首页 > 期刊论文知识库 > 晶体结构毕业论文

晶体结构毕业论文

发布时间:

晶体结构毕业论文

用布拉格公式计算:2dsinθ=nλ,其中d为晶面间距,θ为衍射半角(即发生衍射峰对应的θ角度),因为一般将2θ成为衍射角。

n成为衍射级数,即某一晶面的一级衍射,或二级衍射,λ为所用靶的波长。然后结合所测的晶体结构,计算晶胞参数。

找到该晶相的晶面间距d(hkl)与晶面指数(h,k,l)及晶格常数a,b,c的关系式,而d(hkl)可由XRD测得,h,k,l为整数,所以有某些晶面衍射峰可测得a,b,c。也有专门的小计算软件可以使用。

扩展资料:

同一空间点阵可因选取方式不同而得到不相同的晶胞,所以,选取晶胞要求是最能反映该点阵的对称性,选取原则为:

1、选取的平行六面体应反映出点阵的最高对称性;

2、平行六面体内的棱和角相等的数目应最多;

3、当平行六面体的棱边夹角存在直角时,直角数目应最多:

4、在满足上述条件的情况下,晶胞应具有最小的体积。

参考资料来源:百度百科-晶胞

水热法生长二氧化钛纳晶及在染料敏化太阳能电池板的应用1 引言1991 年瑞士学者Gratzel 等在Nature 上发表文章,提出了一种新型的以染料敏化二氧化钛纳晶薄膜为光阳极的太阳能电池,其具有制作简单、成本低廉、效率高和寿命长等优点,光电转换效率目前可以达到11%以上,因此成为新一代太阳能电池的主要研究发展方向[1-4]。染料敏化太阳能电池的光电转换效率的提高要归功于其独特的纳晶多孔薄膜电极,其可以使电子在薄膜中有较快的传输速度,且具有足够大的比表面积,能够吸附大量的染料,并且与染料的能级相匹配。所以因对染料敏化太阳能电池的复杂的作用,许多科学工作者致力于制备功能和性能良好的TiO2 纳晶多孔薄膜电极[5, 6]。在纳晶TiO2 的三种晶型中,锐钛矿相的光电活性最好,最实用于染料敏化太阳能电池中,所以在制备纳晶TiO2 时,金红石相和板钛矿相纳晶应该尽量避免。对TiO2 纳晶的生长,许多研究者开始在水热法中采用有机碱做胶溶剂来制备TiO2 纳晶[7-9]。Yang 用三种有机碱做胶溶剂制备了粒经和形貌不相同的TiO2 纳晶,其结果证明了有机碱的加入对纳晶粒子大小、形貌及表面积等有一定影响[10]。但是,如何制备晶型和形貌都能满足于染料敏化太阳能电池的要求却很少讨论。在本章中,采用水热法基础上,分别使用三种有机碱四甲基氢氧化铵(TMAOH)、四乙基氢氧化铵(TEAOH)、四丁基氢氧化铵(TBAOH)做胶溶剂来制TiO2 备纳晶并应用于染料敏化太阳能电池中并研究了制备条件的不同对纳晶形貌、粒径大小及电池光电性能的影响。2 实验主要药品和仪器钛酸四正丁酯、异丙醇、聚乙二醇20,000、碘、碘化锂、4-叔丁基吡啶(TBP)、OP乳化剂(Triton X-100)(AR,均购于中国医药集团上海化学试剂公司);敏化染料(cis-[(dcbH2)2Ru(SCN)2],SOLARONIX SA.);四甲基氢氧化铵(TMAOH)(25 %)、四乙基氢氧化铵(TEAOH)(20 %)、四丁基氢氧化铵(TBAOH)(10 %) (均购于中国医药集团上海化学试剂公司);可控温磁力搅拌器(C-MAG HS4,德国IKA);马弗炉(上海实验电炉厂);100 W 氙灯(XQ-100 W,上海电光器件有限公司);导电玻璃基片(FTO,15 Ω/cm2,北京建筑材料研究院);X 射线粉末衍射仪(XRD) D8-advance(Bruker 公司);扫描电子显微镜(SEM)S-3500N(日本日立公司);透射电镜(TEM)JEM-2010(日本);红外光谱分析仪Nicolet Impact 410 spectrometer;紫外–可见分光光度计UV-Vis 3100 (Shimadzu corporation, Japan)。3 实验部分 纳晶TiO2 的制备根据文献的制备方法[6-11],把钛酸四正丁酯与等体积的异丙醇混合均匀并逐滴加入到蒸馏水中并不断的搅拌30分钟([H2O]/[Ti(OBu)4] = 150),过滤并用水和乙醇溶液洗剂2-3次。在强烈搅拌下,把所得到的沉淀加入到pH=的含有有机碱的溶液中,在100 °C搅拌24小时,得到半透明的胶体。将得到胶体装入高压釜(填充度小于80%)。在200 oC水热处理12小时。水热处理后,得乳白色混合物并伴有鱼腥味,这表明有机碱分解为了胺类化合物。将高压釜处理后的TiO2胶体连同沉淀一起倒入烧杯,经50 oC浓缩至原来的1/5,加入相当于TiO2量20%-30%的聚乙二醇20,000及几滴Triton X-100,搅拌至均匀,得稳定的TiO2纳晶浆体。 纳晶薄膜电极的制备将洗净的导电玻璃四边用透明胶带覆盖,通过控制胶带的厚度和胶体的浓度来控制膜的厚度[12],中间留出约1×1 cm2空隙,将在酸性条件下制备的小粒径的纳晶TiO2胶体用玻片均匀的平铺在空隙中。空气中自然晾干后,在马弗炉中升温至450 ?C热处理30分钟,使TiO2固化并烧去聚乙二醇等有机物,冷却至80 ?C,经过仪器测量,薄膜的平均厚度在6微米左右。将获得的纳晶多孔薄膜浸泡于N3染料溶液中24小时,使染料充分地吸附在TiO2上,取出后用乙醇浸泡3-5分钟,洗去吸附在表面的染料,在暗处自然晾干,即得到染料敏化的纳晶多孔TiO2薄膜电极。首先按上文所述制备纳晶多孔薄膜,制备的薄膜平均厚度在微米左右,将其重新用透明胶带覆盖,把用TMAOH做胶溶剂的条件下制备的大粒径的纳晶TiO2浆体用玻片均匀的平铺在空隙中。空气中自然晾干后,重新在马弗炉中升温至450 ?C热处理30分钟,反射层的纳晶薄膜的平均厚度控制在微米左右,热处理后即得双层纳晶薄膜。浸泡染料后即得双层纳晶薄膜电极。 DSSC 的组装以染料敏化纳晶多孔TiO2薄膜电极为工作电极,以镀铂电极为对阴极[13],将染料敏化电极与对阴极用夹子固定,在其间隙中滴入以乙腈为溶剂、以 mol/L LiI+ mol/L I2+ TBP为溶质的液态电解质,封装后即得到染料敏化太阳能电池。 光电性能测量采用100 W氙灯作为太阳光模拟器,其入射光强Pin为100 mW/cm2。在室温下进行测量,记录其短路电流ISC和开路电压VOC,并应用公式计算其填充因子ff和光电转换效率η。 表征与分析采用 D8-advance 型X 射线粉末衍射仪测定TiO2 的晶体结构,测试条件为:Cu Kα(λ= ?),电压:40 KV,电流:40 mA。扫描速度:6?/min,扫描范围:10?-80?。采用KBr 压片法测量样品的红外光谱,测试条件:400-4000 cm-1,软件:OMNIC ,扫描次数30 次。采用JEM-2010(日本)型透射电子显微镜(TEM)观察TiO2 纳晶的表面形貌及粒径大小。用紫外-可见分光光度计(UV-3100)测试不同粒径TiO2 纳晶多孔薄膜电极吸附染料的吸光度。TG 的升温速度:10 ℃/min,范围:室温至1000 ℃,测试仪器:SDT 2960 同步DSC-TGA 装置 (USA TA 设备)。4 结果与讨论 有机碱对TiO2 纳晶的形貌和粒径的影响Sugimoto 和他的合作者们研究了影响TiO2 纳晶生长的一些因素,其中pH 的值、有机碱的烷基链的长短、水热的温度以及水热的时间等因素都对TiO2 纳晶颗粒的大小和形貌有很大的影响[14-17]。通过研究发现,四烷基有机碱作为模板来控制TiO2 纳晶的形貌和大小。所以可以使用不同的有机碱来制备适合于染料敏化太阳能电池光电传输的晶型完整并具有较大的比表面积的TiO2 纳晶。是在不同的有机碱做胶溶剂时制备的TiO2 纳晶的TEM 图,a 图是采用TMAOH 做胶溶剂,b 图是采用TEAOH 做胶溶剂,c 图是采用TBAOH 做胶溶剂。从图中可以看出,在相同pH 值下,不同的有机碱做胶溶剂时,制备的纳晶明显不同,这说明胶溶剂对TiO2纳晶的粒径大小和形貌有很大的影响,而且随着有机碱胶溶剂烷基链的加长,TiO2 纳晶的粒径减小,并且粒子为多面体。当用TMAOH 做胶溶剂时,制备的TiO2 纳晶的粒子多为四方体,颗粒宽12-20 nm,粒子长20-40 nm,如图1a 所示。当用TEAOH 做胶溶剂时制备的TiO2 纳晶的粒子颗粒不均匀,而且形貌也不规则有多面体形的也有四面体形的,粒子宽度8-10 nm,长度10-25 nm,如图1b 所示。而当有机碱的烷基链长从两个碳原子增加到四个碳原子时,即用TBAOH 用作胶溶剂时制备的纳晶颗粒粒子大小较均匀而且形貌也较规则,多为正方体,粒子大小一般在5nm 左右,如图1c 所示。在TiO2 纳晶的水热生长过程中,有机碱首先是吸附在TiO2 的晶核上,而烷基链的长短不同吸附的能力不同,吸附能力越大则就会阻碍纳晶的生长。研究发现[6],烷基链越长则有机碱吸附在晶核上的吸附力越大,则会阻碍晶体的生长,所以随着有机碱烷基链的长度的增加,纳晶颗粒在不断的减小;并且研究发现,胶溶剂的浓度不能太大,太大时制备的TiO2 纳晶就会出现严重的团聚现象[10]。 有机碱对TiO2 纳晶晶型的影响是用三种有机碱做胶溶剂时制备的TiO2 纳晶的XRD 图,a 是制备的TiO2 纳晶经过自然风干后的XRD,b 是制备的三种TiO2 纳晶经过50 °C 热处理30 分钟中后的XRD 图。从图2a 中可以看出,2θ = °是TiO2 纳晶锐钛矿的特征峰,但是还有一些其它的杂峰,这些杂峰证明是有机胺类化合物的峰。当把制备的纳晶经过450 °C 热处理30 分钟中后,a 图中的杂峰就消失,TiO2 在2q =°,°,°,°,°和°的衍射峰的d 值均与标准PDF 卡片锐钛矿型TiO2 衍射峰相符,说明所制备的TiO2 的晶型为锐钛矿,没有金红石相和板钛矿相出现,制备的为纯的锐钛矿相TiO2 纳晶。在传统水热方法中,采用硝酸做胶溶剂,制备的纳晶TiO2 中,含有少量的金红石相和板钛矿相,而这两种的光电性能较差,影响染料敏化太阳能电池的光电转换效率。而用有机碱做胶溶剂制备的TiO2 纳晶可满足染料敏化太阳能电池中对锐钛矿相的要求。随着有机碱烷基链的增加,样品的特征衍射峰宽逐渐变大,并且衍射峰值逐渐减小,这表明制备纳晶颗粒不断减小,这与TEM 的结果一致。 TiO2 纳晶的热稳定性分析是用三种有机碱制备的TiO2 纳晶的红外光谱图,(a) 是制备的纳晶粉末在80 °C 烘干24 小时,(b)是制备的纳晶粉末在450 °C 热处理1 小时,光谱范围是400-4000 cm-1。从红外光谱图可知,三种纳晶红外图谱相近。图3(a)中出现了有机化合物的一些键如C-H, N-H,和O-H 等键,但随着在450 °C 热处理1 小时后,这些化合键就消失了,而TiO2 薄膜的红外谱图中主要有Ti-O-Ti 键伸缩振动峰在500cm-1 附近,没有出现宽的吸收带,如图3(b)所示,这一结果与文献中的结果相一致[7]。这说明在有机碱条件下制备的TiO2 纳晶在经过450 °C后为稳定的锐钛矿相,吸附在其表面的有机物分解完全。从XRD 的结果也可以得出(图 3b),所有有机化合物在经过450 °C 热处理后都消失完全了,这说明二氧化钛化合物在高于450 °C热处理后,可以晶化为稳定的锐钛矿相TiO2 纳晶。是用有机碱做胶溶剂时制备的TiO2 纳晶粉末热稳定性的TG 分析。这些纳晶粉末是在105 °C 下烘干24 小时,而没有进行任何热处理的。从图中可以看出,有两个失重过程。第一个过程是100~250 °C 之间的明显失重,可以认为是失去了吸附在纳晶粉末表面的水分子和一些醇。第二个过程是250~400 °C 之间的失重,是因为粉体中吸附的有机物成份的失去。有机物与制备的氧化物之间有很强的键和作用,这些有机物包裹着氧化物,当温度达到400 °C 时,这些键和作用才会消失,有机物完全分解,这说明有机物与纳晶颗粒之间的力结合不是太大不影响纳晶的晶化。另外发现,在不同有机碱胶溶剂下制备的纳晶粉末的失重情况明显不同,在采用TBAOH 做胶溶剂时的失重明显要高于使用TMAOH 做胶溶剂时的,这说明前者表面吸附了更多的有机物。吸附有机物的量不同,表明制备的纳晶粉末的形貌和粒径大小也明显不同[14],这与TEM 的结果一致,在采用TBAOH 做胶溶剂时制备的TiO2纳晶颗粒较小表面积较大,这就使吸附在纳晶表面的有机物就增多,所以在进行热分解时失重较多;而采用TMAOH 做胶溶剂时制备的TiO2 纳晶颗粒明显大许多,表面积又小所以吸附的有机物就会减小,所以在热分解时失重较少。从失重量的多少也可以简单分析出制备的纳晶颗粒和形貌的异同。用有机碱做胶溶剂来制备TiO2 纳晶,会对其晶型及其晶型的稳定性有一定的影响。图5 为有机碱TEAOH 做胶溶剂的条件下制备的TiO2 纳晶及其分别在300 °C,500 °C,700 °C,800 °C,900 °C 烧结1 小时样品的XRD 谱图。在TiO2 纳晶的晶型中,峰位于2θ=°是锐钛矿相的特征衍射峰,峰位于2θ=°是金红石相的特征衍射峰。从图中可知,TiO2 纳晶在800 °C 烧结前,晶型没有发生变化。在800 °C 烧结之后,才出现了金红石相晶型,这一结果与Young 等人的研究结果一致[18]。据报道在酸性条件下制备的TiO2 纳晶,在烧结温度达600 °C 时,锐钛矿晶型就开始向金红石晶型转变[19]。而用有机碱TEAOH 做胶溶剂制备的TiO2 纳晶从锐钛矿相向金红石相转变的温度有所提高,这说明用有机碱TEAOH 做胶溶剂制备的TiO2 纳晶热稳定性提高了,这一稳定性说明,可以对锐钛矿型TiO2 纳晶在较高的温度下进行烧结,而不改变其晶型,即没有金红石型纳晶出现。 BET 和吸附染料能力的研究用不同的有机碱做胶溶剂所制备的TiO2 纳晶粉的表面积进行分析,实验得出,在使用有机碱TMAOH 做胶溶剂时制备的TiO2 纳晶粉的比表面积为66 m2·g-1,但是当使用TEAOH和TBAOH 做胶溶剂时,制备的TiO2 纳晶粉的比表面积为78 m2·g-1 和82 m2·g-1。这一结果与粒径越大比表面积越小相一致,颗粒大小如图1 所示,这说明颗粒越小比表面积越大。研究发现,吸附的染料(RuL2(SCN)2)的多少并不一定随着比表面积的增大而增大。为了研究用于染料敏化太阳能电池测试的TiO2 纳晶多孔薄膜吸附染料的多少,把敏化的电极在5 mL mol/L NaOH 溶液中让染料进行脱附,之后对染料的碱性溶液进行吸光度的分析,UV-vis 吸收光谱的结果如图5 所示。图中a、b 和c 三条曲线分别是采用TMAOH、TEAOH和TBAOH 做胶溶剂时制备的TiO2 纳晶。根据朗伯-比尔定律可知吸光度随浓度增加而增大,结果显示,采用TMAOH 做胶溶剂时制备的TiO2 纳晶吸收的染料最少,这与比表面积越小吸附的染料越少相吻合,但比其它两种纳晶的吸附量要少很多。虽然采用TBAOH 做胶溶剂时制备的TiO2 纳晶的比表面积比用TEAOH 做胶溶剂所制备的TiO2 纳晶的比表面积大,但是后者却比前者所吸附的染料多,这里可能的解释就是因其用TBAOH 做胶溶剂时制备的TiO2 纳晶的颗粒太小还不足10nm,所以用其制备的纳晶多孔薄膜太致密而使得吸附的染料减小。 染料敏化太阳能电池光电性能研究采用有机碱制备的三种不同形貌和粒径大小的TiO2 纳晶,并用其制备了敏化电极应用于染料敏化太阳能电池光电性能的研究,如图6 所示。表1 给出了三种不同电极的所组装的电池的短路电流、开路电压、填充因子和光电转换效率的值。在100 mW/cm2 光照条件下,三种电池的短路电流分别为、、 mA/cm2,开路电压分别为、、,填充因子分别为,光电转换效率分别达到了。从实验结果可知,采用有机碱TEAOH 制备的TiO2 纳晶所组装的电池的光电转换效率比其它两种电池的光电转换效率要高。可知,采用有机碱TEAOH 所制备的TiO2 所制备的电池的开路电压要比采用有机碱TMAOH 所制备的TiO2 所制备的电池的要低,但是其电池的短路电流和填充因子都要比其它两种有机碱所制备TiO2 所组装的电池要高。这可能是因为(1)用有机碱TEAOH 所制备的TiO2 纳晶粒经比较适中,制备的多孔薄膜粒子与粒子之间结合比较紧密,这样就提高了电子在薄膜中的传播速度;(2)较其它两种多孔薄膜吸附的染料要多,研究表明吸附的染料的量与所产生的光电流成正比,吸附的染料越多,则产生的光电流越大,用有机碱TEAOH 做胶溶剂所制备的TiO2 多孔薄膜所吸附的染料最多,所以用其所组装的染料敏化太阳能电池的短路电流最高,电池的光电转换效率也达到最好。5 结论本章采用了钛酸四正丁酯为原料,以三种有机碱做胶溶剂来制备TiO2 纳晶,以三种制备的敏化的纳晶多孔薄膜为电极组装了染料敏化太阳能电池,并对其进行了电池光电性能的测试。研究了这三种有机胶溶剂对TiO2 纳晶晶体生长的影响,采用三种不同烷基链的有机碱做胶溶剂制备的纳晶形貌和大小有很大的不同,研究发现,随着烷基链的加长,纳晶的形貌开始变得规整,粒径也减小,但是有机碱的浓度不能太大,浓度过高时,会使制备的纳晶出现团聚,所以在使用有机碱做胶溶剂时,采用的是在pH= 的条件下制备的。通过热稳定性分析发现,吸附在TiO2 纳晶表面的有机碱在450 °C 热处理后,有机物分解完全,这说明在制备纳晶多孔薄膜时,有机物分解完全,多孔薄膜中为纯的TiO2 纳晶。因为三种TiO2纳晶形貌和大小不同所以制备的多孔薄膜吸附染料的量也不相同。实验发现采用有机碱TEAOH 做胶溶剂时制备的TiO2 的敏化电极吸附的染料最多,电池光电性能测试也显示用此TiO2 纳晶制备的电池开路电流达到 mA cm-2,光电转换效率达到,比其它两种电池的光电转换效率要高,这说明用有机碱TEAOH 做胶溶剂所制备的TiO2 纳晶的形貌和大小比其它两种有机碱胶溶剂制备的TiO2 更适合应用于染料敏化太阳能电池。更多毕业论文请到

晶胞参数α=b0∧c0β=c0∧a0γ=a0∧b0

晶胞的形状和大小可以用6个参数来表示,此即晶格特征参数,简称晶胞参数。决定晶胞形状、大小的一组参数。包括晶胞的3组棱长(即晶体的轴长)a0、b0、c0和3组棱相互间的夹角(即晶体的轴角)α、β、γ。其中:α=b0∧c0β=c0∧a0γ=a0∧b0

晶胞能完整反映晶体内部原子或离子在三维空间分布之化学-结构特征的平行六面体单元。其中既能够保持晶体结构的对称性而体积又最小者特称“单位晶胞”,但亦常简称晶胞。其具体形状大小由它的三组棱长a、b、c及棱间交角α、β、γ(合称为”晶胞参数”)来表征,与空间格子中的单位平行六面体相对应。

同一空间点阵可因选取方式不同而得到不相同的晶胞,所以,选取晶胞要求是最能反映该点阵的对称性,选取原则为:

1) 选取的平行六面体应反映出点阵的最高对称性;

2) 平行六面体内的棱和角相等的数目应最多;

3)当平行六面体的棱边夹角存在直角时,直角数目应最多:

4)在满足上述条件的情况下,晶胞应具有最小的体积其具体形状大小由它的三组棱长a、b、c及棱间交角α、β、γ(合称为”晶胞参数”)来表征,与空间格子中的单位平行六面体相对应。

参考资料来源:百度百科-晶胞参数

你是要问格式还是内容怎么写我写好发到哪里去给你的

钙钛矿晶体结构论文参考文献

在满足容限因子的条件下,有多种元素可以形成钙钛矿结构的化合物。通常,B位离子决定了钙钛矿型化合物的催化活性,A位离子是影响化合物结构和B位离子价态的重要因素。当A位离子或B位离子被不同价态的离子取代时,通过形成氧离子空穴或者形成混合价态来保持化合物的电中性。氧空穴的形成或B位离子价态的变化使得化合物具有更高的活性。贵金属和钙钛矿型化合物结合,不仅可以有效防止贵金属的烧结,同时也提高了钙钛矿型化合物的催化活性。关键词:催化剂工程;钙钛矿;汽车催化剂;贵金属;催化材料1 引言长期以来,以贵金属为主要活性组分的催化剂被认为是净化汽车尾气最有效的催化剂。但贵金属资源紧缺、价格昂贵,而且由于贵金属易高温烧结和挥发,使得贵金属催化剂在热稳定性方面不占优势。人们一直在寻找具有高净化效率的不含贵金属的催化剂。钙钛矿型氧化物具有较低的价格和灵活多变的组成,其催化性能在一定程度上可以进行调节,因而受到人们的关注。用这类化合物作为三效催化剂来取代传统的Pt/Rh基催化剂具有一定的优越性。由于其组成和结构的灵活多变性,钙钛矿型化合物被看成是固态化学、物理学、催化作用等基础领域的样板材料。钙钛矿是组成为CaTiO3的一种矿物,其英文名称Perovskite是地质学家Gustav Rose根据俄国地质学家Count Lev A leksevich von Perovski的名字命名的[1]。在20世纪70年代初,Libby[2,3]对含稀土和钴的钙钛矿型氧化物进行了系统研究,提出用钙钛矿结构的氧化物代替贵金属用于汽车尾气净化催化剂具有潜在的可能。而后Voorhoeve等[4,5]对稀土钙钛矿型催化剂进行了深入的研究。从早期的研究成果看,含稀土的钴酸盐和锰酸盐在完全氧化反应方面显示了极高的催化活性。本文对钙钛矿型复合氧化物催化剂研究状况进行简要回顾和展望。2 钙钛矿型氧化物的结构钙钛矿型化合物的化学式为ABO3,周期表中绝大部分元素都能组成稳定的钙钛矿结构。在通常情况下[6],A位是半径较大的碱金属、碱土金属和稀土金属离子,处于12个氧原子组成的十四面体的中央。B位是半径比较小的过渡金属离子,处于6个氧离子组成的八面体中央。在合成ABO3型氧化物时,各种离子的大小应满足一定的条件,否则晶格就变得不稳定,会发生畸变,或者形成其他结构[7]。Goldschmidt曾引入容限因子表达式:式中:rA、rB、rO分别代表A、B、O的离子半径。当1时,以方解石或文石结构存在。有许多钛酸盐、锆酸盐、锡酸盐,例如A=Ca、Sr、Ba,B=Ti、Zr、Sn时,满足钙钛矿的容限因子,具有钙钛矿结构。ABO3中的A和B,并不仅仅局限于2价和4价的离子,只要它们的电价总和为6,而且离子半径匹配,都有可能形成钙钛矿型化合物。NaNbO3、LaFeO3、(K1/2La1/2)TiO3等,满足了电价条件和半径条件,都是具有钙钛矿结构的化合物。在La2/3Ca1/3MnO3中,低价态Ca的掺入,使得Mn采取+3和+4的混合价态,从而满足钙钛矿结构的电价要求。在Ca2CaUO6中,有1/3的Ca与U交替占据钙钛矿型晶格的B位。在Ba2Bi2O6中,有一半Bi原子为+3价,另一半为+5价。在钙钛矿结构中[8],当t=时,形成对称性最高的立方晶格,当0)[11]、δ和δ[16]应为立方结构,制备条件不同时,产品的晶相也会发生相应变化[15]。3 B位离子的作用由于钙钛矿型氧化物的催化活性强烈地依赖于B位阳离子的性质,在设计或改进钙钛矿型催化剂时B位阳离子的选择至关重要。通常选择的B位阳离子是Co、Mn和Fe,这是由于它们对氧化反应十分有效[17,18]。由La和过渡金属组成的钙钛矿型复合氧化物,对CO氧化的催化活性与B元素简单氧化物的催化活性顺序是一致的[19,20]。由多种B位元素组成的钙钛矿型氧化物,在许多情况下会产生协同效应[21],但其催化活性与B位元素简单氧化物之间并不存在加和关系。尽管钙钛矿型氧化物还不能满足汽车催化剂实际应用的要求,但是大量实验已经证明[13,22],钙钛矿型复合氧化物比各组分元素简单氧化物的催化活性要高。当B位离子被不同价态的离子取代时,就会引起晶格空位或使B位的其他离子变价。张华民等[23]在研究时发现,当Co被Fe或Cu取代时,由于非常价态离子Fe4+和Cu3+的生成,催化剂表面的吸附氧明显增多。当用Ni或Zn取代时,由于非常价态离子Ni3+、Zn3+不易生成,表面吸附氧明显减少。当用Mn取代时,由于Mn4+为正常价态离子,而且满足了Sr2+对B位离子电荷的要求,从而抑制了非常价态离子Co4+的生成,结果表面吸附氧也明显减少。Yasuda等[24]研究显示,在催化氧化CO的反应中,催化剂LaMn1-xCuxO3中的Mn和Cu表现出明显的协同效应,的催化活性比LaMnO3或La2CuO4要高得多,这是由于Cu对CO有活化作用,Mn对O2有活化作用,两者共同促进了反应的进行。钙钛矿结构增强了混合价态离子的热力学稳定性,体系从一种混合价态变到另一种混合价态,只需要很小的推动力[25],从而使反应活性增强。某些金属离子,例如Cu2+、Ni2+、Co3+等,可以氧化成不稳定的高价态离子,可能充当了催化剂活性位的角色[16]。近来发现,钙钛矿型氧化物具有储氧功能[26,27],这和B位原子的变价作用密切相关。ABO3化合物对CO氧化的催化活性,受B位离子d电子结构的影响很大[28]。B离子在其周围6个氧离子形成的八面体场的作用下,d轨道分裂成t2g和eg两组轨道。CO中的孤电子对进入金属离子的eg(dz2)空轨道形成σ配位键,同时金属离子t2g轨道上的电子进入CO分子的π*轨道形成反馈π配键。σ-π键的形成削弱了CO分子中的共价键,使CO具有更高的活性。LaFeO3对CO的催化氧化表现出较低的活性,是因为其中的Fe3+处于高自旋状态,不能提供成对电子,对CO产生了反键作用。4 A位离子的作用一般认为[29],ABO3型化合物的催化活性主要由B位离子决定,A位离子主要通过控制活性组分B的原子价态和分散状态而起稳定结构的作用。A离子本质上不直接参与反应[30],但是若被价态不同的其他离子取代,就会引起B位离子价态的变化,使得不寻常价态离子变得稳定,同时也可能造成晶格缺陷,从而改变晶格氧的化学位。耿其博等[31]采用柠檬酸络合法制备了La1-xSrxCoO3系列化合物。结果表明,随着A位Sr含量的增加,高价态的钴离子逐渐增多,催化剂的活性也逐渐增强。同时,催化剂的抗硫性能也随之提高。对于非计量钙钛矿化合物LaMnO3+δ[32],当用Sr、Ba、K等取代La时,随着取代量的增加,化合物中多余氧含量δ逐渐减小,催化剂的低温活性大大提高。Falcon等[33]对Sr取代化合物Pr1-xSrxNiO3进行了中子衍射研究,用Rietveld方法对数据精修的结果显示,化合物中Ni-O键明显缩短,同时d能带中出现了空穴掺杂,由于O原子更容易从体相中移去,从而提高了化合物对CO氧化反应的催化活性。在钙钛矿结构中,A离子和O2-共同组成基本的密堆层,它们之间的结合具有离子键的特征,当A位离子被高价离子取代时,为满足电荷平衡,可能导致2种情况发生,一种是产生A空位,另一种是是引起B离子价态降低。当A位离子被低价离子取代时,就会产生氧空位或者使B位离子价态升高。例如,在La1-xSrxRhO3[34]中有部分Rh变成了+4价态,而在(Ⅲ)(Ⅳ)中,同时存在A位取代、A位空缺、B位空缺和B位变价[10]。多数过渡金属具有变价的能力,有利于满足A位离子变价取代的条件。B位离子价态的变化可能会引起配位数的改变,或者引起配位多面体结构的演变[35,36]。Rao等[37]认为,比较大的A位阳离子可以部分失去而形成空缺,这是由于BO3形成的网络结构是比较稳定的。由于B位离子电荷多、半径小,如果B位出现空缺,从能量上看是不利的。事实上,当阳离子空位增加时,晶格中的氧更容易迁移[21]。5 贵金属取代将贵金属和钙钛矿型化合物结合起来可以对贵金属起到很好的稳定作用,可以防止贵金属高温烧结或高温蒸发,防止贵金属与载体反应。加入少量的贵金属同样可以提高钙钛矿型催化剂的活性[38]。据Guilhaume等[39]报道,由Pd取代的化合物,在NO催化还原方面,可以和Pt-Rh/CeO2-Al2O3媲美,对于CO和C3H6的氧化则有更高的活性。Voorhoeve等[40]的研究表明,催化剂在CO和H2过量时,对NO的还原反应表现出很高的活性。金属Ru有较强的挥发性,且容易氧化生成剧毒的RuO2和RuO4[41],使得其应用受到限制。当Ru形成钙钛矿型化合物时,其稳定性得到显著提高[42]。Teraoka等[43]用Cu和Ru进行晶格取代而得到的催化剂,对NO+CO反应的催化活性与的活性相当。Zhou等[44]的实验显示,Pd负载催化剂Pd/比Pd取代催化剂的三效活性要高得多,通过对H2-TPR图的研究发现,Pd的加入提高了钙钛矿型氧化物的还原活性,Pd负载催化剂Pd/比Pd取代催化剂更容易还原。从晶体结构看[45],贵金属离子占据B位后,有利于离子的定域化分散,提高其抗高温烧结能力。由于贵金属的价态通常低于ABO3中B位元素的正常价态,在晶体场的作用下,贵金属离子有较多的机会处于高氧化态,或者使晶体中产生较多的氧空位。一种公认的看法是,在钙钛矿型氧化物中,氧离子的迁移是通过氧空位进行的,氧空位的增加有利于氧化反应催化剂活性的提高[46]。Tanaka等[47]对进行了XPS和XAFS分析。结果表明,在氧化气氛下,Pd以固溶体的形式存在于钙钛矿型晶格中,其结合能比PdO中的Pd还要高。在还原气氛下,Pd形成了合金,并以细小颗粒状态分散在表面。随着氧化气氛和还原气氛的交替变换,Pd的这两种存在形式也周而复始地变化着。Nishihata等[48]也发现了类似的现象,随着氧化气氛和还原气氛的交替进行,Pd原子可逆地进入和逸出钙钛矿晶格,这种运动限制了Pd合金颗粒的长大,使得催化剂长期保持较高的催化活性。References(参考文献)[1]Tanaka H and Misono M. Advances in designing perovskite catalysts[J]. Current Opinion in Solid State and Materials Science, 2001,5(5):381~387[2]Libby W F. Promising catalyst for auto exhaust[J]. Science, 1971, 171(3970):499~500[3]Pedersen L A and Libby W F. Unseparated rare earth cobalt oxide as auto exhaust catalysts[J].Science,1972,176(4041):1355~1366[4]Voorhoeve R J H, Remeika J P and Freeland P E. Rare earth oxides of manganese & cobalt rival platinum for the treatment of carbon monoxide in auto exhaust[J].Science,1972,177(4046):353~354[5]Voorhoeve R J H, Remeika J P and Johnson D W. Rare earth manganites: Catalysts with low ammonia yield in the reduction of nitrogen oxides[J].Science,1973,180(4081):62~64[6]Labhsetwar N K, Watanabe A, Biniwale R B, etal. Alumina supported, perovskite oxide based catalytic materials and their auto-exhaust application[J]. ApplCatalB:Environmental,2001,33(2):165~173[7]Voorhoeve R J H. Advanced Materials in Catalysis[M]. Burton J J and Garten R L, : Academic Press,[8]Tejuca L G, Fierro J L G and Tascon J M D. Structure and reactivity of perovskite-type oxides[J].Adv Catal,1989,36(2):237~328[9]DuShaobin(杜少斌),WangJin(王瑾),MaFutai(马福泰),et al. Correlation of Composition, crystal structure, reducibility and catalytic oxidation activity on La-Mn-Ni-O system[J].Acta Physico-Chimica Sinica(物理化学学报),1992,8(5):631~635[10]Ciambelli P, Cimino S, DeRossi S, et al. AMnO3(A=La,Nd,Sm) and Sm1-xSrxMnO3 perovskites as combustion catalysts: structural, redox and catalytic properties[J].Appl Catal B:Environmental,2000,24(3-4):243~253[11]Delmastro A, Mazza D, Ronchetti S, etal. Synthesis and characterization of non-stoichiometric LaFeO3 perovskite[J]. Materials Science and Engineering B,2001,79(2):140~145[12]Labhsetwar N K, Watanabe A and Mitsuhashi T. New improved syntheses of LaRuO3 perovskites and their applications in environmental catalysis[J]. Applied Cataltysis B:Environmental,2003,40(1):21~30[13]Shu J and Kaliaguene S. Well-dispersed perovskite-type oxidation catalysts[J].ApplCatalB,Environmental,1998,16(3):303~308[14]González A, Tamayo E M, Porter A B, etal. Synthesis of high surface area perovskite catalysts by non-conventional routes[J]. Catalysis Today,1997,33(1-3):361~369[15]Isupova L A, Alikina G M, Tsybulya S V, etal. Honeycomb-supported perovskite catalysts for high-temperature processes[J]. Catal Today,2002,75(1-4):305~315[16]Tofan C, Klvana D and Kirchnerova J. Direct decomposition of nitric oxide over perovskite-type catalysts, Part I Activity when no oxygen is added to the feed[J].Appl CatalA:General,2002,223(1-2):275~286[17]Weston M and Metcalfe I S. as an anode for direct methane activation in SOFCs[J].Solid State Ionics,1998,113-115(1):247~251[18]Choudhary V R, Uphade B S and Pataskar S G. Low temperature complete combustion of methane over Ag-doped LaFeO3 and perovskite oxide catalysts[J].Fuel,1999,78(8):919~921[19]LiWan(李琬) and WangDao(王道).Rare earth perovskite type catalysts and Hopcalite[J].Environmental Chemistry(环境化学),1985,4(2):1~6[20]Tascon J M D and Tejuca L G. Adsorption of carbon monoxide on the perovskite-type oxide lanthanum cobalt oxide(LaCoO3)[J]. Z Phys Chem, 1980,121(1):79~93[21]Yamazoe N and Teraoka Y. Oxidation catalysis of perovskite-relatinships to bulk structure and composition (valency,defect,etc.)[J].Catal Today,1990,8(2):175~199[22]Zhang-Steenwinkel Y, Beckers J and Bliek A. Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum-manganese oxides[J].ApplCatalA:Geneeral,2002,235(1-2):79~92[23]ZhangHuamin(张华民),ChenYongying(陈永英),TeraoraYasutake(寺冈靖刚), of partial substitution for A,B sites of perovskite type oxides containing cobalt on oxygen desouption and catalyticactivity[J].Journal of Catalysis(催化学报),1992,13(6):432~436[24]Yasuda H, Fujiwara Y, Mizuno N, etal. Oxidation of carbon monoxide on LaMn1-xCuxO3 Perovskite-type mixed oxide[J]. J Chem Soc,Faraday Trans,1994,90(8):1183~1189[25]Belessi V C, Trikalitis P N, Ladavos A K, etal. Structure and catalytic activity of La1-xFeO3 system (x=) for the NO+CO reaction[J]. Appl CatalA: General,1999,177(1):53~68[26]Zwinkels M F M and Menon P G. High temperature combustion[J]. Catal Rev Sci Eng,1993,35(3):319~326[27]Davide F and Lucio F. Methane combustion on some Perovskite-like mixed oxides[J]. Appl Catal B:Environmental,1998,16(2):119~126[28]QinYongning(秦永宁),TianHuiping(田辉平)and ZhangLiu(张鎏).Study on the correlation of delectron configuration and catalytic oxidation activity of LaMO3 compounds[J].ActaChimicaSinica(化学学报),1993,51(4):319~324[29]LiangZhencheng(梁珍成),QinYongning(秦永宁),LiaoQiaoli(廖巧丽), of perovskite-type La1-xCuxMnO3 catalysts[J]. Chinese Journal of Applied Chemistry(应用化学),1997,14(1):11~15[30]Wiswanathan B. CO oxidation and NO reduction on perovskite oxiedes[J].Catal Rev-sci Eng,1992,34(4):337~354[31]GengQibo(耿其博),HuangXiaolin(黄晓林),HuangQing(黄庆), on the SO2 resistance of Co-containing perovskite type oxidation catalysts[J].Journal of Catalysis(催化学报),1989,10(1):79~82[32]Buciuman F C, Patcas F and Zsak J. TPR-study of substitution effects on reducibility and oxidative non-stoichiometry of δperovskites[J].J Therm Anal Calorim,2000,61(3):819~825[33]Falcon H, Martez-Lope M J ,Alonso J A, etal. Large enhancement of the catalytic activity for CO oxidation on hole doped(Ln,Sr)NiO3(Ln=Pr,Sm,Eu)perovskites[J].SolidStateIonics,2000,131(3-4):237~248[34]Mary T A and Varadaraju U V. Orthorhombic-tetragonal and semiconductou-metal transition in the La1-xSrxRhO3 system[J]. J Solid State Chem,1994,110(1):176~179[35]Kang Zhenjin(康振晋),Sun Shangmei(孙尚梅)and Guo Zhenping(郭振平).The modules and the structural evolution in perovskite structural founctional materials[J]. Chemistry(化学通报),2000,63(4):23~26[36]Anderson M T, Vaughey J T and Poeppelmeier K R. Structural similarities among oxygen deficient perovskites[J].Chem Mater,1993,5(2):151~165[37]Rao C N R, Gopalakrishnan J and Vidyasagar K. Superstructures, ordered defects and nonstoichiometry in metal oxides of perovskite and related structures[J].Ind J Chem Sect A,1984,23A(4):265~284[38]Guilhaume N and Primet M. Three-way catalytic activity and oxygen storage capacity of perovskite [J]. J Catal,1997,165(2):197~204[39]Guilhaume N, Peter S D and Primet M. Palladium-substituted lanthanum cuprates: application to auto motive exhaust purification[J]. Appl Catal B,Environmental,1996,10(4):325~344[40]Voorhoeve R J H. Advanced Materials in Catalysis()[M].NewYork:Academic Press,[41]Kobylinski T P and Taylor B W. The catalytic chemistry of nitric oxideⅡ. Reduction of nitric oxide over noble metal catalysts[J]. J Catal,1974,33(3):376~384[42]Labhsetwar N K, Watanabe A and Mitsuhashi T. New improved syntheses of LaRuO3 perovskites and their applications in environmental catalysis[J].Applied Cataltysis B:Environmental,2003,40(1):21~30[43]TeraokaY,NiiH,KagawaS, of the simultaneous substitution of Cu and Ruin the perovskite-type(La,Sr)MO3(M=Al,Mn,Fe,Co)on the catalytic activity for CO oxidation and CO-NO reactions[J]. Appl Catal A: General,2000,194-195(1):35~41[44]Zhou K, Chen H, Tian Q, etal. Pd-containing perovskite-type oxides used for three-way catalysts[J]. Journal of Molecular Catalysis A:Chemical,2002,189(2):225~232[45]ZhouKebin(周克斌),ChenHongde(陈宏德),TianQun(田群), on the effect of doped chemicals palladium on the performance of Fe and Co series perovskite-type three-way catalysts[J]. Environmental Chemistry(环境化学),2002,21(3):218~223[46]Hong S S and Lee G D. Simultaneous removal of NO and carbon particulates over lanthanoid perovskite-type catalysts[J]. CatalysisToday,2000,63(2-4):397~404[47]Tanaka H, Uenishi M, Tan I, etal. An Intelligent Catalyst[R]. SA paper,2001,2001-01-1301[48]Nishihata Y, Mizuki J, Akao T, etal. Self-regeneration of a Pd-perovdkite catalyst for automotive emissions control[J].Nature,2002,418(6894):164~167

可参考《俄罗斯钙钛矿的复合性与埋藏状况》、《俄罗斯钙钛矿的结构表征及其催化效应》、《俄罗斯钙钛矿的生物学特性及其在化工转化中的吸引力》等文献,了解俄罗斯钙钛矿的相关信息。

一、研究背景

钙钛矿 (perovskite)是德国矿物学家古斯塔夫·罗斯(Gustav Rose)在1839年,于俄罗斯中部境内的乌拉尔山脉上发现钙钛矿岩石样本,决定以他心中伟大的地质学家Lev Perovski来命名这种矿石。该矿石是普通的金属有机化合物晶体,主要成分是钛酸钙(CaTiO3 )。后来人们所指的钙钛矿电池,并不是用他发现的这种矿石材料制成的,而是使用了与钙钛矿晶体结构相似的化合物。

钙钛矿晶体结构示意图

近年来关于钙钛矿的研究非常多,而且还经常发表于Nature、Science等顶刊中,作为新兴的明星材料,连石墨烯也要甘拜下风。

就在2021年10月20日 ,韩国浦项 科技 大学Min Gyu Kim、蔚山国立科学技术研究院Tae Joo Shin、Sang Il Seok教授课题组联合报道了通过将Cl键合的SnO2与含Cl的钙钛矿前驱体耦合,在SnO2电子传输层和卤化物钙钛矿吸光层之间形成夹层。该层间具有原子相干特性,增强了钙钛矿层的电荷提取和传输,减少了界面缺陷。 这项研究工作以题为“Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes”发表在顶级期刊Nature上。

仅隔一周,于2021年10月29日,喜讯再度传来,钙钛矿再次登上顶刊,让我们一起来看看!

卤化铅钙钛矿(LHPs)显示出可调的带隙、高电荷载流子迁移率和明亮的窄带光致发光(PL),与传统的硅基和二元ⅱ-ⅵ族、ⅲ-ⅴ族和ⅳ-ⅵ族半导体材料相比,这些材料在光电应用方面具有优势。然而,为了成功的技术集成,LHPs必须克服其固有的多态性;暴露于极性溶剂、氧气、热和光时分解;陷阱态的存在;以及有毒重金属离子的相分离和浸出。例如,在CsPbI3伪立方“黑”相(α-、β-和γ-相)中发现了适合光伏和红光发光二极管(LED)的高光学吸收率和直接带隙,但是热力学因素促进了它们在环境条件下向非活性非钙钛矿“黄色”δ相的转化(图1A)。白光发光二极管的LHP材料将主要依赖于这种红色发射器的稳定性,理想的情况是结合在一个单一的宽带发光材料结构中。

LHP复合材料的形成可能为其中一些问题提供解决方案,但LHP的离子性质并不完全有利于复合材料的制造。引起的功能损失包括LHP聚集和分解、与所选基质的弱界面相互作用导致的差的机械稳定性以及高浓度陷阱态的形成。对金属有机框架(MOFs)的一个亚家族——沸石咪唑盐框架(ZIFs)的研究,使得人们能够在淬火后获得高温ZIF液体和微孔玻璃。ZIF玻璃在孔隙率、反应性、机械刚性和延展性以及光学响应方面具有独特的物理化学性质,并已被用作晶体MOFs的基质。综上所述,这些特性使ZIF玻璃成为应对LHP复合材料多重挑战的首选。

二、研究成果

卤化铅钙钛矿(LHP)半导体显示出优异的光电性能。然而,它们应用的障碍在于它们的多态性、对极性溶剂的不稳定性、相分离和对铅离子浸出的敏感性。近日, 昆士兰大学王连洲、侯经纬教授课题组报道了一系列通过液相烧结LHPs和金属有机框架玻璃制备的可扩展复合材料。玻璃充当LHPs的基质,通过界面相互作用有效稳定非平衡钙钛矿相。这些相互作用还钝化了LHP表面缺陷,并赋予其明亮的窄带光致发光特性,从而产生白光发光二极管。这种可加工的复合材料对水和有机溶剂的浸泡以及暴露在热、光、空气和环境湿度下表现出高稳定性。这些特性,加上它们的铅自隔离能力,可以实现LHP的突破性应用。相关研究工作以“Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses”为题发表在国际顶级期刊《Science》上。

三、图文速递

图1. 不同烧结温度下(CsPbI3)(agZIF-62)复合材料的制备

图2. 烧结过程中的结构和结合演变

作者描述了一种新的复合材料,通过液相烧结晶体LHP和ZIF玻璃基体制造,并表明用于形成高性能复合材料的工业粉末加工技术可以应用于化学上不同的LHP和ZIF玻璃。ZIF-62 { Zn[(Im)(BiM)]}(Im,咪唑盐;bIm,苯并咪唑酯)和CsPbI3首先被机械化学合成,并显示出预期的相变(图1A)。然后,将25 wt%的CsPbI3与ZIF-62玻璃[表示为agZIF-62,玻璃化转变温度(Tg)~ 304 混合,混合物称为(CsPbI3)(agZIF-62)(25/75)。同步辐射XRD表明,混合物中形成了非钙钛矿δ-CsPbI3相。混合物在不同温度(高达350 )下烧结,然后在流动氩(氩)下用液氮淬火(称为低温淬火)。所得复合材料称为(CsPbI3)(agZIF-62),显示出与亚稳态g-CsPbI3相一致的XRD特征,随着烧结温度的升高强度逐渐增加(图1B)。在烧结过程中观察到可忽略的重量损失。

图3.用300 烧结法制备的(CsPbI3)(agZIF62)复合材料的相分布

图4.复合材料的稳定性和光学性能

最后,由CsPbX3(X = Cl、Br和混合卤化物离子)和agZIF-62形成复合材料阵列,显示出具有窄PL峰的宽色域(图4、B和C)。对于所有的CsPbX3复合材料,它们的绝对光致发光强度比相应的纯CsPbX3样品高至少两个数量级,无论是在合成时还是经过相同的烧结处理后。这些特性,加上高加工性(图4D),使这些单片材料成为白光发光二极管的理想候选材料。

四、结论与展望

五、文献

文献链接:

文献原文:

您好,俄罗斯钙钛矿是一种稀有的矿物,它是由钙、钛、氧和氟组成的复合物。它具有独特的光学性质,可以用来制造高精度的光学元件,如激光器、激光器镜片和激光器棱镜。此外,它还可以用于制造高精度的电子元件,如晶体振荡器和晶体管。俄罗斯钙钛矿的另一个重要应用是制造高精度的激光切割机,它可以用来切割金属和其他材料。俄罗斯钙钛矿还可以用于制造高精度的激光焊接机,用于焊接金属和其他材料。此外,它还可以用于制造高精度的激光烧结机,用于烧结金属和其他材料。俄罗斯钙钛矿还可以用于制造高精度的激光拉伸机,用于拉伸金属和其他材料。此外,它还可以用于制造高精度的激光焊接机,用于焊接金属和其他材料。俄罗斯钙钛矿还可以用于制造高精度的激光烧结机,用于烧结金属和其他材料。俄罗斯钙钛矿还可以用于制造高精度的激光切割机,用于切割金属和其他材料。此外,它还可以用于制造高精度的激光焊接机,用于焊接金属和其他材料。俄罗斯钙钛矿还可以用于制造高精度的激光烧结机,用于烧结金属和其他材料。此外,它还可以用于制造高精度的激光拉伸机,用于拉伸金属和其他材料。

氧化镁晶体结构论文参考文献

离子晶体 原子晶体

1、氧化镁(化学式:MgO)是镁的氧化物,一种离子化合物。常温下为一种白色固体。氧化镁以方镁石形式存在于自然界中,是冶镁的原料。 2、氧化镁有高度耐火绝缘性能。经1000℃以上高温灼烧可转变为晶体,升至1500 - 2000°C则成死烧氧化镁(也就是所说的镁砂)或烧结氧化镁。

氧化镁属工业无机盐一般化学品,其晶型结构有片状、球状、花瓣状、棒状、针状。

氧化镁中离子电荷数大于氯化钠,离子间距离小于氯化钠,所以离子键强于氯化钠,沸点高. 学了晶格能就只要说一句:氧化镁的晶体的晶格能大于氯化钠晶体.

晶体管毕业论文3

你可以先去知网、万方里面找然后把题目和链接发给我我帮你下载毕业论文的构成要素(一)论文标题论文标题应当以最恰当、最简明的词语反映论文中最重要的特定内容的逻辑组合。(二)论文作者署名论文作者姓名全称书写在标题下行。(三)摘要摘要是论文不加注释和评论的简短陈述。摘要字数通常为200~300字。(四)关键词关键词是从论文中选取出来用以表示全文主题内容信息款目的单词或术语。关键词通常为3-8个词。关键词应尽量用《汉语主题词表》等词表提供的规范词。(五)目录目录一般应列出论文正文的一、二级标题、附录、参考文献、后记等,标出对应页码。(六)正文正文是论文的主体部分,通常由引论、本论、结论三部分组成。这三部分在行文上可以不明确标示。正文的章节、层次应以小标题、序码词等予以标识。(七)注释注释是对所创造的名词术语的解释或对引文出处的说明。注释采用脚注形式。(八)参考文献参考文献是作者在写作过程中使用过的文章、著作名录。标明作者、著作名或论文名、期刊名与刊号、报纸名与年月日、出版单位与出版时间。

晶体三极管在电路中常用“Q”加数字表示,如:Q17表示编号为17的三极管。 1、特点:晶体三极管(简称三极管)是内部含有2个PN结,并且具有放大能力的特殊器件。它分NPN型和PNP型两种类型,这两种类型的三极管从工作特性上可互相弥补,所谓OTL电路中的对管就是由PNP型和NPN型配对使用。 电话机中常用的PNP型三极管有:A92、9015等型号;NPN型三极管有:A42、9014、9018、9013、9012等型号。 2、晶体三极管主要用于放大电路中起放大作用,在常见电路中有三种接法。为了便于比较,将晶体管三种接法电路所具有的特点列于下表,供大家参考。 名称 共发射极电路 共集电极电路(射极输出器) 共基极电路 输入阻抗 中(几百欧~几千欧) 大(几十千欧以上) 小(几欧~几十欧) 输出阻抗 中(几千欧~几十千欧) 小(几欧~几十欧) 大(几十千欧~几百千欧) 电压放大倍数 大 小(小于1并接近于1) 大 电流放大倍数 大(几十) 大(几十) 小(小于1并接近于1) 功率放大倍数 大(约30~40分贝) 小(约10分贝) 中(约15~20分贝) 频率特性 高频差 好 好 续表 应用 多级放大器中间级,低频放大 输入级、输出级或作阻抗匹配用 高频或宽频带电路及恒流源电路 3、在线工作测量 在实际维修中,三极管都已经安装在线路板上,要每只拆下来测量实在是一件麻烦事,并且很容易损坏电路板,根据实际维修,本人总结出一种在电路上带电测量三极管工作状态来判断故障所在的方法,供大家参考: 类别 故障发生部位 测试要点 e-b极开路 Ved>1v Ved=V+ e-b极短路 Veb=0v Vcd=0v Vbd升高 Re开路 Ved=0v Rb2开路 Vbd=Ved=V+ Rb2短路 Ved约为 Rb1增值很多,开路 Vec< Vcd升高 e-c极间开路 Veb= Vec=0v Vcd升高 b-c极间开路 Veb= Ved=0v b-c极间短路 Vbc=0v Vcd很低 Rc开路 Vbc=0v Vcd升高 Vbd不变 Rb2阻值增大很多 Ved约为V+ Vcd约为0V Ved电压不稳 三极管和周围元件有虚焊 类 别 故障发生部位 测 试 要 点 Rb1开路 Vbe=0 Vcd=V+ Ved=0 Rb1短路 Vbe约为1v Ved=V-Vbe Rb2短路 Vbd=0v Vbe=0v Vcd=V+ Re开路 Vbd升高 Vce=0v Vbe=0v Re短路 Vbd= Vbe= Rc开路 Vce=0v Vbe= Ved约为0v c-e极短路 Vce=0v Vbe= Ved升高 b-e极开路 Vbe>1v Ved=0v Vcd=V+ b-e极短路 Vce约为V+ Vbe=0v Vcd约为0v c-b极开路 Vce=V+ Vbe= Ved=0v c-b极短路 Vcb=0v Vbe= Vcd=0v 八、场效应晶体管放大器 1、场效应晶体管具有较高输入阻抗和低噪声等优点,因而也被广泛应用于各种电子设备中。尤其用场效管做整个电子设备的输入级,可以获得一般晶体管很难达到的性能。 2、场效应管分成结型和绝缘栅型两大类,其控制原理都是一样的。如图1-1-1是两种型号的表示符号: 3、场效应管与晶体管的比较 (1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。 (3)有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。 (4)场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管在大规模集成电路中得到了广泛的应用。 作者:yinqiao436 2007-9-22 21:34 回复此发言 -------------------------------------------------------------------------------- 2 回复:晶体三极管 三极管基础知识及检测方法 一、晶体管基础 双极结型三极管相当于两个背靠背的二极管 PN 结。正向偏置的 EB 结有空穴从发射极注入基区,其中大部分空穴能够到达集电结的边界,并在反向偏置的 CB 结势垒电场的作用下到达集电区,形成集电极电流 IC 。在共发射极晶体管电路中 , 发射结在基极电路中正向偏置 , 其电压降很小。绝大部分 的集电极和发射极之间的外加偏压都加在反向偏置的集电结上。由于 VBE 很小,所以基极电流约为 IB= 5V/50 k Ω = 。 如果晶体管的共发射极电流放大系数β = IC / IB =100, 集电极电流 IC= β*IB=10mA。在500Ω的集电极负载电阻上有电压降VRC=10mA*500Ω=5V,而晶体管集电极和发射极之间的压降为VCE=5V,如果在基极偏置电路中叠加一个交变的小电流ib,在集电极电路中将出现一个相应的交变电流ic,有c/ib=β,实现了双极晶体管的电流放大作用。 金属氧化物半导体场效应三极管的基本工作原理是靠半导体表面的电场效应,在半导体中感生出导电沟道来进行工作的。当栅 G 电压 VG 增大时, p 型半导体表面的多数载流子枣空穴逐渐减少、耗尽,而电子逐渐积累到反型。当表面达到反型时,电子积累层将在 n+ 源区 S 和 n+ 漏区 D 之间形成导电沟道。当 VDS ≠ 0 时,源漏电极之间有较大的电流 IDS 流过。使半导体表面达到强反型时所需加的栅源电压称为阈值电压 VT 。当 VGS>VT 并取不同数值时,反型层的导电能力将改变,在相同的 VDS 下也将产生不同的 IDS , 实现栅源电压 VGS 对源漏电流 IDS 的控制。 二、晶体管的命名方法 晶体管:最常用的有三极管和二极管两种。三极管以符号BG(旧)或(T)表示,二极管以D表示。按制作材料分,晶体管可分为锗管和硅管两种。 按极性分,三极管有PNP和NPN两种,而二极管有P型和N型之分。多数国产管用xxx表示,其中每一位都有特定含义:如 3 A X 31,第一位3代表三极管,2代表二极管。第二位代表材料和极性。A代表PNP型锗材料;B代表NPN型锗材料;C为PNP型硅材料;D为NPN型硅材料。第三位表示用途,其中X代表低频小功率管;D代表低频大功率管;G代表高频小功率管;A代表高频大功率管。最后面的数字是产品的序号,序号不同,各种指标略有差异。注意,二极管同三极管第二位意义基本相同,而第三位则含义不同。对于二极管来说,第三位的P代表检波管;W代表稳压管;Z代表整流管。上面举的例子,具体来说就是PNP型锗材料低频小功率管。对于进口的三极管来说,就各有不同,要在实际使用过程中注意积累资料。 常用的进口管有韩国的90xx、80xx系列,欧洲的2Sx系列,在该系列中,第三位含义同国产管的第三位基本相同。 三、 常用中小功率三极管参数表 型号 材料与极性 Pcm(W) Icm(mA) BVcbo(V) ft(MHz) 3DG6C SI-NPN 20 45 >100 3DG7C SI-NPN 100 >60 >100 3DG12C SI-NPN 300 40 >300 3DG111 SI-NPN 100 >20 >100 3DG112 SI-NPN 100 60 >100 3DG130C SI-NPN 300 60 150 3DG201C SI-NPN 25 45 150 C9011 SI-NPN 30 50 150 C9012 SI-PNP -500 -40 C9013 SI-NPN 500 40 C9014 SI-NPN 100 50 150 C9015 SI-PNP -100 -50 100 C9016 SI-NPN 25 30 620 C9018 SI-NPN 50 30 C8050 SI-NPN 1 40 190 C8580 SI-PNP 1 -40 200 2N5551 SI-NPN 600 180 2N5401 SI-PNP -600 160 100 2N4124 SI-NPN 200 30 300 四、用万用表测试三极管 (1) 判别基极和管子的类型 选用欧姆档的R*100(或R*1K)档,先用红表笔接一个管脚,黑表笔接另一个管脚,可测出两个电阻值,然后再用红表笔接另一个管脚,重复上述步骤,又测得一组电阻值,这样测3次,其中有一组两个阻值都很小的,对应测得这组值的红表笔接的为基极,且管子是PNP型的;反之,若用黑表笔接一个管脚,重复上述做法,若测得两个阻值都小,对应黑表笔为基极,且管子是NPN型的。 (2)判别集电极 因为三极管发射极和集电极正确连接时β大(表针摆动幅度大),反接时β就小得多。因此,先假设一个集电极,用欧姆档连接,(对NPN型管,发射极接黑表笔,集电极接红表笔)。测量时,用手捏住基极和假设的集电极,两极不能接触,若指针摆动幅度大,而把两极对调后指针摆动小,则说明假设是正确的,从而确定集电极和发射极。 (2) 电流放大系数β的估算 选用欧姆档的R*100(或R*1K)档,对NPN型管,红表笔接发射极,黑表笔接集电极,测量时,只要比较用手捏住基极和集电极(两极不能接触),和把手放开两种情况小指针摆动的大小,摆动越大,β值越高。

一、晶体三极管的命名方法及型号字母意义 晶体三极管的命名方法见图5-18,型号字母意义见表5-6 二、晶体三极管的种类 晶体三极管主要有NPN 型和PNP型两大类,一般我们可以从晶体管上标出的型号来识别。详见表5-6。晶体三极管的种类划分如下。 ①按设计结构分为 : 点接触型、面接触型。 ②按工作频率分为 : 高频管、低频管、开关管。 ③按功率大小分为 : 大功率、中功率、小功率。 ④从封装形式分为 : 金属封装、塑料封装。 三、三极管的主要参数 一般情况晶体管的参数可分为直流参数、交流参数、极限参数三大类。 ①直流参数 : 集电极 -基极反向电流 ICBO。此值越小说明晶体管温度稳定性越好。一般小功率管约10μA左右,硅晶体管更小。 集电极-发射极反向电流ICEO, 也称穿透电流。此值越小说明晶体管稳定性越好。过大说明这个晶体管不宜使用。 ②极限参数:晶体管的极限参数有: 集电极最大允许电流ICM;集电极最大允许耗散功率ICM;集电极-发射极反向击穿电压V(BR)CEO 。 ③晶体管的电流放大系数:晶体管的直流放大系数和交流放大系数近似相等,在实际使用时一般不再区分,都用β表示,也可用hFE表示。 为了能直观地表明三极管的放大倍数 , 常在三极管的外壳上标注不同的色标。锗、硅开关管 , 高、低频小功率管 , 硅低频大功率管所用的色标标志如表 2-9-6 所示。β范围 0~15 15~25 25~40 40~55 55~80 80~120 120~180 180~270 270~400 400~ 色标 棕 红 橙 黄 绿 蓝 紫 灰 白 黑 表5-7 部分三极管β值色标表示 ④特性频率fT:晶体三极管的β值随工作频率的升高而下降,三极管的特性频率f是当β下降到 1 时的频率值。也就是说 , 在这个频率下的三极管,己失去放大能力,因为晶体管的工作频率必须小于晶体管特性频率的一半以下。四、常用晶体三极管的外形识别 ①小功率晶体三极管外形电极识别:对于小功率晶体三极管来说,有金属外壳和塑料外壳封装两种,如图5-25 所示。②大功率晶体三极管外形电极识别:对于大功率晶体三极管,外形一般分为F型,G型两种,如图5-26(a) 所示。F型管从外形上只能看到两个电极。将管脚底面朝上,两个电极管脚置于左侧,上面为e极,下为b极,底座为C极。G型管的三个电极的分布如图5-26(b) 所示。图 5-26 大功率晶体三极管电极识别五、用指针式万用表判断晶体三极管好坏及辨别三极管的e、 b、c电极 三极管的管脚必须正确辨认,否则,接入电路不但不能正常工作,还可能烧坏晶体管。己知三极管类型及电极,指针式万用表判别晶体管好坏的方法如下: ①测 NPN 三极管:将万用表欧姆挡置 "R × 100" 或 "R × lk" 处,把黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是好的。 ②测 PNP 三极管:将万用表欧姆挡置 "R × 100" 或 "R × lk" 处,把红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是好的。 当三极管上标记不清楚时,可以用万用表来初步确定三极管的好坏及类型 (NPN 型还是 PNP 型 ),并辨别出e、b、c三个电极。测试方法如下 : ①用指针式万用表判断基极 b 和三极管的类型:将万用表欧姆挡置 "R × 100" 或"R×lk" 处,先假设三极管的某极为"基极",并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧 ),则假设的基极是正确的,且被测三极管为 NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧 ), 则假设的基极是正确的,且被测三极管为 PNP 型管。如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。 ②判断集电极c和发射极e:仍将指针式万用表欧姆挡置 "R × 100"或"R × 1k" 处,以NPN管为例,把黑表笔接在假设的集电极c上,红表笔接到假设的发射极e上,并用手捏住b和c极 ( 不能使b、c直接接触 ), 通过人体 , 相当 b 、 C 之间接入偏置电阻 , 如图 5-27(a) 所示。读出表头所示的阻值 , 然后将两表笔反接重测。若第一次测得的阻值比第二次小 , 说明原假设成立 , 因为 c 、 e 问电阻值小说明通过万用表的电流大 , 偏置正常。其等效电路如图5-27(b) 所示 , 图中VCC 是表内电阻挡提供的电池 ,R为表 内阻 ,Rm 为人体电阻。图 5-27 用指针万用表判别三极管 c 、 e 电极 用数字万用表测二极管的挡位也能检测三极管的PN结,可以很方便地确定三极管的好坏及类型,但要注意,与指针式万用表不同,数字式万用表红表笔为内部电池的正端。例:当把红表笔接在假设的基极上, 而将黑表笔先后接到其余两个极上, 如果表显示通〈硅管正向压降在 左右 ), 则假设的基极是正确的 , 且被测三极管为 NPN 型管。 数字式万用表一般都有测三极管放大倍数的挡位(hFE), 使用时 , 先确认晶体管类型 , 然后将被测管子 e 、b 、c三脚分别插入数字式万用表面板对应的三极管插孔中,表显示出hFE 的近似值。 以上介绍的方法是比较简单的测试,要想进一步精确测试可以使用晶体管图示仪 ,它能十分清楚地显示出三极管的特性曲线及电流放大倍数等。六、三极管的选用 选用三极管要依据它在电路中所承担的作用查阅晶体管手册,选择参数合适的三极管型号。 a、NPN型和PNP型的晶体管直流偏置电路极性是完全相反的,具体连接时必须注意。 b、电路加在晶体管上的恒定或瞬态反向电压值要小于晶体管的反向击穿电压,否则晶体管很易损坏。 c、高频运用时,所选晶体管的特征频率F,要高于工作频率,以保证晶体管能正常工作。 d、大功率运用时晶体管内耗散的功率必须小于厂家给出的最大耗散功率,否则晶体管容易被热击穿,晶体管的耗散功率值与环境温度及散热大小形状有关,使用时注意手册说明。 七、中、小功率三极管的检测方 ①性能好环的判定,对已知型号和端子排列的三极管,可按下述方法来判断其性能好环。 a、测量极间电阻。测试方法如图5-28所示。将万用表置于R×100或R×1K挡,按照红、黑表笔的6种不同接法时行测试,其中,发射结和集电结的正向电阻值比较低,其他4种接法测得电阻值得都很高。质量良好的中、小功率三极管。正向电阻一般为几百欧至几千欧,其余的极间电阻值都很高,约为几百千欧至无穷大,但不管是低阻还是高阻,硅材料三极管的极间电阻要比锗材料三极管的极间电阻大。图5-28 三极管的正常极间电阻 b、测量穿透电流ICBD三极管的穿透电流ICBD的数值近似等于管子的放大倍数β和集电结的反向饱和电流ICBD乘积,ICBD随着环境温度的升高增长很快,ICBD的增加必然ICBD然的增大,而ICBD的增大将直接影响管子工作的稳定性,所以在使用中尽量选用ICBD+小的管子。 通过用万用表电阻挡测量三极管e-c极之间的电阻的方法,可间接估计ICBD的大小,具体方法如下。 测试电路如5-29所示,其中图(a)为测PNP型管的接法,图(b)为测NPN型管的接法,万用表电阻挡量程一般选用R×100或R×1K挡,要求测得的电阻值越大越好,e-c间的阻值越大,说明管子ICBD越小,反之,所测阻值越小,说明被测管ICBD越大。一般说来,中、小功率硅管、锗材料高频管及锗材料低频管,其阻值应分别在几百千欧,几十千欧及十几千欧以上。如果阻值很小或测试时万用表来回晃动,则表明ICEO很大,管子的性能不稳定。图5-29 测量三极管的Iceo 在测量三极管的ICEO的过程中,还可以同时检查判断一下管子的稳定性优劣。具体办法是:测量时,用手捏住管壳约1min左右,观察万用表指针向右漂移的情况,指针向右漂移摆动速度越快,说明管子的稳定性越差。通常,e-c间电阻比较小的管子,热稳定性相对就较差。在使用的过程中,稳定性不佳的管子应尽量不用,特别是在要求稳定性较高的电路中更不能使用ICEO大的管子。另外,管子的β越大,ICEO也越大,所以在要求稳定性较高的电路中,所使用的管子的β值不要太高。 C.测量放大能力β。测试电路如图5-30所示。其中图(a)为测PNP型管的接法,图(b)为测NPN型管的接法。万用表置于R×1k挡。具体测试步骤是,先将红、黑表笔按图7-46所示电路接相应端子,然后将电阻R接入电路。此时,万用表指针应向右偏转,偏转的角度越大,说明被测管的放大倍数β越大。如果接上电阻R以后指针向右摆幅度不大或者根本就停止在原位不动,则表明管子的放大能力很差或者已经被损坏。电阻R可用70~100kΩ的固定电阻,也可以利用人体电阻,即用手捏住c、b两端子(注意,c、b间不能短接)来代替电阻R。另外也可以用两手操作,用舌头去舔c、b两端子来充当电阻R进行测量。图5-30 测量三极管的β值方法一 上述方法的优点是简单易行,缺点是只能比较管子β的相对大小,而不能测出β的具体数值。 有些型号的中、小功率三极管,生产厂家在其管壳顶部表示出不同色点来表明管子的放大倍数β值,其颜色和β值的对应关系如表5-8所示。但要注意,各厂家用色标并不一定完全相同。色点 棕 红 橙 黄 绿 蓝 紫 灰 白 黑 β 17 17~27 27~40 40~77 77~80 80~120 120~180 180~270 270~400 >400 ②检测判别电极 如果不知道三极管的型号及管子的端子排列,用万用表进行检测判断。 a.判定基极。测试电路如图5-31所示。用万用表R×100和R×1k挡测量三极管三个电极中两个之间的正、反向电阻值。当用第一根表笔接某一电极,而第二根表笔先后接触另外两个电极均测得低电阻值时,则第一根表笔所接的那个电极即为基极b。这时,要注意万用表表笔的极性,如果红表笔接的是基极b,黑表笔分别接在其他两电极时,测得的阻值都较小,则会判定被测三极管为PNP型管;如果黑表笔接的是基极b,红表笔分别接触其他两电极时,测得的阻值都较小,则被测三极管为NPN型管。图5-31 判定三极管基极 b.判定集电极c和发射集e。测试方法如图5-32所示。现以PNP型三极管为例加以说明。将万用表置于R×1k挡。先使被测三极管的基极悬空,万用表的红、黑表笔分别任接其余两端子,此时指针应指在无穷大位置。然后用手指同时捏住基极与右边的端子,如果万用表指针向右偏转较明显,则表明右边一端即为集电极c,左边的端子为发射极e。如果万用表指针基本不摆动,可改用手指同时捏住基极与左边的端子,若指针向右偏转较明显,则证明左边端子为集电极c,右边的端子为发射极e。 图5-32 判定三极管c、e极 如果在以上两次测量过程中万用表指针均不向右摆动和摆动的幅度不明显,则说明万用表给被测三极管提供的测试电压极性接反了,应将红、黑表笔对调位置后按上述步骤重新测试直到将管子的c、e极区分开为止。 用此种方法判定c、e电极的原理如图7-48(b)所示。在这里,基极偏置电阻Rb是用手指来代替的。由于被测管子的集电结上加有反向偏压,发射结加的是正向偏压,所以使其处在放大状态,此时电流放大倍数较高,所产生的集电极电流Ic要使万用表指针明显向右偏转。倘若红、黑表笔接反了,就等于工作电压接反了,管子也就不能正常工作了。放大倍数大大降低了,从十几倍降到几倍,甚至为零,因此,万用表指针摆幅极小甚至根本不动。 ③判别锗管和硅管 测试电路如图5-33所示。E为一节干电池,Rp为50~100kΩ的电阻。将万用表置于直流挡。电路接通以后,万用表所指示的便是被测管子的发射结正向压降。若是锗管,该电压值为~;若是硅管,该电压值为~。顺便指出,目前绝大多数硅管为NPN型管,锗管为PNP型管。图5-33测三极管b、e电压判别锗管与硅管 ④判别高频管与低频管 高频管的截止频率大于3MHz,而低频管的截止频率则小于3MHz,一般情况下,二者是不能互换使用的。由于高、低频管的型号不同,所以当它们的标志清楚时,可以查有关手册,较容易地直接加以区分。当它们的标志型号不清时,可利用其BVebo的不同用万用表测量发射结的反向电阻,将高、低频管区分开。 以NPN型管为例,将万用表置于R×1k挡,黑表笔接管子的发射结e,红表笔接管子的基极b。此时电阻值一般均在几百千欧以上。接着将万用表拔至R×10k高阻挡,红、黑表笔接法不变,重新测量一次e、b间的电阻值。若所测量阻值与第一次测得的阻值变化不大,可基本判定被测管为低频管;若阻值变化很大,超过万用表满度1/3,可基本判定被测管为高频管。

晶体论文

纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044××1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 基纳米复合材料 Al基纳米复合材料以其超高强度(可达到)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。

三极管的工作状态与应用论文【1】

摘 要:半导体三极管是电子电路的重要元件,它在不同的外部条件下表现出不同的工作状态,从而具有多种不同的功能,因此得到了广泛的应用。

本文主要阐述了三极管的工作状态及其在不同状态下的应用。

关键词:三极管 工作状态 应用

半导体三极管是电子电路的重要元件,它在不同的外部条件下表现出不同的工作状态,从而具有多种不同的功能,因此得到了广泛的应用。

1 三极管的工作状态

三极管在电路中一般表现出三种工作状态:截止状态、放大状态和饱和状态。

截止状态

当加在三极管发射结的电压小于PN结的导通电压时,基极电流为零,三极管处于截止状态。

实际上为了使三极管可靠地截止,常使UBE≤0,此时发射结和集电结均处于反向偏置状态,[1]集电极和发射极之间相当于开关的断开状态。

放大状态

当三极管的发射结正向偏置,且加在发射结的电压大于PN结的导通电压,集电结反向偏置时,三极管处于放大状态。

这时基极电流的微小变化,会引起集电极电流的较大变化,三极管具有电流放大作用。

饱和状态

当三极管的发射结正向偏置,且加在发射结的电压大于PN结的导通电压,集电结也正向偏置时,三极管处于饱和状态。

这时基极电流较大,集电极电流也较大,但集电极电流不再随着基极电流的变化而变化,三极管失去电流放大作用,集电极与发射极之间的电压很小,相当于开关的导通状态。

2 三极管不同状态下的应用

三极管放大状态下的应用

三极管处于放大状态时具有电流放大作用,利用这一特点,三极管常用在模拟放大电路中。

三极管对小信号实现放大作用时,基本放大电路有三种不同的连接方式:共发射极接法、共基极接法和共集电极接法。

在共发射极接法中,常用的放大电路有固定式偏置电路、分压式偏置电路和带有射极电阻的固定式偏置电路。

固定式偏置电路静态工作点不太稳定,受温度的影响,输出信号容易产生失真,故在实际中常采用分压式偏置电路以稳定静态工作点。

电路如图1所示。

共发射极接法放大电路因其电压放大倍数比较高,而得到广泛的应用,在多级放大电路中,多用作中间级。

在共集电极接法中,负载接在发射极,输出电压从发射极输出,因此,叫射极输出器。

因输出电压与输入电压同相,输出信号跟随输入信号的变化而变化,因此,射极输出器又称为射极跟随器或电压跟随器。

射极跟随器的电压放大倍数略小于1,没有电压放大作用,但有一定的电流放大作用和功率放大作用。

在多级放大电路中,射极输出器作为输入级可减轻信号源的负担,作为输出级可提高放大电路的带负载能力,作为中间级起阻抗变换作用,使前后级共发射极放大电路阻抗匹配,实现信号的最大功率传输。[2]

在共基极接法中,交流信号从发射极输入,从集电极输出。

该电路没有电流放大作用,但具有电压放大作用,而且其频率特性比较好,一般多用于高频或宽频带放大电路及恒流源电路。

三极管截止和饱和状态下的应用

三极管处于截止状态时相当于开关的断开状态,处于饱和状态时相当于开关的导通状态,利用这种开关特性,三极管常用在数字电路中。

在稳定状态下,三极管只能工作在饱和区或截止区,它的输出端要么处于高电位,要么处于低电位,即要么有信号输出,要么无信号输出。

实际应用时,由于三极管需要频繁地在断开和闭合状态之间进行切换,因此为了提高开关速度,常使三极管工作在浅饱和区状态。

三极管的开关特性常见的具体应用有:用于彩色电视机、通信设备的开关电源;用于驱动电路,驱动发光二极管、蜂鸣器、继电器等器件;用于彩色电视机行输出管;用于开关电路、高频振荡电路、模数转换电路、脉冲电路、低频功率放大电路、电流调整等;在冶金、机械、纺织等工业自动控制系统中,光电开关可作指示信号,指示加工工件是否存在或存在的位置。[3]

开关三极管因其寿命长、安全可靠、没有机械磨损、开关速度快、体积小等特点,得到越来越广泛的应用。

掌握了三极管的各种工作状态,了解了三极管的基本应用,在分析和设计更复杂电路时,就能灵活运用。

参考文献

[1] 袁明文,谢广坤.电子技术[M].哈尔滨:哈尔滨工业大学出版社,2013:11.

[2] 李仁华,冯�.电子技术[M].北京:北京理工大学出版社,2010:44.

[3] 于敏,李闽.三极管开关特性探讨[J].硅谷,2012(1):24.

晶体三极管在不同工作状态下的应用【2】

【摘 要】本文提出了晶体三极管的在不同工作状态下的分类和特性,并指出如何根据晶体三极管的不同工作状态时的作用进行实际应用,从而增强学生对晶体三极管的工作状态的了解,提高学生分析和解决问题的能力。

【关键词】非线性器件;导通角;正向偏置;反向偏置

1.引言

晶体三极管是电子电路中非常重要的元器件,每一种电子电路几乎都离不开它。

它是一种非线性器件,在不同的外部条件下会呈现出不同的工作状态。

在实际应用时,可根据它的不同工作状态应用到不同的电子电路中,从而有效地发挥它的作用。

为了更好地在电路中发挥晶体三极管的作用就要掌握不同工作状态下它的分类和特性,这样不但有利于很好地应用晶体三极管,而且有利于学习和掌握电路的基本知识,这样在分析和设计电路时就会得心应手,避免出现错误。

2.晶体三极管在不同工作状态下的分类

晶体三极管是有源器件,它在电路中工作时,要在它发射结和集电结施加不同的偏置电压。

而根据它的基极和集电极偏置电压的不同,晶体三极管呈现不同的工作状态。

此时可把晶体三极管的工作状态划分成不同的区域。

即如果发射结正向偏置、集电结反向偏置,晶体三极管工作在放大区;如果发射结正向偏置、集电结正向偏置,晶体三极管工作在饱和区,如果发射结反向偏置或零偏、集电结反向偏置,晶体三极管工作在截止区。

晶体三极管工作在饱和区和放大区时都说明它是导通的,放大器在信号的一个周期内的导通情况可用导通角来衡量。

放大器的导通角用θ来表示,定义为晶体三极管一个信号周期内导通时间乘以角频率ω的一半。

根据放大器导通角的不同可晶体三极管放大器分为甲类、乙类、丙类、丁类等放大器。

3.各类放大器的特性和应用

甲类放大器

当晶体三极管放大器的静态工作点设置在放大区时,即发射结正向偏置、集电结反向偏置时,放大器工作在放大状态。

此时,在输入信号的整个周期内,晶体三极管都是导通的`,导通角θ为1800,此时晶体三极管放大器称为甲类放大器。

其工作波形如图a所示。

它的工作特性是:静态工作点电流比较大,非线性失真小、管耗大、效率低、输出功率小。

甲类放大器有电压放大的作用,可应用到电压放大和小功率放大电路中。

另外由于它的失真小,所以在宽带功率放大器中,晶体三极管也工作在甲类状态,但由于它的效率低、输出功率小,不能满足功率放大器对输出功率的要求,所以常采用功率合成技术,实现多个功率放大器的联合工作,获得大功率的输出。

乙类放大器

当晶体三极管放大器的静态工作点设置在截止区时,如果信号为正时三极管导通,信号为负时三极管截止。

即三极管在信号的半个周期导通,导通角θ为900,此时放大器为乙类放大器,它放大的信号缺少半个周期,是失真的。

但是在乙类互补推挽放大电路中,用两个互补的三极管轮流推挽导通就可以弥补这种失真的不足,从而输出完整的信号波形,电路如图b所示。

乙类放大器由于管耗小,效率大大提高。

甲乙类放大器

在实际功率放大电路中,由于晶体三级管发射结存在导通压降,所以在乙类互补功率放大器中,由于V1、V2管没有基极偏流,静态时两个管的发射结偏置电压为零。

当输入信号小于晶体管的死区电压时,管子仍处于截止状态。

因此,在输入信号的一个周期内,两个晶体三极管轮流导通时形成的基极电流波形在过零点附近一个区域内出现失真。

即在两管输出波形的交接处存在失真,这种失真称为“交越”失真。

这时需要在两个晶体三极管的基极加上等于发射结导通压降的电压,使两个晶体三极管均处在微导通状态,两管轮流导通时,交替得比较平滑,这样就消除了交越失真。

电路如图c所示。

丙类放大器

当导通角θ小于900时,晶体三极管放大器称为丙类放大器。

丙类放大器又因工作状态的不同可分为欠压、临界和饱和三种工作状态。

当放大器工作在放大区和截止区时为欠压状态,如果晶体三极管工作刚好不进入饱和区时,则称为临界工作状态。

晶体三极管工作进入饱和区时为过压状态。

三种状态时集电极输出的波形分别为尖顶余弦脉冲、略微平缓的余弦脉冲和顶端凹陷的余弦脉冲。

由于这几种余弦脉冲都可以分解出基波分量和各次谐波分量,又由于谐振回路具有滤波作用,晶体三极管放大器的输出电压仍为没有失真的余弦波形。

所以丙类放大器可和谐振回路共同构成丙类谐振功率放大器或丙类倍频器。

丙类放大器工作在欠压状态时,放大器输出功率小,管耗大,效率低。

工作在过压状态时,放大器输出功率较大,管耗小,效率高。

工作在临界状态时,放大器输出功率大,管耗小,效率高。

丁类放大器

丙类放大器可以通过减小电流导通角θ来提高放大器的效率,但是为了让输出功率符合要求又不使输入激励电压太大,导通θ就不能太小,因而放大器效率的提高就受到了限制。

丁类放大器的导通角也是900,但是丁类放大器工作在饱和或截止状态。

由于三极管工作在饱和状态时集电极电流ic最大,但集电极和发射极之间的电压uce最小。

三极管工作在截止状态时集电极电流ic最小,但集电极和发射极之间的电压uce最大。

所以丁类放大器在工作时,ic和uce的乘积最小,理想情况下它们的乘积可接近于零。

在积分区间不变时,即导通角θ不变时,ic和uce的乘积越小,晶体管集电极的耗散功率起小,晶体管放大器集电极的效率就越高,输出功率就越大。

因此,在这两种状态时集电极损耗很小,三极管的效率高,即丁类放大器的效率比丙类放大器要高。

振荡电路中的放大器

晶体三极管放大器在具体电路中应用时,可以不单单间工作在一种工作状态。

有时会根据电路的要求,在设计时,当电路中的输入信号发生变化时,放大器的工作状态也发生变化,从而满足电路的实际要示。

比如在振荡电路中,起振时,电路工作于小信号状态,即三极管工作在甲类状态,因此可将振荡电路作为线性电路来处理,用小信号等效电路求出振荡环路的传输系数。

随着振荡幅度的增大,输入信号的幅度也越来越大,放大器的工作由线性状态进入非线性状态,再加上电路中偏置电路的自给偏压效应,使得晶体管的基极偏置电压随着输入信号的增大而减小,这样使三极管的工作状态进入乙类或丙类非线性工作状态,相应的放大倍数随之减小,直到振荡进入平衡状态。

在振荡电路的起振到平衡的过程中,电路由小信号工作到大信号工作,放大器的工作状态也由甲类、乙类过渡到丙类,从而满足了振荡电路对放大器的要求。

这正是放大器各种工作状态的很好的应用。

4.结束语

总之随着放大器的进一步研究和应用,其分类也越来越多,应用也越来越广泛。

现在又出现了效率比丁类放大器还高的戊类放大器。

在实际电路中,要根据电路对放大器的要求来选用放大器的不同状态。

比如电压放大时要求电压放大倍数要高,就要选用电压放大器。

功率放大时就要选择功率放大倍数高的功率放大器。

在输入信号频率不同时,还要考虑电路中的参数与信号频率的关系。

只有掌握了放大器的各类状态,才能很好地把知识应用到实际电路中。

参考文献:

[1]胡宴如.模拟电子技术基础[M].高等教育出版社,2004:95-97.

[2]胡宴如.高频电子线路[M].高等教育出版社,2004:35-37,65-66.

导读:由于直接实验测试的难度,晶界 (GBs) 是否预熔是一个长期存在的问题。本文采用聚焦光束以局部加热块状硬球胶体晶体中的单个晶界 ,通过视频显微镜观察单粒子分辨率下的熔化动力学。我们发现所有的GB,包括高能GB,都可以通过异质成核机制过热和熔化。基于GBs的经典成核理论,我们测量了临界核的孵育时间和接触角,以计算所有相关的动力学因素以及能垒,弱过热条件下固-液界面的形核率和扩散系数。还测量了具有各种取向差的 GB 的过热极限,以进一步 探索 不稳定机制。在传统的均匀加热下,预熔仅发生在三结点处,而 GB 保持其原始结构直至熔点。三结点处的预熔化区域通过均匀液体层的侵入进一步阻止了高能GBs过热。总的来说,我们的实验证实了 GB 过热的存在。

胶体是可视化这一熔化过程的杰出模型系统,因为每个胶体粒子的动力学可以直接由光学视频显微镜跟踪,在缺陷处,尤其是在GB处,熔化开始于“预熔化”。 然而,由于缺乏对不同取向的GBs的系统研究,以及准确确定大熔点的挑战,使得揭示GBs熔化的本质仍然很困难。此外,除了有利于润湿的衬底或表面的影响外,晶体内原有的缺陷也会相互影响,导致复杂的熔化过程。因此,有必要提取单个GB的熔化行为。

重庆大学物理学院软凝聚态物理与智能材料重点实验室Ziren Wang教授团队,在本研究中,为了尽量减少各种缺陷之间产生的干扰,聚焦一束光局部加热NIPA胶体晶体中的单个GB以及其他类型的单个缺陷, 并通过视频显微镜研究相应的熔化过程。这种局部加热技术最初是用来研究均匀熔化的。与此同时,我们通过监测林德曼参数的突然斜率变化,并将均匀成核的临界半径外推到无穷大来精确定位熔点(图1c)。我们发现所有的GB都可以被过热和熔化,并经历成核机制。相关研究成果以题“ Superheating of grain boundaries within bulk colloidal crystals ”发表在国际著名期刊 Nature Communications 上。

论文链接:

图1:光学加热和熔点的测定。

图 2:三结处的预熔。a典型预熔三结在熔点处的真实图像。l 0是预熔袋的内切圆中心与晶-晶-液三联结的距离。b预熔袋d的尺寸随着T接近T m而增加。c两个紧密的三联结有助于润湿中间的 GB 并导致伪“预熔”。d一旦T  >  T m,GBs 通过侵入融化成液体层。e熔融 GBs 的平衡宽度w是取向错误的函数θ在T m  + (2) C 时。在每个θ下任意选择倾斜角。f , g在连接到三重结的低角度 GB 的情况下的熔化行为。值得注意的是,均匀加热和局部加热方法都产生相同的 a - g,这意味着我们系统中的玻璃壁对三结的熔化行为影响很小。由于液体区域的横截面沿z方向是均匀的,我们将物平面固定在玻璃通道的中间范围内。误差线对应于标准偏差。比例尺:5 μm。

图 3:GB 的过热。

图 4:单个位错上的成核。

总的来说,本文报道了一个真实空间的研究,在大块胶体晶体中GB熔化的视频显微镜。在单个超热GB上观察到的成核现象是一个定性现象,这意味着没有预熔化的GB和GB润湿是一个相变,而不是一个平衡现象。虽然在较小的晶粒尺寸(S104)下,由于相邻的预熔三联结,GBs可能出现伪“预熔”,这为体系设置了约束,并为多晶材料的性能提供了许多其他含义。与此同时,MD模拟也揭示了在本体熔化温度以下存在大量结构无序的例子。在不同的条件下,GB的熔化情况不同,如GB的双晶化和粒子相互作用。因此,分离势可以是排斥的、吸引的或两者的结合。在这里,我们的实验验证了gb的过热存在。

  • 索引序列
  • 晶体结构毕业论文
  • 钙钛矿晶体结构论文参考文献
  • 氧化镁晶体结构论文参考文献
  • 晶体管毕业论文3
  • 晶体论文
  • 返回顶部