五年级学生数学手抄报县第四实验小学五年级举办数学手抄报比赛小学生手抄报数学报合集涟五年级学生数学手抄报五年级有关数学手抄报五年级数学手抄报关于数学手抄报的内容小学生数学报小学生数学手抄报展示五年级学生数学手抄报五年级数学报图片大全手抄报 五年级数学手抄报部数学组在3月的最后一周通知了三到五年级全体学生制作数学手抄报五年级数学手抄报二智慧数学报 伴我成长乐 延安枣园小学三年级数学手抄报比赛五年级数学手抄报图片精选版面设计图趣味数学手抄报数学手抄报小学六年级数学手抄报-数学故事小学数学手抄报比赛锦集小学生数学手抄报图片数学报数学报积旳变化规律手抄报 家乡变化手抄报小学生一等奖五年级内容与图片简单漂亮小朋友们数学报手抄报怎么画让快乐与数学同行让智慧伴活动共生一一盐官镇中川小学数学手抄报展
数学手抄报合集整理好了快来学习吧六年级数学手抄报数学密铺图片手数学三年级手抄报简单又漂亮三年级数学手抄报三年级上半学期手抄报三年级上册手抄报齐田杰数学手抄报|2012级11班 - 泰安师范附属学校数学三年级手抄报简单又漂亮三年级数学手抄报三年级上册超级简单的手抄报 三年级上册手抄报怎样画二年级上册的数学手抄报三年级上册手抄报二年级上学期四单元手抄报三年级上册手抄报二年级上册数学手抄报内容-526kb二年级数学上册的知识手抄报 二年级数学手抄报八年级上册数学手抄报图片第一章八年级上册数学手抄报图片二年级上数学手抄报三年级上册知识梳理手抄报 三年级上册手抄报数学手抄报三年级上册图片数学手抄报-95kb小学生数学报三年级手抄报小学生数学手抄报杨家岭福州希望小学一年级2班数学特色作业《数学乐园》手抄报三年级上册数学小报手抄报 三年级上册手抄报
县第四实验小学五年级举办数学手抄报比赛小学生手抄报数学报合集涟智慧数学报 伴我成长乐 延安枣园小学三年级数学手抄报比赛《让快乐与数学同行让智慧伴活动共生》手抄报开心童话数学手抄报童话手抄报精致数学小报模板设计图品汇数学 手抄报.咱们三年级的主题是数学手抄报.同学们可以搜集感兴趣的数学故事高档数学小报模板图品汇数学 手抄报 图.其它 小小数学报积累大能量 写美篇 数学手抄报是学生动手实践自主数学小报数学手抄报小学数学手抄报关于数学手抄报的内容小学生数学报 数学手抄报小学生一等奖五年级内容与图片简单漂亮小朋友们数学报手抄报怎么画创意数学世界小报手抄报模板图品汇数学 .精美数学小报手抄报设计图品汇数学 手抄.
关于集合运算的应用收稿日期:2008-01-08作者简介:邓凤茹(1969-),讲师,河北廊坊人,从事基础教育教学工作。1简介集合论的运算集合论是最近发现的数学理论,在1871年集合论的创始人德国大数学家康.托尔给出集合的第一定义,使“集合”成为数学基本概念之一,它也是整个数学大厦的基础,虽然集合论很“年轻”,但是它能够论证数学各个分支的统一性,例如代数式和几何式效果是相等的。下面简单介绍集合的概念和运算。集合的概念集合是指具有某种特定性质的事物的总体。组成这个集合的事物称为集合的元素;根据集合元素的个数集合分为有限集和无限集,同一性质的集合可以定义运算,集合的运算有三种:并、交、差。集合的运算设A、B是两个集合,由所有属于A或者属于B的元素组成的集合,称为A与B的并集,简称并(或和),记作A∪B,即A∪B={x|x∈A或x∈B}由所有既属于A又属于B的元素组成的集合,称为A与B的交集,简称交(或积),记作A∩B,即A∩B={x|x∈A且x∈B}由所有既属于A而不属于B的元素组成的集合,称为A与B的差集,简称差,记作A-B,即A-B={x|x∈A且x|B}以上定义可推广到无限多个集合的运算2在概率统计学中的应用1)概率的定义设(Ω,F)是可测空间,对每一个集合A∈F,有一实数与之对应,记为P(A),如果它满足下面三个条件:(1)对每一个集合A∈F,有0≤P(A)≤1;(2)对必然事件Ω,有P(Ω)=1;(3)对任意集合Ai∈F(i=1,2,…n),Ai∩Aj=Φ(i≠j),恒有P(∪ni=1A i)=6ni=1p(A i)(1)则称实值函数P为(Ω,F)上的概率,P(A)就称为事件A的概率2)当A i∩A j≠Φ(i≠j),(i,j=1,2…,n)时,公式一变成一般式即P(∪ni=1A i)=6ni=1p(A i)-6ni=16j>iP(A i∩A j)+6ni=16j>i6k>jP(A i∩A j∩A k)-…+(-1)n-1P(A 1∩A 2∩…∩A n)(2)由De Morgan定理(对偶律或摩根律)可得下述概率公式:P(∩ni=1A i)=P(∪ni=1A i)=P(Ω-∪ni=1A i)即P(∩ni=1A i)=1-[6ni=1p(A i)-6ni=16j>iP(A i∩A j)+6ni=16j>i6k>jP(A i∩A j∩A k)-…+(-1)n-1P(A 1∩A 2∩…∩A n)](3)注意:三个公式的适用条件当n=2时,为最简单的形式即P(A∪B)=P(A)+P(B)-P(A∩B)当A∩B=Φ时,P(A∪B)=P(A)+P(B)(可加性)3在组合数学中的应用1)集合中元素个数:设A为有限集合,A中元素个数为r,则称r为A的元素个数,记作:|A|=r2)推导一般公式|A∪B|=|A|+|B|-|A∩B|(当A∩B=Φ时,|A∪B|=|A|+|B|)|A∪B∪C|=|A|+|B|+|C|-[|A∩B|+|A∩C|+|B∩C|]+|A∩B∩C|推广到一般形式:∪ni=1A i=6ni=1|A i|-6ni=16j>i|A i∩A j|+6ni=16j>i6k>j|A i∩A j∩A k|-…+(-1)n-1|A 1∩A2∩…∩An|(4)由De Morgan定理(对偶律或摩根律)可得下述公式∩ni=1A i=∪ni=1A i=I-∪ni=1A i(I为全集,|I|=m)即∩ni=1A i=m-6ni=1|A i|-6ni=16j>i|A i∩A j|+6ni=16j>i6k>j|A i∩A j∩A k|-…+(-1)n-1|A 1∩A 2∩…∩A n|(5)公式(4)与公式(5)就是容斥原理3)推广容斥原理(1)|A∩B|=|A-(A∩B)|=|A|-|A∩B|同理|B∩A|=|B-(A∩B)|=|B|-|A∩B|即|A∩B|+|B∩A|=|A|+|B|-2|A∩B|(2)|A∩B∩C|=|A∩(B∪C)|=|A∩[I-(B∩C)]|=|A-[(A∩B)U(A∩C)]|=|A|-(|A∩B|+|A∩C|)+|A∩B∩C|同理可得:|A∩B∩C|=|B|-(|A∩B|+|B∩C|)+|A∩B∩C||A∩B∩C|=|C|-(|A∩C|+|B∩C|)+|A∩B∩C|即|A∩B∩C|+|A∩B∩C|+|A∩B∩C|=|A|+|B|+|C|-2(|A∩C|+|B∩C|+|B∩C|)+3|A∩B∩C|(3)推广到一般情况|A 1∩A 2∩A 3∩…∩A n|+|A 1∩A 2∩A 3∩…∩A n|+…|A1∩A2∩A3∩…∩An|=6ni=1|A i|-26ni=16j>i|A i∩A j|+3 6ni=16j>i6k>j|A i∩A j∩A k|-…+n|A 1∩A 2∩…∩A n|令α(m)=6|Ai1∩Ai2∩…∩Aim|,β(1)=6|A i1∩Ai2∩…∩Ain|则上式可表示为:β(1)=C11α(1)-C11+1α(2)+C21+2α(3)-…+C1nα(n)同理可推广:β(m)=Cmmα(m)-Cmm+1α(m+1)+Cmm+2α(m+2)-…+(-1)n-m Cmnα(n)(6)公式(6)为广义的容斥原理(证明略)4应用案例一个学校只有3门课程:数学,物理,化学。已知修这三门课的学生分别有170,130,120人;同时修数学、物理两门课的学生有45人;同时修数学、化学两门课的学生有20人;同时修物理、化学两门课的学生有22人;同时修三门课的学生有3人。问在该校众人抽一名,问他是只参加数学课程的概率是多少?解:设A为修数学课的学生集合;B为修数学课的学生集合;C为修数学课的学生集合;则有:|A|=170;|B|=130;|C|=120;|A∩B|=45;|A∩C|=20;|C∩B|=22|A∩B∩C|=3学校共有学生人数:|A∪B∪C|=|A|+|B|+|C|-[|A∩B|+|A∩C|+|B∩C|]+|A∩B∩C|=170+130+120-(45+20+22)+3=336(人)只参加数学课程的人数:|A∩B∩C|=|A|-(|A∩B|+|A∩C|)+|A∩B∩C|=170-(45+20)+3=108则在该校众人抽一名,只参加数学课程的概率为:P(A∩B∩C)=|A∩B∩C||A∪B∪C|=108336≈(下转第39页)(上接第32页)5结语通过对集合运算在《概率统计》与《组合数学》两门课程中应用的讨论,我们可以归纳为函数式的应用问题,如果把求概率和求集合中元素的个数抽象成为函数,把对应法则统一看作f,x,y为变量,“+”表示“加”或“或”的含义“;3”表示“乘”或“与”,“x”表示“差”或“非”,则该函数满足下列性质:(1)f(x+y)=f(x)+f(y)-f(x y)(2)将上式推广到有限个元素中去为:f(6ni=1x i)=6ni=1f(x i)-6ni=16j>if(x i x j)+6ni=16j>i6k>if(x i x j x k)-…+(-1)n-1 f(x 1 x 2…x n)(3)由De Morgan定理可知下述等式(A常数)f(6ni=1x i)=A-[6ni=1f(x i)-6ni=16j>if(x i x j)+6ni=16j>i6k>if(x i x j x k)-…+(-1)n-1 f(x 1 x 2…x n)]注“:3”号可以省略不写,“∏”表示连乘号以上等式还可以推广到无穷多个变量的函数等式中去,并且该函数也可以应用于其它领域当中。参考文献:[1]卢开澄.组合数学[M].北京:清华大学出版社,2003.[2]梁之舜.概率论及数理统计[M].北京:高等教育出版社,2005.[3]同济大学应用数学系.高等数学[M].北京:高等教育出版社,2005.
数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。 数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。 数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。
数学发展史 此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。数的出现一、数的概念出现 人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。数字与符号的起源与发展一、数的出现 很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。 而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。二、符号的出现 加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简单,直到17世纪中叶才全部形成。 法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。1、加号(+)和减号(-) 加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。2、乘号(×、·) 乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。3、除号(÷) 除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。 至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。4、等号(=) 等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。分数一、分数的产生与定义 人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。 一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。 分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.分数一般包括:真分数,假分数,带分数. 真分数小于1. 假分数大于1,或者等于1. 带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。 注意 :①分母和分子中不能有0,否则无意义。 ②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。 ③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)二、分数的历史与演变 分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。 在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。 在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。 公元前1850年左右的埃及算学文献中,也开始使用分数。200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是3/7 米.像3/7 就是一种新的数,我们把它叫做分数. 为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征.例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的. 最早使用分数的国家是中国.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。 《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法. 在古代,中国使用分数比其他国家要早出一千多年.所以说中国有着悠久的历史,灿烂的文化 。几何一、公式1、平面图形正方形: S=a² C=4a三角形: S=ah/2 a=2S/h h=2S/a平行四边形:S=ah a=S/h h=S/a梯形: S=(a+b)h/2 h=2S/(a+b) a=2S/h-b b=2S/h-a圆形: S=∏r² C=2r∏=∏d r=d/2=C/∏/2r²=S/∏ d=C/∏半圆: S=∏r²/2 C=∏r+d= 顶点数+面数-块数=12、立体图形正方体: V=a³=S底·a S表=6a² S底=a² S侧=4a² 棱长和=12a长方体: V=abh=S底·h S表=2(ab+ac+bc) S侧=2(a+b)h 棱长和=4(a+b+h)圆柱: V=∏r²h S表=2∏r²+∏r²h=S底(h+2) S侧=∏r²h S底=∏r² 其它柱体:V=S底h锥体: V=V柱体/3球: V=4/3∏r³ S表=4∏r²顶点数+面数-棱数=2数论一、数论概述 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们合起来叫做整数。(现在,自然数的概念有了改变,包括正整数和0) 对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。 人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。 数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 二、数论的发展简况 自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。 自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。 在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。 到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。 在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。 由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。三、数论的分类初等数论 意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余。重要的结论包括中国剩余定理、费马小定理、二次互逆律等等。解析数论 借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类。积性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法、圆法等等都是属于这个范畴的重要议题。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。 代数数论 是把整数的概念推广到代数整数的一个分支。关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间的关联尤其紧密。建立了素整数、可除性等概念。 几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。主要在于透过几何观点研究整数(在此即格子点)的分布情形。几何数论研究的基本对象是“空间格网”。在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。最著名的定理为Minkowski 定理。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。 计算数论 借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。 超越数论 研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣。 组合数论 利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由艾狄胥开创的思路。四、皇冠上的明珠 数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。 简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、角谷猜想、圆内整点问题、完全数问题…… 五、中国人的成绩 在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。名著录《几何原本》 欧几里得 约公元前300年 《周髀算经》 作者不详 时间早于公元前一世纪 《九章算术》 作者不详 约公元一世纪 《孙子算经》 作者不详 南北朝时期 《几何学》 笛卡儿 1637年 《自然哲学之数学原理》 牛顿 1687年 《无穷分析引论》 欧拉 1748年 《微分学》 欧拉 1755年 《积分学》(共三卷) 欧拉 1768-1770年 《算术探究》 高斯 1801年 《堆垒素数论》 华罗庚 1940年左右 任意选一段吧!!!
感悟数学 曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r²,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r²=9²∏+6²∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r²=15²∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
小学数学论文写法如下:1.科学性教学论文是教学经验的科学总结,首先要立论正确,论据严谨,符合教学规律。2.实用性教学论文是教学经验的升华,既来源于教学又服务于教学。因此,所引用的材料应该翔实可信,所介绍的方法应该切实可行,能够为同行所借鉴,有一定的推广价值。3.独创性教学论文必须具有论文的共性,即应该要么在理论上有创见,或者至少有新的认识,要么在方法上有创新,或者至少有新的体会,这样才能对教学和教学研究起到推动作用。4.可读性教学论文必须具有文章的共性,即要有章法,要有风采,要有吸引力。遣词造句要符合人们的阅读习惯,容易让人理解。
在课堂中,由我们去担任学习的主角,让我们真正成为学习的主人,是我们每个小学生的共同心愿。一、 数学课堂上我们想操做、爱操做数学活动课是我们都爱上的课,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。例如,我们上《平行四边形面积得计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,有的同学发现可以用剪刀沿着平行四边形的高,把它剪成一个直角三角形和一个直角梯形,然后可以把它们拼成一个长方形;一些同学又发现还可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形。同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底”和“高”。由此,大家终于自己找到了平行四边形面积公式为:S=ah。二、数学课堂上我们想发言、爱发言 那是一节活动公开课,哇!后面的听课老师一大片,我们真有点紧张呢!上课前我就想即使我有了自己的想法,也不一定能表达出来。老师好像看透了我们的心思,老师幽默地说:“我们现在玩一个“过期”的游戏”,我们正纳闷呢,老师又说“过期”的游戏就是“过7”的游戏,遇到含有7的或者7的倍数都要说“过”。哦,逗得我们哈哈直笑,在非常轻松的氛围中完成了游戏,这时候我发现同学们不愿说话的也开始活跃了,原来不敢说话的也打消了顾虑。我还记得那节课老师讲的是 “时、分的认识”,学生对“时针指在2、3之间,分针指在11”时,是2时55分还是3时55分出现了不同意见,展开了被一场别开生面的争执。这时老师让我们结合自己手中钟表模型分组讨论、探索,最终得出了统一答案。
可以写日历上的启示、水滴的作用之类的...........只要与生活有关就行。虽然我们也要写,但是。。。。我实在是懒得写
算24点的技巧 “巧算24点”是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动. “巧算24点”的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24.每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等. “算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题.计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑.这里向大家介绍几种常用的、便于学习掌握的方法: 1.利用3×8=24、4×6=24求解. 把牌面上的四个数想办法凑成3和8、4和6,再相乘求解.如3、3、6、10可组成(10—6÷3)×3=24等.又如2、3、3、7可组成(7+3—2)×3=24等.实践证明,这种方法是利用率最大、命中率最高的一种方法. 2.利用0、11的运算特性求解. 如3、4、4、8可组成3×8+4—4=24等.又如4、5、J、K可组成11×(5—4)+13=24等. 3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数) ①(a—b)×(c+d) 如(10—4)×(2+2)=24等. ②(a+b)÷c×d 如(10+2)÷2×4=24等. ③(a-b÷c)×d 如(3—2÷2)×12=24等. ④(a+b-c)×d 如(9+5—2)×2=24等. ⑤a×b+c—d 如11×3+l—10=24等. ⑥(a-b)×c+d 如(4—l)×6+6=24等. 游戏时,同学们不妨按照上述方法试一试. 需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5. 不难看出,“巧算24点”能极大限度地调动眼、脑、手、口、耳多种感官的协调活动,对于培养我们快捷的心算能力和反应能力很有帮助.
作业帮 猿题库 我要当学霸 学霸君 百度传课
学习周报,青少年报,红树林,特区教育
101教育PPT,有一些实用的数学转盘、计算器、函数曲线……学科工具,辅助老师突破教学重难点,有利于学生理解GeoGebra,可以制作出让学生与老师「互动」的在线数学教案MathType,中小学老师可以用它来编辑数学试卷、书籍、报刊、论文、幻灯演示等方面……
1、《语文报》:
语文报社一直坚持以“大语文”为编辑理念,以“传播语文知识、促进语文教改、弘扬祖国优秀文化、提高全民族文化素质”为编辑宗旨,以“高质量、高品位、实用性加可读性”为编辑方针,它所出版的优秀报刊,培养了一代又一代青少年和青年教师。
2、《学习报》:
《学习报》自创刊起就坚持“求真务实,服务教育”的办报宗旨,坚持“紧扣大纲及课标,针对年级特点和学科特色同步辅导”的办报指导方针,编辑出版了数学版、语文版、英语版、物理版、化学版、生物版、科学版和小学版等系列报纸,涵盖了从小学到高中的各个年级,被《中国新闻出版报》誉为“常在身边的良师”。
3、《中国儿童报》:
让孩子们说话是全国少先队队报,创刊于1946年2月16日。我国创办历史最悠久的小学中低年级少先队队报,帮助小朋友了解天下大事,解除学习生活中的烦恼,培养科学兴趣,提高审美能力,塑造美好心灵。
4、《小学生数学报》:
一款由江苏省教育厅主管,江苏教育报刊总社主办的致力于传播数学文化,激发小学生学好数学的兴趣,开拓知识视野,提供小学生数学学习的丰富资源,提高学习能力,培养小学生良好的数学素养的报纸。
5、《少年智力开发报》:
《少年智力开发报》创刊于1985年,1986年4月由民进河北省委接办。是一份面向广大少年儿童的报纸。现含有从学前至高中、从综合到各学科版20多张报纸,期发行量百万份,是全国发行量较大的报纸之一。其中《少年智力开发报·数学专页》一直受到广大学者以及老师的好评以及喜爱。
《2021小学数学报刊》百度网盘pdf最新全集下载:链接:
2021“小数报杯·小小数学家”暑假快乐思维营在线答题热度已经持续了20天,后台留言中,有些同学觉得so easy,有些同学却抓耳挠腮,so easy的秘诀在哪里?快来小数报微商城看看吧!小小数学家活动由江苏教育报刊总社主办、《小学生数学报》编辑部承办的“小数报杯·小小数学家”线上答题活动报名通道开启后,反响热烈,一度挤爆报名系统 ! 此项读报用报公益活动坚持素质教育理念,紧密配合小学数学课程改革,积极传播数学文化,引领广大少年儿童在数学阅读中发展科学和人文素养。北从黑龙江、吉林,南至广东、海南,还有海外的同学都在积极报名,已经有超过600万人次参加我们的暑假答题活
可以到当地邮局去订阅,国内统一刊号:CN32-0701/(F)
你可以把乘法口诀表写上去,在写一些关于数学家的故事等,,还可以出些题目,或者趣味数学,也可以把数学家的资料写上去。。。。故事如,祖 冲 之祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为<π<,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈)密率22/7(≈),这两个数都是 π的渐近分数。还有些资料,,华 罗 庚华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副主席。华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。