数学就没有计算机理论,也就没有计算机科学。所以,应努力学习离散数学,推动离散数学的研究,使它在计算机中有着更为广泛的应用。 参考文献 [1] 耿素云,屈婉玲,离散数学[M].北京:高等教育出版社<1998. [2] 左孝凌,李永监,刘永才编著.离散数学[M].上海:上海科学技术文献出版社,2004. [3] 朱一清.离散数学[M].北京:电子工业出版社,2004

组合数学概述 组合数学,又称为离散数学,但有时人们也把组合数学和图论加在一起算成是离散数学。组合数学是计算机出现以后迅速发展起来的一门数学分支。计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。组合数学的发展改变了传统数学中分析和代数占统治地位的局面。现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了组合算法才使人感到,计算机好象是有思维的。 组合数学不仅在软件技术中有重要的应用价值,在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。最近,德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。 在1997年11月的南开大学组合数学研究中心成立大会上,吴文俊院士指出,每个时代都有它特殊的要求,使得数学出现一个新的面貌,产生一些新的数学分支,组合数学这个新的分支也是在时代的要求下产生的。最近,吴文俊院士又指出,信息技术很可能会给数学本身带来一场根本性的变革,而组合数学则将显示出它的重要作用。杨乐院士也指出组合数学无论在应用上和理论上都具有越来越重要的位置,它今后的发展是很有生命力,很有前途的,中国应该倡导这个方面的研究工作。万哲先院士甚至举例说明了华罗庚,许宝禄,吴文俊等中国老一辈的数学家不仅重视组合数学,同时还对组合数学中的一些基本问题作了重大贡献。迫于中国组合数学发展自身的需要,以及中国信息产业发展的需要,在中国发展组合数学已经迫在眉睫,刻不容缓。 2. 组合数学与计算机软件 随着计算机网络的发展,计算机的使用已经影响到了人们的工作,生活,学习,社会活动以及商业活动,而计算机的应用根本上是通过软件来实现的。我在美国听到过一种说法,将来一个国家的经济实力可以直接从软件产业反映出来。我国在软件上的落后,要说出根本的原因可能并不是很简单的事,除了技术和科学上的原因外,可能还跟我们的文化,管理水平,教育水平,思想素质等诸多因素有关。除去这些人文因素以外,一个最根本的原因就是我国的信息技术的数学基础十分薄弱,这个问题不解决,我们就难成为软件强国。然而问题决不是这么简单,信息技术的发展已经涉及到了很深的数学知识,而数学本身也已经发展到了很深、很广的程度并不是单凭几个聪明的头脑去想想就行了,而更重要的是需要集体的合作和力量,就象软件的开发需要多方面的人员的合作。美国的软件之所以能领先,其关键就在于在数学基础上他们有很强的实力,有很多杰出的人才。一般人可能会认为数学是一门纯粹的基础科学,1+1的解决可能不会有任何实际的意义。如果真是这样,一门纯粹学科的发展落后几年,甚至十年,关系也不大。然而中国的软件产业的发展已向数学基础提出了急切的需求:网络算法和分析,信息压缩,网络安全,编码技术,系统软件,并行算法,数学机械化和计算机推理,等等。此外,与实际应用有关的还有许多许多需要数学基础的算法,如运筹规划,金融工程,计算机辅助设计等。如果我们的软件产业还是把眼光一直盯在应用软件和第二次开发,那么我们在应用软件这个领域也会让国外的企业抢去很大的市场。如果我们现在在信息技术的数学基础上,大力支持和投入,那将是亡羊补牢,犹未为晚;只要我们能抢回信息技术的数学基地,那么我们还有可能在软件产业的竞争中,扭转局面,甚至反败为胜。吴文俊院士开创和领导的数学机械化研究,为中国在信息技术领域占领了一个重要的阵地,有了雄厚的数学基础,自然就有了软件开发的竞争力。这样的阵地多几个,我们的软件产业就会产生新的局面。值得注意的是,印度有很好的统计和组合数学基础,这可能也是印度的软件产业近几年有很大发展的原因。 3. 组合数学在国外的状况 纵观全世界软件产业的情况,易见一个奇特的现象:美国处于绝对的垄断地位。造成这种现象的一个根本的原因就是计算机科学在美国的飞速发展。当今计算机科学界的最权威人士很多都是研究组合数学出身的。美国最重要的计算机科学系(MIT,Princeton,Stanford,Harvard,Yale,….)都有第一流的组合数学家。计算机科学通过对软件产业的促进,带来了巨大的效益,这已是不争之事实。组合数学在国外早已成为十分重要的学科,甚至可以说是计算机科学的基础。一些大公司,如IBM,AT&T都有全世界最强的组合研究中心。Microsoft 的Bill Gates近来也在提倡和支持计算机科学的基础研究。例如,Bell实验室的有关线性规划算法的实现,以及有关计算机网络的算法,由于有明显的商业价值,显然是没有对外公开的。美国已经有一种趋势,就是与新的算法有关的软件是可以申请专利的。如果照这种趋势发展,世界各国对组合数学和计算机算法的投入和竞争必然日趋激烈。美国政府也成立了离散数学及理论计算机科学中心DIMACS(与Princeton大学,Rutgers大学,AT&T 联合创办的,设在Rutgers大学),该中心已是组合数学理论计算机科学的重要研究阵地。美国国家数学科学研究所(Mathematical Sciences Research Institute,由陈省身先生创立)在1997年选择了组合数学作为研究专题,组织了为期一年的研究活动。日本的NEC公司还在美国的设立了研究中心,理论计算机科学和组合数学已是他们重要的研究课题,该中心主任R. Tarjan即是组合数学的权威。我所熟悉的美国重要的国家实际室(Los Alamos国家实验室,以造出第一颗原子弹著称于世),从曼哈顿计划以来一直重视应用数学的研究,包括组合数学的研究。我所接触到的有关组合数学的计算机模拟项目经费达三千万美元。不仅如此,该实验室最近还在积极充实组合数学方面的研究实力。美国另外一个重要的国家实验室Sandia国家实验室有一个专门研究组合数学和计算机科学的机构,主要从事组合编码理论和密码学的研究,在美国政府以及国际学术界都具有很高的地位。由于生物学中的DNA的结构和生物现象与组合数学有密切的联系,各国对生物信息学的研究都很重视,这也是组合数学可以发挥作用的一个重要领域。前不久召开的北京香山会议就体现了国家对生物信息学的高度重视。据说IBM也将成立一个生物信息学研究中心。由于DNA就是组合数学中的一个序列结构,美国科学院院士,近代组合数学的奠基人Rota教授预言,生物学中的组合问题将成为组合数学的一个前沿领域。 美国的大学,国家研究机构,工业界,军方和情报部门都有许多组合数学的研究中心,在研究上投入了大量的经费。但他们得到的收益远远超过了他们的投入,更主要的是他们还聚集了组合数学领域全世界最优秀的人才。高层次的软件产品处处用到组合数学,更确切地说就是组合算法。传统的计算机算法可以分为两大类,一类是组合算法,一类是数值算法(包括计算数学和与处理各种信息数据有关的信息学)。依我个人的浅见,近年来计算机算法又多了一类:那就是符号计算算法。吴文俊院士开创的机器证明方法就属于符号计算,引起了国际上的高度评价,被称为吴方法。而国际上还有专门的符号计算杂志。符号算法和吴方法跟代数组合学也有十分密切的联系。组合数学,数值计算(包括计算数学,科学计算,非线性科学,和与处理各种信息数据有关的信息学)和统计学可能是应用最广的数学分支,而组合数学的价值甚至不亚于统计学和数值计算。由于数学机械化近年来的发展和在计算机科学中的重要性,把数学机械化,科学计算和组合数学组合起来,就可以说是中国信息产业的基础。组合数学家H. Wilf和D. Zeilberger1998因为在组合恒等式的机械化证明方面的成果,获得1998年美国数学会的Steele奖。 Gian-Carlo Rota教授在他去年不幸逝世之前,还专门向我提出,希望我向中国有关部门和领导人呼吁,组合数学是计算机软件产业的基础,中国最终一定能成为一个软件大国,但是要实现这个目标的一个突破点就是发展组合数学。中国在软件技术上远远落后于美国,而在组合数学上则更是落后于美国和欧洲。如果中国只是想在软件技术上跟着西方走,而不在组合数学上下功夫,那么中国的软件将一直处于落后的状态。他特别强调组合数学在计算机科学中的作用,以及在大学计算机系加强组合数学教学和人才培养。 最近Thomson Science公司创刊的一份电子刊物《离散数学和理论计算机科学》即是一个很好的说明。它的内容涉及离散数学和计算机科学的众多方面。由于计算机软件的促进和需求,组合数学已成为一门既广博又深奥的学科,需要很深的数学基础,逐渐成为了数学的主流分支。本世纪公认的伟大数学家盖尔芳德预言组合数学和几何学将是下一世纪数学研究的前沿阵地。这一观点不仅得到国际数学界的赞同,也得到了中国数学界的赞同和响应。 加拿大在Montreal成立了试验数学研究中心,他们的思路可能和吴文俊院士的数学机械化研究中心的发展思路类似,使数学机械化,算法化,不仅使数学为计算机科学服务,同时也使计算机为数学研究服务。吴文俊院士指出,中国传统数学中本身就有浓厚的算法思想。 今后的计算机要向更加智能化的方向发展,其出路仍然是数学的算法,和数学的机械化。另外的一个有说服力的现象是,组合数学家总是可以在大学的计算机系或者在计算机公司找到很好的工作,一个优秀的组合数学家自然就是一个优秀的计算机科学家。相反,美国所有大学计算机系都有组合数学的课程。 除上述以外,欧洲也在积极发展组合数学,英国、法国、德国、荷兰、丹麦、奥地利、瑞典、意大利、西班牙等国家都建立了各种形式的组合数学研究中心。近几年,南美国家也在积极推动组合数学的研究。澳大利亚,新西兰也组建了很强的组合数学研究机构。值得一提的是亚洲的发达国家也十分重视组合数学的研究。日本有组合数学研究中心,并且从美国引进人才,不仅支持日本国内的研究,还出资支持美国的有关课题的研究,这样使日本的组合数学这几年的发展极为迅速。台湾、香港两地也从美国引进人才,大力发展组合数学。新加坡,韩国,马来西亚也在积极推动组合数学的研究和人才培养。台湾的数学研究中心也正在考虑把组合数学作为重点方向来发展。世界各地对组合数学的如此钟爱显然是有原因的,那就是没有组合数学就没有计算机科学,没有计算机软件。 4. 组合数学花絮 ** 在日常生活中我们常常遇到组合数学的问题。如果你仔细留心一张世界地图,你会发现用一种颜色对一个国家着色,那么一共只需要四种颜色就能保证每两个相邻的国家的颜色不同。这样的着色效果能使每一个国家都能清楚地显示出来。但要证明这个结论确是一个著名的世界难题,最终借助计算机才得以解决,最近人们才发现了一个更简单的证明。 ** 我国古代的河洛图上记载了三阶幻方,即把从一到九这九个数按三行三列的队行排列,使得每行,每列,以及两条对角线上的三个数之和都是一十五。组合数学中有许多象幻方这样精巧的结构。1977年美国旅行者1号、2号宇宙飞船就带上了幻方以作为人类智慧的信号。 ** 当你装一个箱子时,你会发现要使箱子尽可能装满不是一件很容易的事,你往往需要做些调整。从理论上讲,装箱问题是一个很难的组合数学问题,即使用计算机也是不容易解决的。 ** 在中小学的数学游戏中,有这样一个问题,一个船夫要把一只狼,一只羊和一棵白菜运过河。问题是当人不在场时,狼要吃羊,羊要吃白菜,而他的船每趟只能运其中的一个。他怎样才能把三者都运过河呢?这就是一个很典型、很简单的组合数学问题。 ** 我们还会遇到更复杂的调度和安排问题。例如,在生产原子弹的曼哈顿计划中,涉及到很多工序,许多人员的安排,很多元件的生产,怎样安排各种人员的工作,以及各种工序间的衔接,从而使整个工期的时间尽可能短?这些都是组合数学典型例子。 ** 航空调度和航班的设定也是组合数学的问题。怎样确定各个航班以满足 不同旅客转机的需要,同时也使得每个机场的航班起落分布合理。此外,在一些航班有延误等特殊情况下,怎样作最合理的调整,这些都是 组合数学的问题。 ** 对于城市的交通管理,交通规划,哪些地方可能是阻塞要地,哪些地方 应该设单行道,立交桥建在哪里最合适,红绿灯怎样设定最合理, 如此等等,全是组合数学的问题。 ** 一个邮递员从邮局出发,要走完他所管辖的街道,他应该怎样选择什么样的路径,这就是著名的"中国邮递员问题",由中国组合数学家管梅谷教授提出,著名组合数学家,J. Edmonds和他的合作者给出了一个解答。 ** 一个通讯网络怎样布局最节省?美国的贝尔实验室和IBM公司都有世界一流的组合数学家在研究这个问题,这个问题直接关系到巨大的经济利益。 ** 据说,假日饭店的管理中,也严格规定了有关的工序,如清洁工的第一步是换什么,清洗什么,第二步又做什么,总之,他进出房间的次数应该最少。既然,这样一个简单的工作都需要讲究工序,那么一个复杂的工程就更不用说了。 ** 库房和运输的管理也是典型的组合数学问题。怎样安排运输使得库房充分发挥作用,进一步来说,货物放在什么地方最便于存取(如存储时间短的应该放在容易存取的地方)。 ** 我们知道,用形状相同的方型砖块可以把一个地面铺满(不考虑边缘的情况),但是如果用不同形状,而又非方型的砖块来铺一个地面,能否铺满呢?这不仅是一个与实际相关的问题,也涉及到很深的组合数学问题。 ** 组合数学中有一个著名问题:是否存在稳定婚姻的问题。假如能找到两对夫妇(如张(男)--李(女)和赵(男)--王(女)),如果张(男)更喜欢王(女),而王(女)也更喜欢张(男),那么这样就可能有潜在的不稳定性。组合数学的方法可以找到一种婚姻的安排方法,使得没有上述的不稳定情况出现(当然这只是理论上的结论)。这种组合数学的方法却有 一个实际的用途:美国的医院在确定录取住院医生时,他们将考虑申请者的志愿的先后次序,同时也给申请排序。按这样的 次序考虑出的总的方案将没有医院和申请者两者同时后悔的情况。 实际上,高考学生的最后录取方案也可以用这种方法。 ** 组合数学还可用于金融分析,投资方案的确定,怎样找出好的投资组合以降低投资风险。南开大学组合数学研究中心开发出了"金沙股市风险分析系统"现已投放市场,为短线投资者提供了有效的风险防范工具。 总之,组合数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。所以组合数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。 胡锦涛同志在1998年接见"五四"青年奖章时发表的讲话中指出,组合数学不同于传统的纯数学的一个分支,它还是一门应用学科,一门交叉学科。他希望中国的组合数学研究能够为国家的经济建设服务。 如果21世纪是信息社会的世纪,那么21世纪也必将是组合数学大有可为的世纪。

数字化工厂论文引言模板

首先,论文的前言需要写出为什么要研究这个项目的原因以及研究的目的是什么,别人在这个研究领域中有些什么结果与论文作者之间有什么关系。然后还需将论文中的一些主要论点和论据进行简述等。论文前言写什么前言和摘要的区别摘要是对论文研究目的、研究方法和研究成果的总结概括。一般是在论文正文部分的前面,目的是让读者提前对论文的主要内容有个大致的轮廓,摘要可以在论文全部写完后再写。在10,000字数的论文中,摘要的字数一般100到150字数之间为最佳。前言则属于是论文正文的一个部分,它是用于勾起读者兴趣引出下文的关键,相对比摘要需要更加详细地解释研究的目的和结论等。也可以适当的评价一些以往的研究成果,提出自己的新观点、新思路,从而表达自己的研究目的。

引言作为论文的开头,以简短的篇幅介绍论文的写作背景和目的:缘起和提出研究要求的现实情况,以及相关领域内前人所做的工作和研究的概况,说明本研究与前工作的关系,目前的研究热点、存在的问题及作者的工作意义,引出本文的主题给读者以引导。在写论文的引言之前首先应明确几个基本问题:你想通过本文说明什么问题?有哪些新的发现,是否有学术价值?一般读者读了前言以后,可清楚地知道作者为什么选择该题目进行研究,为此,在写前言以前,要尽可能多地了解相关的内容,收集前人和别人已有工作的主要资料,说明本研究设想的合理性。引言也可点明本文的理论依据、实验基础和研究方法:简单阐述其研究内容,三言两语预示本研究的结果、意义和前景,但不必展开讨论,前言在内容上应包括:为什么要进行这项研究?立题的理论或实践依据是什么?拟创新点?理论与(或)实践意义是什么?代写毕业论文首先要适当介绍历史背景和理论根据,前人或他人对本题的研究进展和取得的成果及在学术上是否存在不同的学术观点,明确地告诉读者你为什么要进行这项研究,语句要简洁、开门见山,如果研究的项目是别人从未开展过的,这时创新性是显而易见的,要说明研究的创新点,但大部分情况下,研究的项目是前人开展过的,这时一定要说明此研究与被研究的不同之处和本质上的区别,而不是单纯的重复前人的工作。

论文的引言作为重要的开头部分,决定了接下来所写的正文内容是非常关键的,但是现在还是有同学不知道论文引言写什么,接下来我们就说明一下论文的引言需要写什么东西。论文引言写什么论文的引言又称绪论序言等,是论文免费查重的前言或者论文的引导论文。引言作为论文的开头,简短介绍论文的写作背景和目的,缘起和提出研究要求的现实情况,以及相关领域内前人所做的工作和研究的概况,说明本研究与工作的关系,以及当前的研究热点、存在的问题及作者的工作意义,给读者加以引导。那么接下来我们就说说论文引言该怎么写呢,首先是数字的使用,序言对数字有着严格的要求,数字的结尾要求是“0”或者“5”,小数四舍五入到最后一位等等,还有很多要注意的因为篇幅的原因不一一说明了。论文引言写什么,应该包含以下几点:1.说明论文的主题、范围和目的。2.说明本研究的起因、背景及相关领域简要历史回顾。3.预期结果或本研究意义。4.引言一般不分段,长短视论文内容而定,涉及基础研究的论文引言较长,临床病例分析宜短。国外大多论文引言较长,一般在千字左右,这可能与国外多数期刊严格限制论

引言是继文章标题和摘要过后,读者首先阅读到的。因此,为论文撰写一个有力的开头至关重要。通过引言,可以向读者和评审专家展示你所研究课题的价值,以及你所写论文的出彩之处。引言具有多个功能,它介绍了研究背景、研究主题、研究目标,并给出论文概述。好的引言为论文打下坚实的基础,并鼓励读者继续阅读论文主题部分——研究方法、研究结果与讨论。本篇文章介绍了为论文撰写有力引言的十大技巧。这些技巧主要适用于各种研究论文和快报。虽然其中一些技巧是针对某些具体领域,但要点是普遍适用的。引言的一般结构◆引言段:为广大读者概述主题;聚焦本文研究主题;提出研究问题和研究目的。◆文献综述(通常有几段):总结该主题的相关文献;描述研究现状;指出你的研究将填补文献中的某处空白。◆研究目标(通常为一段):提出假设或研究问题;简要描述研究步骤;预测主要研究结果,指出该研究的贡献(可选)。◆论文概述(可选;一段)逐节概述论文内容。1、 开篇角度要尽量放宽然后缩小范围在第一段,首先简要描述广泛的研究领域,然后缩小到本文特定领域。这有助于将你的研究主题置于更广泛的领域,使该项研究拥有更广泛的受众,而不仅仅是本领域的专家。2、 提出研究目的和意义有些论文因为“没有表现出主题意义”或“缺乏明确的动机”而被拒绝,正是忽略了这一点。应该指出你想达到的目的并激发读者对该项研究成果的兴趣。其基本结构可以概括为:“我们旨在完成X,X的重要性在于它可以带来Y。”3、 充分引用但不滥用引文聚焦到该研究主题后,应该充分涵盖最新的相关文献。文献综述应该完整,但不能冗长——记住,你并不是在写综述性文章。如果发现你的引言部分太长或过度引用,一种可行的解决办法是只引用综述性的文章,而无需提及综述中包含的各篇论文。4、 避免在单一观点上引用过多文献以这句话为例:“许多研究发现X和Y之间存在显著关联[4-15]。”这句话一次性引用了太多研究。虽然参考文献[4-15]可能对该主题做出了很好的概述,但这句话并没有详细介绍这些研究的背景和内容。如果这些参考文献的确存在参考价值,那么应该得到具体的讨论。例如,“在男性[4-7]、女性[8-11]和儿童[12-15]中发现了X和Y之间存在显著关联。”5、 指明假设或研究问题对于实证科学的研究,提出假设是构建研究的有效方式。例如,我们不会说“在本研究中,我们用方法A证明X与Y有关”,而是说“在本研究中,我们假设X与Y有关,然后使用方法A来检验这个假设。”而对于正规科学研究或探索性研究,提出的研究问题就应该表述为:“在本研究中,我们验证的研究问题是:X与Y有关吗?” 值得注意的是,研究问题并不总是以疑问形式(带问号)说明; 相反,你可以把问题放到一个陈述句中:“在这项研究中,我们调查X是否与Y有关。”假设和研究问题之所以有效,是因为它们有助于论文结构形成,并作为重要的“提示短语”, 引导读者顺利理解你的论文。6、 考虑概述全文组织概述在某些领域比其他领域更常见。例如它在技术领域尤为常见,而在医学上却相对较少。如果你的领域适用,那么在引言的最后一段可以对论文进行逐节概述。例如,“第二节描述分析方法和使用的数据集。第三节提出研究结果。第四节对研究结果进行讨论并将我们的发现与文献研究进行比较。第五节阐述结论,并为今后的研究提出可能的选题。7、 保持简短尽量避免引言的篇幅过长。虽然查看期刊指南和以往发表的文章可以得到更具体的参考,但合适的篇幅是500到1000个字。8、 阐释,而不是告知引言的作用之一就是阐释你所研究主题的价值。最常见的误区之一就是简单地陈述为:“主题X很重要。”但实际上还需要说明它为什么重要。例如,你不能写“开发新材料对汽车行业很重要”,而应该是“开发新材料对于汽车行业生产更坚固,更轻便的车辆是必要的,这将提高汽车安全性、促进燃料经济。”9、 避免过多的细节描述在引言中,如果你的论文在介绍方法之前大量地概括研究主要成果,那么应该避免陈述太多详细的结果,因为这些结果只有随着论文其他章节的展开才能得到正确理解。相比说“我们发现我们的算法只需要传统算法55%的内存和45%的计算时间”,通常更好的是在引言中对研究发现进行概述:“本文比较了新提出的算法和传统算法在占用内存和运算速度方面的差异,发现新提出的算法程序既小又快。” 一些老式指南建议不要写主要结果从而建立悬念吸引读者,但现在许多领域的期刊(医学是一个显著例外)鼓励在引言中概述主要结果。10、检查期刊要求许多期刊在其作者指南中对引言有具体要求。例如,可能会有最大字数限制或者要求特定内容,如假设或主 要结果总结。

  • 索引序列
  • 数学建模论文引言
  • 建筑论文引言
  • 数学论文引言范文
  • 离散数学论文引言
  • 数字化工厂论文引言模板
  • 返回顶部