首页 > 期刊论文知识库 > 对数学的认识的毕业论文

对数学的认识的毕业论文

发布时间:

对数学的认识的毕业论文

数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文

大学数学是大学生必修的课程之一,如何提升大学生数学学习兴趣,培养数学型人才,是每一个大学数学教师都需要思考的。下面是我为大家整理的大学数学论文,供大家参考。

大学数学论文 范文 一:大学数学网络 教育 论文

一、教师要转变观念

意识是行动的主宰者。首先,教师要充分认识到网络教学资源对大学数学教学所产生的深刻影响。在网络信息快速发展的当今时代,如果仍旧拘泥于传统教学方式,势必将会处于落伍的境地。不仅影响教学效率,往深层次讲,还会影响学生 毕业 走向社会的适应能力以及生存能力。因此,教师要积极主动投身于教学改革的先行者行列中,构建现代化网络教学平台、加强网络教学资源的建设。

二、进行有效引导

在现代网络信息资源的基础上,学生能够变传统被动接受知识为主动探索知识。因此,教师要进行适当引导,指导学生掌握有效运用现代网络资源的 方法 ,不断发挥学生的主观能动性,培养学生的自主学习与探索能力,进而实现学生主动探索、教师指导的理想教学模式。 课前预习 、课中学习、课后巩固等这些环节,教师均可以让学生先自主学习,而后再进行有效指导。

三、有效整合教学资源

现代网络为我们带来丰富多彩的教学资源的同时,也带来了一些垃圾信息。因此,在大学数学教学中,教师要具备有效甄选、整合教学资源的能力。要根据课程内容,选择适合课时内容的资源融入到教学中。在选择网络资源时要遵循趣味性原则、实用性原则以及内容相符原则。运用网络教学资源进行大学数学教学是提高大学数学教学质量与教学效率的有效途径与方法,也是教育教学发展的必然趋势。教师应当转变传统的教学观念,充分重视网络信息资源,以教材为中心,有效整合网络资源,并运用于教学中,提高学生的学习兴趣,不断培养学生的自主学习能力。

大学数学论文范文二:大学数学教学中网络教育资源研究

一、如何利用网络教育资源提高大学数学教育质量

(一)加强教师对网络教育资源的认知

以前的大学数学教学方式单一,与学生的交流也少之又少,但是随着网络资源的发展,这一切将会有很大的变化,这也是适应社会的发展,提高数学教学质量的一种必然趋势。学校也应加大网络资源建设,顺应社会发展的潮流,不要封闭在传统的教育理念之中。大学教师也应适应社会的发展,不断的学习,摆脱落伍的危机。

(二)教师要把网络教育资源的内容融入到教学之中

教师应该适应网络的发展,把网络教育资源融入到现代教学之中,但是不要盲目的引进,首先就要考虑引进内容的适用性,所引进的内容要与所学的内容有相关性,能起到补充,扩充的作用,这样能够开拓学生们的视野。其次引进的内容还要具有适用性,能够让学生们把所学的内容融入到生活,融入到社会,达到学生们能认识数学,应用数学,培养他们的能力。最后还要具有一定的趣味性,这样才能令学生更能接受所学内容,更愿意去学习数学,应用数学。所以教师合理的引进网络教育资源使十分重要的。

(三)教师要引导学生们自主利用网络教育资源

教师不但要学习引进网络教育资源,还要充分的引导学生利用网络资源,培养他们自主学习数学, 爱好 数学的良好作风。以前的数学教育中,以老师讲解为主,学生被动的接受知识,学习过后学生们无法应用,这是一个很大的失败,而现在的网络发展情况下,老师可以引导学生们更好的利用网络资源,引导学生们自主学习,可以布置学生做课前预习,到网络上寻求资料,还可以让学生们课后巩固学习内容,网上寻求交流,以便达到巩固知识的作用。

(四)增强学生自主学习能力和兴趣

现在大学数学教育尽管很重视学生的学习,教师又会安排课余时间组织学生们给他们进行答疑解惑,但是受到时间性和地域性的限制,效果往往是不太理想,现在网络资源的丰富,不再受时间和地域的限制, 网络技术 可以让学生和老师间进行多样化的交流和辅导,也可以让学生们通过一些论坛,邮箱,视频等等不断的学习巩固自己的知识。学习不再有时间地域的限制,学生们的积极性会大大提高,兴趣也会越来越高,提高数学成绩不再是难事。

二、结束语

大学数学教育充分有效的利用网络课程资源是提高大学数学教育质量的有效办法,教师应该打破传统教学的局限性,以课材为中心,充分利用网络资源融入到现在教学之中,补充课本上的不足,增强教育之中的趣味性,这样会开拓学生们的视野,培养学生们的 兴趣爱好 ,让他们更加具备学习数学的激情,更加具备自主学习的能力。只有这样学生们才会更加有发展,大学数学的教育才会更加成功。

大学数学论文范文相关 文章 :

1. 大学生论文范文

2. 大学论文格式范文

3. 大学生论文范文模板

4. 大学毕业论文范文

5. 大学生毕业论文范文

6. 大学毕业生论文范文

数学学科的 教育 要不断适应社会的需求。教育的作用是要把自然的人培养成社会的人,使其成为社会生产力的组成部分。下文是我为大家搜集整理的关于数学系 毕业 论文的内容,欢迎大家阅读参考!

谈谈小学数学兴趣的培养

孔子曾说:“知之者不如好之者,好之者不如乐之者。”这就是说“兴趣”是最好的老师。由此可见,小学数学不只是传授知识,而是培养和提高孩子的各方面素质,其中学习兴趣尤其重要。浓厚的兴趣是学习知识、培养能力、发展智力的重要条件。多年来的教学实践使我感到在数学教学中,教师应以兴趣为核心培养学生的非智力因素。以下,我在小学数学教学中如何培养学生的学习兴趣,谈几点体会。

一、根据小学生的心理特点来培养学习兴趣

教育家陶行知指出:“从前,先生只管照自己的意思去教学生,凡是学生的才能兴味,一概不顾,专门勉强拿学生来凑他的教法,配他的教材。”这样的结果只能是“先生收效少,学生苦恼多”。课堂教学应注意培养学生的学习兴趣,因为“兴趣是最好的老师”,学生只有对所学的知识感兴趣,才能集中注意力,积极思考,主动发现、探究新的知识。

1.要抓住学生“好奇”的心理特征,创设最佳的学习环境,提高学生的学习兴趣。数学课上教师要善于利用新颖的 教学 方法 ,唤起学生对新知识的好奇,诱发学生的求知欲,激发学生学习数学的兴趣。在教学的进行中,教师根据教材的重点、难点和本班学生的实际,在知识的生长点、转折点设计有趣新颖的提问,以创设最佳的情境,抓住学生的好奇心,激发学生的兴趣,提高课堂的教学效果。例如,我在给学生讲解乘法分配律内容时,为了促进学生的学习兴趣,我给他们讲了高斯用很短的时间内计算出自然数从1到100的求和的事故。这个 故事 立即引起了学生们的极大兴趣。这样,学生的思维活跃起来了,从而对要学习内容产生了兴趣。

2.要抓住学生“好胜”的特点,创设“成功”的情境,以激发学生和学习兴趣。学生对数学的学习兴趣是在每一个主动学习活动中形成和发展的。教师要善于掌握有利的时机,利用学生的好胜心鼓励、引导、点拨帮助学生获得成功。让学生从中获得成功的体验,这样再从乐中引趣,从乐中悟理,更进一步增强学生学习数学的兴趣。

二、加强教学的直观性,培养学习兴趣

人的思维是从具体到抽象,从形象思维向 抽象思维 转化的。 小学生的思维特点是以形象思维为主,而数学学科的特点又是高度的抽象性和严密的逻辑性。那么,怎样使学生逐步从形象思维向抽象思维过渡呢?在课堂教学中,采用直观教具、投影仪等生动形象的教学手段,能使静态的数学知识动态化,不但能激发学生学习的积极性,而且学生学到的知识也能印象深刻,永久不忘。

三、 创设情景使学生产生兴趣

教育家夸美纽斯曾说:“应该用一切可能的方式把孩子们的求知与求学的欲望激发起来”。在教学中,教师根据教学内容的特点,尽量利用形式多样、灵活多变、生动活泼的教学方法,为学生学习创设一种愉快的情境,让学生感到每节课都有新意,保持新鲜感。例如在学习了平行四边形、三角形、梯形的面积时,其基本方法是通过剪和拼,使新学习的图形转化为已学过的图形。学生一旦掌握了这种基本方法,就能举一反三,很容易学会这几何图形的面积计算了。所以可以特意安排一节课,专门让学生动手剪拼图形,观察剪拼成的图形与原图形的关系。这样,学习以上三种图形的面积公式时,就“水到渠成”,能收到事半功倍之效。“动手操作”这种学习方式由于能吸引学生多种感官参与学习,所以极大地激发学生学习数学的兴趣。

苏霍姆林斯基说:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、 研究者、探索者。在 儿童 的精神世界里,这种需要特别强烈。”在教学中创设问题情境,将会引起儿童迫不及待地探索、研究的兴趣。这样就能有效激发学生探究意识和学习兴趣,使学生产生渴望探究新知的良好心理状态,从而主动深入学习。

四、联系实际生活培养学习兴趣

联系实际生活就是注重数学的实用性,让数学贴近生活,突出从解决实际问题出发的运用能力。所以,在数学教学中充分利用这个特点,尽量联系实际,利用身边的例子、生活中的例子和所学知识解决实际问题。让数学走向生活,让学生在生活中体验数学,让学生明白数学并不神秘,数学就在我们的身边,体现数学的实用性。

例如:在教学人民币的认识时,课前先让学生和家长到超市购物,感性认识购物需要人民币,并记住所买物品的价钱。上课时让学生 说说 如何购物的,为学习人民币作好铺垫。课上又让学生通过模拟购买不同价格,不同品种的物品,使学生在简单的付钱,算钱,找钱的过程中,感知人民币的商品功能,从中体会生活中处处都有使用到人民币的地方,人人学有价值的数学,体会到数学与实际生活的紧密联系。这样学生的学习积极性就调动起来了。

总之,培养学生学习兴趣,是个长期的过程,要贯穿于整个教学过程的始终,教师要善于挖掘教材的兴趣因素和知识本身的魅力,适当地调整教学过程,灵活地运用教学方法,时时注意激发学生沉睡的兴趣,做到“课开始,趣已生;课进行,趣正浓;课结束,趣犹存。”

<<<下页带来更多的数学系毕业论文

对数学与应用数学的认识论文

数学与应用数学毕业论文篇3 浅谈离散数学的应用及教学 我国传统数学教育模式内容相对陈旧、体系单一、知识面窄、偏重符号演算和解题技巧,脱离实际应用,缺乏应用数学知识解决实际问题的实践意识和能力,创新精神和创新能力不足。然而,高科技信息时代的迅速发展对学生的数学素质又提出了新的要求,现有教育模式所培养的学生在某种程度上已经不能适应社会的需要。实践表明,数学研究化图论能激发学生学习欲望,是培养学生主动探索、努力进取的学风和团结协作精神的有力 措施 ;是数学知识和应用能力共同提高的最佳结合点;是启迪创新意识和 创新思维 、锻炼创新能力、培养高层次人才的一条重要途径。因此高校教师在实际的教学过程中要把数学研究化图论的思想、方法及内容融入到当今的大学数学教学中去,是一种行之有效的素质教育方法。本文主要从以下几个方面对图论部分的教学进行了讨论: 一、整合教学资源,重视双基学习,激发学生兴趣 图是一类相当广泛的实际问题的数学模型,有着极其丰富的内容,是数据结构等课程的先修内容。学习时应掌握好图论的基本概念、基本方法、基本算法,善于把实际问题抽象为图论的问题,然后用图论的方法解决问题。那在实际的教学过程中,要充分利用课堂上的时间让学生掌握好这些基本概念、基本方法、基本算法则是显示一名大学教师基本功的时候。因此,教师在讲解最常用的概念如:无向图,有向图,顶点集,边集,n阶图,多重图,简单图,完全图,图的同构,入度,出度,度,孤立点等时,要细讲而精讲,要讲到根上,不仅要帮助学生理解每个概念的具体含义,更重要的是要引导学生总结规律,探索方法,培养能力。教师要充分相信学生,注意从学生的思维角度去剖析问题,运用设疑、讨论、启发、诱导等方式,给他们充分的时间去思考、体会和消化。 图与网络有个自然的对应关系,网络设计和分析中的许多问题可以归结图论问题。因此,图论是网络设计和软件分析的最有力的数学工具。图论数学是应用最广的数学分支之一,不仅在网络设计和软件分析中有着重要的应用价值,在 企业管理 ,交通规划,战争指挥,金融分析等领域都有重要的应用。因此在图论数学的教学中不能仅仅注重讲授概念、定理,还要用实例使学生对图论数学产生兴趣,进而解决生活中出现的一些简单的图论数学问题,以达到培养能力为主的教育目标。例如,我在讲解通路、回路、图的连通性时,为了更好的让学生理解这些概念,我提出一个问题:人、狼、羊、菜用一条只能同时载两位的小船渡河,“狼羊”、“羊菜”不能在无人在场时共处,当然只有人能架船。这种情况下怎样安排才能达到最优的状态呢?这个问题的提出,极大的激发了同学们的兴趣,他们努力思索问题的解决之道。在此基础上,我进一步引导他们建立图模型:顶点表示“原岸的状态”,两点之间有边当且仅当一次合理的渡河“操作”能够实现该状态的转变。起始状态是“人狼羊菜”,结束状态是“空”。问题的解决:找到一条从起始状态到结束状态的尽可能短的通路。最后得出这样的结论:在“人狼羊菜”的16种组合中允许出现的只有10种。即下图所示: 这样我就完成把单纯的图论概念和实际生活相结合的转变。同学们在这个过程中通过自己动手具体分析、积极思索,提高了分析问题、解决问题和运用数学的能力。 二、积极采用多媒体教学,使抽象复杂的内容变得具体形象 大学教材中关于图论部分的定义、定理很多,而且内容比较抽象。在教学中,如果教师沿用传统的教学方法,即:介绍定义——引入定理——证明定理,这种讲课方法不仅时间长,而且也不能吸引学生的兴趣。再加上该课程具有较强的抽象性与推理性,一些问题无法在黑板上讲清楚。因此,在数学化研究图论教学中,在继承传统教学的基础上适当使用现代教育技术进行辅助教学,可以把语言、文字、声音、图形、动画、视频图象等多种媒体有机地集成一体,制作和应用多媒体课件。使学生通过多个感觉器官来获取相关信息,提高教学信息传播效率,把抽象问题具体化和形象化,有效地激发学生的学习兴趣,使得教学效果更加形象、生动、具体、准确。 例如,教师在讲授关于“中国邮递员问题”的知识时,可以先用PPT 展示一个实心的正十二面体,20个顶点标上邮递员途经街道的名称,要求邮递员从邮局出发,遍历各街道一次,最后回到邮局。给学生一段时间寻找路径后,用动画显示出寻找路径的过程。然后教师引导学生将上述的中国邮递员问题建立成一个数学模型即:在一个赋权连通图上求一个含所有边的回路,且使此回路的权最小。显然,若此连通赋权图是 Euler 图,则可用 Fleury 算法求 Euler 回路,此回路即为所求。给出Euler 图的定义以及Fleury 算法,从中让学生归纳演示Fleury 算法。这些知识都掌握以后,可以向学生介绍一下赋权连通图在计算机网络布局中的应用,学生在对赋权连通图的认识从具体—抽象—具体的过程中达到了对赋权连通图的深刻理解。 当然制作一个多媒体课件并不是简单的把书本上的概念和定理照搬到PPT 上,而是用具体形象的媒体冲击同学的感官视觉效果,使其能从中更加深刻体会抽象的概念和定义。例如,在讲解图的相关概念时,对于每一种图可以用具体的图形来演示说明,这样学生可以通过形象的图形对抽象的文字有更加深刻的理解。除了教学课堂上使用多媒体之外,教师还可以通过网络辅导学生课后的学习以及布置与指导,通过电子信箱、BBS讨论等多种形式和手段提供学习支持服务。 三、加强师生课堂互动,调动学生学习的主动性图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。图论数学知识的 应用无所不在,在教学过程中, 我们可根据教学内容结合学生熟悉的生活、生产、科技和当前商品 经济中的一些实际问题如利息、股票、利润、人口等,引导学生从生活中熟悉的方面入手开始学习数学。 图论的教学决不能只是告诉学生现有的结论,然后让他们死记硬背一些公理算法之后,就希望他们立马可以解答出理论很深奥、算法很复杂的数学问题。为了调动学生主动学习的积极性,我在实际的教学过程中会利用好课堂提问这个环节。上课前几分钟的提问,可以通过学生的回答来了解他们对上节课程的掌握程度。而课堂上的提问,可以让学生不宜走神、时刻保持警惕、仔细认真听讲老师讲课的每一个环节,可以积极促使学生在课堂上通过回答教师的提问而解读信息,实施对信息的加工,进而加深对信息的理解。当然教师的提问不应该是随意的、盲目的,而应该是精心准备的,紧扣课堂上所讲授内容的重点及学生最容易混淆、模糊的环节。对于当代大学生而言,老师提问的问题应当有一定的深度和广度,能引导学生深入思考, 把课堂上被动的吸收知识、填鸭式的教学模式变成主动的思考问题、积极回答问题的过程。学生主体参与是数学图论教学的核心,教师主导作用是数学图论教学的保障。在数学图论教学中,通过提问可以引发学生进行深入思考,充分调动他们的积极性,发挥他们的潜能,这样就可以使学生的能动性、自主性、创造性得到长足的进步。 四、加强学生的图论数学思想及运用 网络工具 图论的数学教学实际上就是帮助同学们形成把现实问题转化成点和线的数学思维过程。而教师在具体的教学过程中,就要有目的的引导学生运用数学思想来认识世界。通过这样的教学过程,可以增加学生对图论知识的了解,培养他们提高运用数学图论思维的能力。比如,我在讲解图论之前会给同学们介绍图论问题的由来,即追溯到1736年哥尼斯堡七桥问题,或给学生介绍中外数学名家的光辉 事迹 与献身精神。让他们在加强数学思想的同时,不忘加强自身思想品德的 教育。 图论即形象地运用一些点以及点与点之间的连线构成的图或网络来表示具体问题。利用图与网络的特点来解决系统中的问题,比用线性规划等其他模型来求解往往要简单、有效得多。图论就是研究图和网络模型特点、性质和方法的理论。图和网络之间存在密切的 联系,因此,教师要创设条件, 因材施教,例如运用一些优秀的数学软件如Matlab,MathCAD, 几何画板等,充分利用网络画图的能力来培养学生的数学思维逻辑能力,使每个学生都得到不同程度的 发展和提高,同时培养学生的思想品德和世界观, 让学生的综合素质得到提高。 总之,若教师通过知识的载体,对学生实施能动的 心理和智能的引导教学,提高了学生的数学素质,培养了他们创造性应用的能力,这就算是一种成功的教学。当然教师的职责是通过教学培养学生数学思想,并把这种思想应用到实际的生活中。但传统的教育模式已经根深蒂固的深入到我们的思想当中,尤其是教师也是传统教育模式培养出来的,所以,要想跳出这个怪圈,教师和学校都需要努力去思索和探讨。根据新时代的需求,培养出适应新时代发展的具有自学能力乃至科研能力的更高的人才,这需要我们共同的努力。 猜你喜欢: 1. 应用数学专业论文 2. 数学与应用数学毕业论文 3. 应用数学毕业论文题目 4. 应用数学系毕业论文 5. 数学应用数学本科毕业论文

一、专业的发展简要概述

数学与应用数学可谓是历史悠久。从古代结绳记数、丈量土地、分配财产导致算术、代数、几何的相继产生,以及我国最著名的数学典籍《九章算术》中246个实际应用问题的汇集;到现代数学概念、语言在日常生活中的渗透,一些数学原理已成为人们必备知识,如对称、百分数、平均数、比例等成为社会生活中常见名词;象人口增长率、生产统计图、股票趋势图等不断出现在报刊、电视等大众信息传播媒介中;而储蓄、债券、保险、面积、体积计算(估算)、购物决策等成为人们难以回避的现实问题。可见,数学已不仅只作为解决问题的工具,更是时代文化的重要组成部分。

人类正进入信息社会时代,面临许多发展与对策问题。应用数学也同步进入一个新的发展时间。国际间已多次举行过有关数学物理、控制论、运筹学、计算数学、模糊数学、有限元方法、边界元法法、生物数学等方面的学术性会议。第一届工业与应用数学国际会议已于1987年6月在法国巴黎举行,到会代表约2000人,是应用数学界的一次空前盛会。在工业先进的各国中,应用数学受到极大地重视,应用数学具有广阔的发展前途。

二、专业的研究方法

我认为,数学与应用数学专业最重要的就是独立思考,学会钻研剖析,掌握理论知识,并灵活应用至实际问题。但是,学习中的合作精神也是必不可少的,例如在数模竞赛中,团队的力量就显得尤为重要了。

三、大学的奋斗

数学与应用数学专业的目标是培养掌握数学科学的基本理论、基础知识与基本方法,能够运用数学知识和使用计算机解决若干实际数学问题,具备在高等和中等学校进行数学教学的教师、教学研究人员及其他教育工作者。

因此,大学期间有数学分析、高等代数、解析几何、常微分方程、概率论、实变函数、微分几何、数理统计和抽象代数等专业核心课程,有数学建模、Matlab软件及应用、SAS统计软件及应用、毕业论文等提高性实践教育课程,还有科研训练项目、创新创业教育、社团活动课程等创新性实践教学课程。另外,根据师范类专业要求还必须修读教师教育类课程,包括班级经营、教育学、教师语言技能、三笔字技能等。

四、未来的方向

四年毕业后,我希望能去贵州支教一年,然后再回到宁波成为一名普通却光荣的高中教师。初中时候的数学老师就是去过小山村支教的,从那时我就想,如果有机会,我也愿意以这样的方式关爱他们,来到大学,又在十佳学子报告会上听到了其中一位学长的支教经历,让我心潮澎湃了好久,因此,毕业后我希望能在这样的实践中更好的磨练自己,变得更优秀。

数学与应用数学考研有哪些方向

1. 运筹学专业

运筹学用于解决现实生活中的复杂问题,尤其是用于改善或优化现有系统的效率。

运筹学的基本知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。而在应用方面,主要涉及仓储、物流、算法等相关领域。因此运筹学与应用数学、工业工程、计算机科学、经济管理等相关专业是相通的。

2. 计算数学

计算数学的主要内容包括代数方程、线性代数方程组、微分方程的数值解法,函数的数值逼近问题,矩阵特征值的求法,最优化计算问题,概率统计计算问题等等,以及解的存在性、唯一性、收敛性和误差分析等理论问题。

3. 应用数学

应用数学专业培养学生掌握数学科学的基本理论和基本方法,具有运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科学、技术、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。

4. 金融方向

该方向主要培养具有坚实金融理论基础和较高应用技巧的专业人才,并培养学生运用金融学、经济学、管理学和现代定量分析手段解决理论问题和实践问题的能力,从而使学生能够了解国际前沿发展金融业。

该方向的学习还可以适应财务管理部门、各种金融机构和研究机构的工作。

向你推荐的相关文章

数学是人类 文化 的一个重要的组成部分,它在人类文明与社会进步中起着重要的作用。但是我们对于数学的真正认识又有多少呢?下文是我为大家整理的关于对数学的认识论文的 范文 ,欢迎大家阅读参考!

浅谈数学与应用数学

摘要: 新课程改革注重知识的发生、发展过程,培养学生用数学的观点观察社会、思考问题,增强应用数学的意识,重视联系实际和数学应用意识。教师应加强数学应用教学,多让学生自主学习,重视课外实践,促进学生逐步形成和发展数学应用意识,提高实际应用能力。

关键词: 数学应用 生活 经验 学以致用

新课程改革注重知识的发生、发展过程,培养学生用数学的观点观察社会、思考问题,增强应用数学的意识,真正让学生体会到“学以致用”。近年来,我坚持以新课程标准为指导思想,重视实践,加强对学生数学应用能力的培养,做了一些探索,在此谈谈对这一问题的一点思考。

一、理论基础

1.数学的发展就是数学应用的历史。

从数学的早期发展来看,数学起源于人类实际生活的需要,人类在简单的物品交换和重新分配中,产生了数的概念。在古埃及流传下来的最早的数学著作《莱茵德纸 草书 》和《莫斯科纸草书》中,包含有许多几何性质的问题,内容大都与土地面积和谷堆体积的计算有关;中国现存的最早的数学著作《周髀算经》中,主要成就是勾股定理及其在天文测量上的应用。

到了近现代,特别是现代,一方面,数学的核心研究变得越来越抽象;另一方面,数学的应用也变得越来越广泛。数学除了在物理、化学、生物等自然科学大量应用,还在经济学、社会学领域大展身手,在日益发展的信息社会中,即使一般的劳动者,也必须具备基本的数学运算能力以及应用数学思想去观察和分析工作、生活乃至从事经济、政治活动的能力――存款、利息、股票、投资、 保险 、成本、利润、折扣、分期付款,以至文艺创作、心理分析、社会改革、哲学思辨等。可以说,数学是人类活动最基本、最重要的工具之一。

2.新课程改革对加强数学应用的体现。

新课程标准强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。新课程标准强调培养数学的应用意识,要让学生认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试从数学的角度运用所学知识和 方法 寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。

新课程标准提出:数学学习内容应当是现实的、有意义的。在实行新课程改革以来,新编教材在加强应用数学的意识方面作了大量的改进,把培养学生应用数学的意识贯穿在教材编写的始终,在各章的章头图或阅读材料中,注意提供有实际背景的问题,教材的正文一般都注意从实际引入概念,从实际提出问题,例题、习题中增加了实际应用的内容。理论联系实际,而联系实际的目的就是为了更好地掌握基础知识,增加应用数学的意识,培养分析问题和解决问题的能力。例如《 教育 储蓄》联系经济生活中的储蓄,二次函数中联系的课题《刹车距离与二次函数》,还有《数据的收集与处理》、《统计与概率》中就大量包含了与实际问题联系非常密切的内容。新教材还增加了课题学习,目的是应用所学数学知识,提高解决实际问题的能力,使学生在参与数学活动过程中受到训练和提高。

所以作为一名数学教师,应注意在教学活动中加强数学应用教学,促进学生逐步形成和发展数学应用意识,提高实践能力,为社会培养合格、适用的人才。

二、教学实践

1.加强直观教学,培养学生应用意识。

一些数学问题的引入应根据教学内容运用直观手段向学生提供丰富而典型的感性材料,如采用实物、模型、挂图,或进行演示,引导学生观察,并让学生自己动手操作,以便让学生丰富自己的感性认识。在教师生动形象地描述的基础上,对今后学习、生活、工作有用的内容,教学中特别要使学生了解所学价值和背景,学生应当看到数学什么时候被应用,以及如何应用,而不是得到它们将在某天被用到的许诺。在提出和研究问题时,教师应强调把数学应用到现实世界中及与中学生有关的其他环境中的问题上去。

例如,在讲“解直角三角形”时,可利用这样一个实际问题:修建某扬水站时,要沿斜坡辅设水管,从剖面图看到,斜坡与水平面所成的∠A可用测角器测出,水管AB的长度也可直接量得,当水管铺到B处时,设B离水平面的距离为BC,如果你是施工人员,如何测得B处离水平面的高度?有的学生提出从B处向C处钻个洞,测洞深;有的学生反对,因为根据实际情况,这样做费力;有的学生又说,这不是费力问题,C点无法确定。教学时应该注意从实际问题抽象出数学模型,运用解直角三角形知识去解决:BC=(AB、∠A均已知)。又比如用不等式的知识求水池的最低造价,用三角函数计算台风影响的持续时间,用概率知识分析免费摸奖的秘密,等等。通过数学在其他科学以及社会生活中的应用,让学生知道它既和人类的几乎所有活动有关,又对每个真心感兴趣的人有益。这样才能充分调动学生的积极性。

2.留出时间,增强学生自主应用意识。

对于大部分学生而言,他们学习数学的方法仍习惯于上课听老师讲解,认为听老师讲得越多,则自己会的就越多。学生在学习中虽然有所感知,基础知识却不扎实,硬性地接受大量知识信息,但理解却不深不透,灵活运用更不到位,导致学生一旦脱离了教师,遇上一些富有拓展性或是研究性的问题就显得力不从心、无从下手,于是放弃者居多。作为教师,应多给学生留出时间,加强引导,让学生在“自主”学习、在“合作”探索中加强对知识的应用,让数学应用落到实处。

例如,我在复习轴对称的知识时,提出了这样一个问题:一条河l的同侧有一个村庄A和一处仓库B,某天仓库突然失火了,村民们从家里出发提着水桶到河边拎水去救火,那么应选择怎样的路线比较合适?因为前面做过类似的习题,所以学生们很快给出答案:作出点A关于小河l的对称点A′,再连结A′B交l于点P,则折线APB即为村民行走的路线。我问学生们:“你们都是这样想的吗?”学生们异口同声地回答:“是!”我也没说什么,只是说:“你们还可以再交流交流。”刚开始,教室里嚷声一片,都说:“这有什么好讨论的,不就是APB吗?”慢慢的,教室里的声音小了一些,学生们开始投入思考交流当中,再后来,教室里的声音又渐渐大了起来,这时我问:“同学们有没有新的看法?”有十几个学生举起了手,我请其中一个学生发言,她说:“经过我们的讨论,我们发现还有更合适的路线,考虑到装满水的水桶比较重,提着桶行走不便,应该缩短提水的路程,我们的做法是作BQ⊥l,垂足为Q,连结AQ,折线AQB为更合适的路线。”我说:“同学们赞同她的看法吗?”绝大多数学生都表示了同意。经过这样的问题的讨论,学生们加强了实际应用的意识。

3.加强课外应用实践。

实践对于知识的理解、掌握和熟练运用起着重要作用。听到的终会忘掉、看到的才能记住,亲身体验过的才会理解和运用,因此,要加强课外实践活动。比如,“垂线段最短”性质学完了,利用体育活动时间让学生 跳远 ,并测出自己的跳远成绩;统计初步知识学完了,让学生自己估算学习成绩波动情况,等等。这样做,学生既理解了知识,又学会了解决实际问题的方法。经常让学生去实践,运用所学知识解决实际问题,学生应用数学的意识就会逐渐形成,这也是课堂教学转变教育观念,实施素质教育的有效途径。

例如,在上完《数据的收集与处理》后,布置学生选择适当的主题,自主设计调查方案、开展调查活动、进行数据的处理并写出调查结果。教师在这期间起组织作用,并不做具体工作,但在学生需要的时候给予适当的帮助和指导,激发学生积极主动地进行调查活动,在学生亲身经历调查活动的全过程的基础上,再一次提高认识,强化学生的统计意识、统计观念,会运用统计的方法解决有关的问题,在活动中培养学生的应用意识和实践能力。

总之,数学知识来源于生活,教师在数学教学中应关注学生的学习活动,充分挖掘生活中的数学素材,培养学生从数学的角度观察和分析周围事物的习惯,用数学的方法解决问题。

参考文献:

[1]李文林.数学发展史.

[2]等著.张原粲等译.思维教学.中国轻工业出版社,.

浅谈数学文化的教育价值

[摘 要] 数学是人类文化的一个重要的组成部分,它在人类文明与社会进步中起着重要的作用。数学文化的教育价值,在于它对人类 理性思维 、创造性思维所作出的独特贡献。每一个现代人都需要接受数学教育,通过对数学的认识与理解,提高文化素质,从而创造出更有内涵、更有意义的人类文化。

[关键词] 数学文化 教育 理性 创造性

数学具有一般文化的三条准则,即:相关性、相容性和大众性。相关性主要是与现实相关,而不是悬浮在半空中的虚无缥缈的东西;相容性则不仅强调它作为逻辑封闭系统的一面,还体现了作为多元文化的一种活动模式;而大众性则反映了对于学习和实践的每个人来说都是开放的。除此之外,更主要的方面是数学与一般大众文化比较所表现出来的特殊性,它构成了数学文化的个性,即独特的语言系统、价值判定准则和发展模式,使数学自身构成一种独立的文化体系,从而使得数学对象的人为性、数学活动的整体性,以及数学发展的历史性充满了人文价值,也更加凸现数学的文化意义。

数学与古代文化

中西方的数学,在漫长的古代,实质上可归结为希腊与中国的数学,我们的比较也就因此限定为希腊和中国的数学与文化。

古希腊文化的一大特点是:崇尚理性――在数学方面就是崇尚演绎推理,将数学与哲学紧密地联系在一起。古希腊数学家强调严密的推理以及由此得出的结论,他们所关心的并不是这些成果的实用性,而是教育人们去进行抽象的推理,激发人们对理想与美的追求。毕达哥拉斯提出的“图形与信仰”,表明由几何学习而上升到更高层次的人生信仰,即数学教育与数学学习不可以采取急功近利的态度。因此,古希腊优美的文学,极端理性化的哲学,理想化的建筑与雕塑,所有这些成就在人类历史上有着重要的地位,而这些成就处处体现着数学的影响。

古希腊数学中的点、线、面、数,都是对现实的理想化和抽象,这种对现实理想化和抽象的偏爱在其文化中也留下了深深的烙印。他们的雕塑并不注意个别的男人和女人,而是注重理想模式的人,这种理想化和抽象的追求,导致了对身体各个部位比例的标准化的追求,希腊人不仅给出了标准的黄金分割,而且任何一个手指和脚趾的比例都没有忽视。希腊文化被公认为是人类历史上辉煌的一页,它深刻地影响着之后人类文化的发展。

中国古代的数学更看重实用性,要求把问题算出来,用现代的话说,就是更重视“构造性”的数学,而不是追求结构的完美与理论的完整。这种表述方式与中国古代哲学的表述方式有相似之处。冯友兰在他的《中国简史》中指出:“中国哲学家惯于用 名言 隽语、比喻例证的形式表述自己的思想。《老子》全书都是名言隽语,《庄子》名篇大都充满比喻例证。”这些足以表明中国数学与中国文化之间的密切联系。

数,在中国古代被赋予了伦理的意义。礼仪,常常被人称之为“礼数”。由于有具体数字规定的“礼数”被视为伦理戒律,如《礼记・礼器》中有“天子之堂九尺,诸侯七尺,大夫五尺,士三尺”的规定,进而“礼教”被视为一种社会规律。由此出发,在中国文化中出现“天数”一词,“天数”代表不可抗拒的命运。

“礼数”在中国文化中被视为“规矩”,有所谓“不依规矩,不成方圆”。中国人已用数学规律(用“规”来画圆,用“矩”来画直线。)来形容和描述政治、社会的运行,中国传统数学的某些特征已融入文化之中。数学在中国 传统文化 中的影响,最大的莫过于一套有关数字的崇拜体系。时至今日,这种体系仍深深扎根于人们的日常生活之中。

无疑,数学是人类文化的一个重要的组成部分。正如美国《科学》杂志特约主编斯蒂恩说:“数学……在人类特性和人类的历史中,它的地位绝不亚于语言、艺术或宗教。”数学的发展与所取得的成果,对于它所属的文化产生着重要的影响。反之,在不同的文化中,数学也具有不同的文化价值及特征。

数学教育与文化素质的培养

中国传统数学本质上是功利主义的,只是作为“六艺”之一,因而也就不可能积淀为中华文化的理性结构,在相应的文化体系中也没有太高的地位。探根寻源,这对我们研究“考试文化”背景下的我国数学教育也许有着借鉴作用。

目前,我国的数学教育往往以使学生能够高分通过考试为目的,并由此去评价教师的教学水平。这种短期的、功利性的教育理念能够造就思维吗?一旦学生不需要考试时,数学的功能在他们身上即寿终正寝。这样的数学教育对人的素质的培养又有多大意义呢?在我看来,一个人的潜能如何,关键是看他能否处理明天的问题。数学教育应作为受教育者个人文化底蕴不可缺少的一块基石伴随他的一生,就如同学了语言更善表达,学了艺术更会欣赏,学了数学应使他更会理性地思考、辨析。

1.理性思维的培养

数学作为人类理性思维的特殊形式,基本特征是:逻辑性;抽象性;对事物主要的、基本的属性的准确把握。

数学的逻辑形式是指数学中非常严密的思维,从条件(原因)到结论(结果),环环紧扣,因果关系十分清楚,这种思想方法对任何人来说都是十分重要的。比如,实现某个重要的目标(为什么要实现这个目标),具体的 实施方案 (如何实现这个目标),需要具备(创造)什么条件,存在(潜在)哪些问题,最主要的风险来自何处,防范或化解风险的手段是什么,等等,这些与几何逻辑十分相似。数学思维的这一特征,对于训练人的素质十分重要,而善于推理的能力不是天生就有的,只有通过教育,才能使人在这方面的潜能得到发展。

抽象并非数学独有的特性,但数学的抽象却是最为典型的。数学的抽象舍弃了事物的其他一切方面而仅保留某种关系或结构。当我们从物理现象、化学现象、生物现象以及社会现象中,采取某种定量的方法进行分析,去揭示事物之间的联系,进而会发现有些看来毫不相关的物质、毫不相关的事、毫不相关的人,其实是相互关联的。比如,概率论与数理统计中的正态分布, 这种分布表明,各种随机事件的误差并不是随意出现的,而总是遵循一定的统计规律。

例如,一场普通的考试,如果考试的成绩没有呈正态分布,那么可以认为,在某个环节(比如,教学质量、试卷难度、评分标准、考场纪律……)出现了异常现象。而“普通的考试”可泛指为线性代数、英语、 企业管理 ,等等。再如,人们发现,人的各种精神或生理特征,是遵循正态分布的。这一点给人类文化学者研究人类不同民族的素质、气质提供了一定的理论基础,也为医药、药理学提供了重要的参数。

数学中找出所考虑问题的主要属性,是指善于抓住问题最本质的内容,它反映在人们处理问题时,要抓根本问题。霍尼韦尔国际总裁兼CEO拉里・博西迪说:“世界上根本不存在所谓的复杂的战略,存在的只是对一项战略的复杂的认识。一份业务部门的战略 报告 ,如果不能够在20分钟内用一种简单而平实的语言描述自己的战略的话,你实际上等于没有制定出任何战略计划。”如果说,善于抓住问题的根本,将复杂问题简单化,是一种智慧的体现。那么,一篇 工作报告 ,在受过数学训练的人手中,他至少会剔除一些与结论毫无关系的废话、套话。

数学对于人类理性思维的发展作出了特殊的贡献。古希腊的数学教育,推崇的是数学作为理智、思维能力的训练。认为算数是为了认识数的本质,为了追求真理并非做买卖;几何学是为了对思维进行训练,为了培养哲学家。他们把实用目的仅仅作为数学教育的一个微不足道的方面,而理性的培养才是数学教育的根本目的。正是依靠这种教育,理性才为人类文明开辟了道路。

近代西方文明的复兴,本质上是数学精神的复新。文艺复兴时代及其以后的欧洲人不仅学习、掌握了古希腊人的成就,更重要的是,向他们学习了人类推理能力。欧洲人继承了自然界具有数学设计的思想,相信理性可以应用于人类的各种活动。正是西欧的贤哲们掌握了理性精神、把握了数学精神之后,近代西方文明诞生了。

现代社会中“抛弃理性思维的倾向是群众不安定和政治不稳定的标志”。在构建人与人和谐、人与自然界和谐的社会过程中,一刻也不能没有理性思维,而培养理性思维的最有效途径是数学教育。“在高等教育中加强数学教育,使人们理解数学、重视数学和正确运用数学,这对于开发智力、提高我们民族的科学技术水平和思维能力,是有战略意义的事情。”

综上所述可以认为,理性思维是一种历史的、科学的、富有哲理的思考,是批判的思维,是求同存异的思维,是一种在更高层次上的道德推理。经过数学理性思维的培养,将有助于学生在今后的人生道路上,不盲从、有条理、善思辩,树立起既不强人从己,也不屈己从人的意志。

2.创造性思维的培养

由于数学严密性的特点,很少有人怀疑数学结论的正确性,数学的结论往往成为真理的典范。事实上,数学结论的真理性是相对的,即使像1+1=2这样简单的公式,也有它不成立的地方。例如,在布尔代数中,1+1=0。而布尔代数在电子线路中有着广泛的应用。

常言道:学贵有疑。疑就是一种批判精神,也是创新的前提。

在线性代数的教学过程中,我在讲解矩阵概念时强调它是数表而不是数,但是在分块矩阵运算中又突破了这种思维框框。

上述计算过程的思想是复杂的,然而从计算的角度看,它极大地提高了高阶矩阵乘积的运算效率,有着实际运用价值。在一般情况下,人们总是惯用常规的思考方式,因为它可以使我们在思考同类或相似问题的时候,能省去许多摸索和试探的步骤,能不走或少走弯路,从而可以缩短思考的时间,减少精力的消耗,似乎可以提高思考的质量和成功率。正如一位心理学家说过:“只会使用锤子的人,总是把一切问题都看成是钉子。”

然而,这样的思维定势往往会起到一种妨碍和束缚作用,它会使人陷入在旧的思考模式的无形框框中,难以进行新的探索和尝试。常规是人们解决问题的一般性思维,它能凭经验轻车熟路地完成一些工作,解决一些平常的一些问题,但是总用思维定势来看待事物,那就是傻瓜一个。当然,变化、革新需要很大的勇气,有的人即使意识到了变革的必要性,也没有变革的勇气。因为变革一旦失败,他将受到很大的伤害。但他却没有看到问题的另外一面:如果不进行变革,他同样会在未来遭受巨大的损失,而变革就有成功的可能,成功的变革将为他的事业开创出一片崭新的领域。

在高等数学的教学过程中,我向学生提出问题:我向教室的大门走,每次走所在距离的二分之一,问我能否走到大门?回答一:不要说走到大门,就是走出大门也不成问题。回答二:由于条件“每次走所在距离的二分之一”,因此人与大门之间的距离始终存在,那么,永远走不到大门。回答三:可以走到。因为人与大门之间的距离可以缩短到要多小有多小,并且可以无限变小的程度。回答三正确。此问题体现了高等数学中的核心思想――极限。它向人脑提出了挑战,激发了人的 想象力 。极限显得既生疏又熟悉,似乎超出了我们的领悟能力,又自然而易于理解。在征服它的过程中,需要调动人的推理能力,诗一般的想象力、创造力,以及求知的欲望。

类似以上的问题,若干年之后,对大部分学生来说,最终问题本身可能并不重要了,但是数学创造过程中想象以及超长思维的应用,可以使他们打破常规,学会变通,事情做得别开生面,并在潜意识中积蓄了创造和发明的冲动,能够从容地面对困难,欣然地面对未来.

数学教育作为训练人们思维的一种最有效的工具,在培养组织才能、敏感性、直观性和洞察力方面是再恰当也没有了。不论学生将来的职业选择如何,促进智力的一般发展是数学教育的基本目标。而数学教育的终极目标,并不是单纯地给学生提供求解某些具体问题的工具,也不仅仅是为现有的专业课教学铺路,而是培养学生对理性(真理)的追求,造就一种精神,一种脚踏实地、不畏艰险的探索精神。

数学直接或间接地影响着每一个有文化的人的思维,它促进了人的思想解放,提高了人类物质文明和精神文明水平。可以这样说:一种没有相当发达的数学的文化是注定要衰落的,一个不掌握数学作为一种文化的民族是注定要衰落的(齐民友语)。

参考文献:

[1]孙小礼.数学・科学・哲学[M].北京:光明日报出版社,1988.

[2][美]拉里・博西迪.执行[M].北京:机械工业出版社,2005.

猜你喜欢:

1. 数学文化论文3000字

2. 数学小论文3000字

3. 数学课题研究心得体会

4. 数学学习心得体会

对小学数学教育的认识论文

帮忙顶一下~

小学数学教育论文教育是培养人的社会活动,教育必须关心所有儿童的最充分的发展;而学校的责任则是创造能使每一个学 生达到他可能达到的最高学习水准的学习条件,学校必须给学生奠定终生学习的基础,学校永远对所有学生负 责。教师的责任诚如陶西平同志在《由“应试教育”向全面素质教育转变》一文中所指出的:教师是“伯乐” ,伯尔善于相马,教师也要善于认识每一位学生的个性。但是,教师又不能只是伯乐,伯乐相马的目的是挑出 千里马而淘汰其余的马,教师却必须对每个学生负责。因此,素质教育不是选拔适合教育的儿童,而是创造适 合每个儿童的教育。在小学数学课堂教学中,教师应努力创造适合每个儿童的教育,要充分认识学生的巨大发 展潜能和个性差异,努力培养学生积极的学习态度、善于与他人合作的精神以及高度的责任感和道德感,为学 生生活质量的提高建立必须具备的条件。为此,教师在教学实践中应当注重加强以下三个方面的工作: 1.认真研究学生的实际能力 学生的实际能力就是指学生在学习新知识之前所具备的知识能力,这一点常常被忽视。众所周知,任何人 在学习新知识时,旧知识总是要参与其中的,用已有的知识学习新知,既提高了课堂教学的科技含量,也消除 了课堂上的无效空间,减少了学生的学习障碍。比如,在讲解新的数学概念时,教师应尽可能地从实际中引出 问题,使学生了解这些数学知识来源于生活,同时又应用于生活实际,从而认识到数学知识在现实生活中的作 用;同时,教师也应给学生提供更多的机会,让他们自己从日常生活中的具体事例中提炼出数学问题,用所学 的数学知识去解决现实生活中的许多实际问题。 数学教学一方面要使学生了解人类关于数学方面的文化遗产,另一方面要使学生建立起正确对待周围事物 的态度和方法,学会使用数学的观点和方法来认识周围的事物,培养学生从现实生活事例中看出数量关系的能 力,这两者都是不可偏废的,都是学生是否具备数学素养的重要标志。所以,在数学教学中,教师要重视培养 学生的数学意识,特别是要有意识地培养学生从日常生活的具体事物中发现数量关系的能力;要认真研究学生 学习新知识时已具有的能力,认真研究学生学习新知识的方法,以学法定教法。这样教学,起点低、层次多、 要求高,适应了学生的实际认知水平。只有这样,课堂教学才能充分发挥学生的智力潜能,创造出适合每一个 学生的教育。 2.努力探寻学生的潜在能力 充分发挥学生的潜在能力是素质教育研究的重点。我们知道,学生是正在发展中的人,学习新知时所具有 的能力就是学生的潜在能力。因此,在所有智力正常的学生中,没有潜能的学生是不存在的。课堂教学的关键 就是要拓展学生的心理空间,激发学生学习的内驱力,发挥学生的潜在能力,促使学生积极主动思维,充分发 挥其创造性和智力潜能。 数学学习过程是一个不断地探索和思考的过程。在数学教学中,是单纯地给学生现成的知识,还是为学生 创设一定的问题情景,使学生有更多的机会去探索和思考,以便发挥其潜在能力,这是数学教学改革的核心问 题,是要“应试教育”还是要素质教育的大问题。一般地说,数学教科书中的例题是学习的范例,学生要通过 例题的学习,了解例题所代表的一类知识的规律和理解方法。但这并不是说,只要学生学会了书本上的例题就 可以自然而然地解决与之相似的问题。要能举一反三,就还需要学生有一个深入思考的过程,甚至要经过若干 次错误与不完善的思考,这样才能达到一定的熟练程度。这更需要学生把书本上的知识内化为自己的知识。要 达到这样的目的,教师在教学中要结合具体的教学内容,为学生提供独立思考的机会,给学生留有充分的思考 余地,让学生根据自己对问题的理解和思维发展水平,提出自己对问题的看法,不同学生的不同方法反映出学 生对一个问题的认识水平。学生学习时说出自己的方法,表面上看课堂教学缺乏统一性,但教师从学生的不同 回答中可以了解学生是怎样思考的,哪些学生处于较高的理解层面,哪些学生理解得还不够深入或不够准确, 并从中调整了一步教学的内容和方法,以恰当地解决学生学习中存在的问题。在这样的教学过程中,学生能够 养成一种善于思考、勇于提出自己想法的习惯,这对学生学习新内容、研究新问题是非常重要的。相反地,在 教学中,教师如果不给学生提供独立思考的机会,只是让学生跟着教师的思路走,一步一步引导学生说出正确 的解题方法,虽然这样可以比较顺利地完成教学任务,但长此以往,学生就会养成惰性。所以,教师在课堂教 学中要特别注意为学生创造更多的思考机会,充分激发学生的内在动机,努力发展学生的潜在能力,使学生在 认识所学的知识、理解所学知识的同时,智力水平也不断提高。 3.注重培养学生的自学能力 自学能力是所有能力中最重要的一种能力。对于小学生来讲,最重要的是学会学习、学会思考、学会发现 、学会创造,掌握一套适应自己的学习方法,做到在任何时候学习任何一种知识时都能“处处无师胜有师”。 为此,教师有必要更新观念,研究数学的智慧,分析数学的方法,努力使学生像数学家那样去学习、去思考、 去发现、去应用、去创造数学知识。 在教学中,教师在学生掌握知识的基础上,培养、发展学生的思维能力。比如,教师可要求学生课前预习 ——学生把自己不懂的地方记录下来,上课时带着这些问题听讲,而对于在预习中已弄懂的内容可通过听讲来 比较一下自己的理解与教师讲解之间的差距、看问题的角度是否相同,如有不同,哪种好些;课后复习——学 生可先合上书本用自己的思路把课堂内容在脑子里“过”一遍,然后自己归纳出几个“条条”来。同时,教师 还应加强对书本例题的剖析和推敲,因为课堂内老师讲的例题尽管数量不多,但都有一定的代表性。教师要研 究每个例题所反映出的原理,分析解剖每个例题的关键所在,思考这类例题还可以从什么角度来提问,把已知 条件和求解目标稍作变化又有什么结果,解题中每一步运算的依据又是什么,用到了哪些已有的知识,这类题 还可以用什么方法求解,等等。 数学教学的关键不在改变数学知识本身,而是要改变教学思想、教学方法,要有先进的思想意识,要不断 地将教学内容结构化,不断地将结构化的知识纳入到学生的认知结构中。学生只有掌握了数学的基本原理、基 本概念、基本结构,才会做到以一贯十,触类旁通。 当然,如果教师在具体的教学实践中能给每一个学生提供足够的时间和充分的帮助,那么每一个学生都能 学会并达到正常的学习水平。教师在教学中要努力创造适合每个儿童的数学教育,其目的就是要努力创造条件 ,弥补缺陷,转变学生的状况,让每一个学生都掌握数学,让不同的人学习不同的数学。因此,在小学数学教 学中,教师应注重因材施教,增加每个学生参与学习的机会,发展学生的潜能。只有这样,才能真正使每个学 生得到充分而全面的发展。

数学来源于生活而最终服务于生活,尤其是小学数学知识,基本在生活中都能找到原型。关于小学数学的教学,你有什么研究成果呢?本文是我为大家整理的小学数学教学优秀论文,欢迎阅读! 小学数学教学优秀论文篇1:浅谈如何上好小学的数学课 数学这门学科,自古以来就被认为为是理性最强的学科,需要聪明的大脑和天赋才能学好的,其实不然,对于天真浪漫的小学生来讲,他们接受各种 文化 知识的能力是等同的,那么如何才能学好数学呢?我认为关键在于如何调动学生学习数学的兴趣。通过分析,不论学生自身的因素还是学校、家庭环境对学生自身兴趣的影响都与教师有直接关系,就像邓小平曾说的:“一个学校能不能为社会主义建设培养合格人才,培养德、智、体全面发展、有社会主义觉悟的、有文化的劳动者,关键在教师。”同样,能否调动学生学习的兴趣,关键也是在教师,如何调动学生学数学的积极性呢?教师在学生学习中又处于什么地位呢?下面是本人在教学中的几点浅见: 一、先从本身着手,让学生喜欢上你,从而喜欢上你的课。 作为教者本身来讲,要从各方面来完善自己,比如,师德修养,文体方面等等,让学生从内心尊重你,要和学生结交成各方面的朋友,从而使他们喜欢你的同时,也喜欢你所教的学科。现在很多教师在思考如何让学生学好数学时,经常考虑的是如何激发学生的兴趣,却忽视了自身的素质要求,如果自身不修边幅、口无遮拦的,如何让学生喜欢上你,更不用说喜欢上你的课了。学生一开始就抵触你,即使你再如何调动学生的学习兴趣,都只是“剃头担子一头热”。 二、其次先要诱发兴趣,通过游戏性活动,让学生喜欢上你上的数学课。 兴趣是学生最好的老师,也是 智力开发 的原动力,“良好的开端是成功的一半”,诱发学生从新课刚开始时就产生强烈的求知欲是至关重要的。愉快的游戏能唤起学生的愉悦感,引起学生的直接兴趣,并由无意注意引导到有意注意,发展间接兴趣。因此,教师导入新课时,根据教学内容,可选择组织学生做数学游戏的 方法 ,让学生人人参加,能很快地激发学生的学习热情,比如,在学习100以内二位数加减二位数中,我让一部分学生当作售货员,一部分学生当作买东西的顾客,让他们从实际出发,从一买一卖中得到乐趣,更在不知不觉中学到了知识,让学生在玩中学,在学中玩,更让学生们懂得了学习数学的重要性,何乐而不为呢? 三、再次要设计疑点,激发思维火花,“勾引”出学生的学习兴趣。 “学起于思,思起于源”。心理学认为。疑是最容易引起探究反射,思维也就应运而生。例如:我在教学中,经常会问,如果是你,你会怎么样?通过换位思考,改变以前学生被动学习的境况,让学生设身处地的思考问题,让学生产生“疑”。引起思考,是需要学习的开始。疑问使学生萌发出求知的欲望。同学们跃跃欲试,开始了对新知识的探求。 四、通过让学生进行“争吵”,在争论中提出问题,开拓思维能力升华兴趣。 学习数学是一项艰苦而又细致的劳动。学习的直接兴趣不是与生俱有的,而是学生在刻苦学习,认真钻研的学习活动中得到发展升华的。一个懒于学习,不愿思考的学生,是很难对数学产生兴趣的。因此,在教学中教师首先要创设条件,让学生有充分施展才能的机会,鼓励学生质疑问难,大胆发表与教师不同的看法;培养学生善于独立思考的习惯,要求学生遇事要勤于思考,善于思考,丰富想象,开拓思维。这样,对升华学生学习数学的兴趣,能起到一定的促进作用。其次,课堂上组织学生讨论是开拓学生思维能力,升华兴趣的一个好办法。因此,教师可采用同桌、小组、全班等讨论形式,组织学生对某一个问题进行开放式的讨论,让学生思维的火花互相触发,交流各自对问题的不同看法,最后由教师进行 总结 概括。利用这个方法的目的是引起更深入地钻研某些问题的更高兴趣。 五、最后通过表扬、鼓励,让学生体验喜悦,延长学习的兴趣。 学生有了兴趣,还要想方设法使兴趣持久。因为小学生的兴趣既不稳定,又不长久。一位心理学家曾说过:“一个人只要体验一次成功的意念和胜利的欣慰,便会激发追求无休止成功的意念和力量。”这种无休止成功的意念和力量也就是学生兴趣的源泉。对学生来说,老师的一点点鼓励,一次的肯定,一次表扬,都是他成功的标志,他都能从中体验成功的喜悦,这时学生的兴趣就如同永不枯竭的源泉,就会浓厚、持久。综上所述,是我在教学中的点滴体会。 总之,在数学教学过程中,只要我们认真钻研教材,把握学生的学习心态,运用灵活多样的 教学方法 ,精心设计每一个教学环节,就能激发和增强学生的学习兴趣。 小学数学教学优秀论文篇2:浅谈小学数学教学生活化 摘要:数学即生活,只有将学生引到生活中去,切实地感受数学的价值,才能使学生真正地理解数学,从而使他们从小更加热爱生活、热爱数学。 关键词:数学教学 新课标 生活情趣 孔子曰:知之者不如好之者,好之者不如乐之者。随着教学改革的深入,我们的数学课堂教学开始变得更自由、更灵活,学生也始终在愉快的状态下积极地学习数学,这的确是我们数学教学改革的一个可喜变化。著名数学家华罗庚曾说:“就数学本身来说,是壮丽多彩、千姿百态、引人入胜的……”入迷才能叩开思维的大门,智力和能力才能得到发展。新的《数学课程标准》更多地强调学生用数学的眼光从生活中捕捉数学问题、探索数学规律,以及主动运用数学知识分析生活现象、解决生活中的实际问题。在教学中,教师应注重从学生的生活中抽象数学问题,从学生已有的生活 经验 出发,挖掘学生感兴趣的生活素材,以丰富多彩的形式展现给学生。 具体可以从以下几个方面做起: 一、数学语言运用生活化,从生活经验入手,调动课堂气氛。 数学 教育 家斯拖利亚尔曾说过,数学教学也就是数学语言的教学。同一堂课,不同的教师教出来的学生,接受程度也不一样,这主要取决于教师的语言水平。尤其是数学课堂教学,要学生接受和理解枯燥、抽象的数学知识,没有高素质语言艺术的教师是不能胜任的。鉴于此,结合学生的认知特点、 兴趣 爱好 、心理特征等个性心理倾向,将数学语言生活化是引导学生理解数学、学习数学的重要手段。如在“利息”一课的教学中,教师说:“我家里有10000元钱暂时不用,可是现金放在家里不安全,请同学们帮老师想个办法,如何更好地处理这些钱?”学生回答的办法很多,这时再趁机引导学生:“选择储蓄比较安全。在储蓄之前,我还想了解一下关于储蓄的知识,哪位同学能够介绍一下吗?”学生们竞相发言。在充分感知了“储蓄”的益处之后,学生们又主动介绍了“储蓄的相关事项”,在不知不觉中学到了知识,体会到了生活与数学休戚相关。 二、创设课堂教学生活化情境 心理学研究表明:当学习的内容与 儿童 的生活经验越接近时,学生自觉接受知识的程度也就越高。在课堂教学中,教师应从学生熟悉的生活情境和感兴趣的事情出发设计数学活动,使学生身临其境,激发学生去发现、探索和应用,学生们就会发现原来熟视无睹的事物竟包含着这么丰富的数学知识。例如老师可以把学生春游中的情境拿到教学中来,“同学们去春游,争着要去划船,公园里有7条小船,每船乘6个人,结果还有18个人在岸上等候。”在课上,让学生根据情境自己编题,自己列式解题。这样,不但把教材中缺少生活气息的题材变成了来自生活的、生动的数学问题,还促使学生能够主动投入、积极探究。 三、数学问题生活化,感受数学价值 数学教材呈现给学生的大多是抽象化、理性化、标准化的数学模型,教师如果能将这些抽象的知识和生活情景联系起来,引导学生体验数学知识产生的生活背景,学生就会感到许多数学问题其实就是生活中经常遇到的问题。这样,不仅把抽象的问题具体化,激发了学生解决问题的热情,还使他们切实地感受到数学在生活中的原型,让学生真正理解了数学,感受到现实生活是一个充满数学的世界,从而更加热爱生活、热爱数学。 例如教学《植树问题》一课,教师可以为学生展示马路边植树、小朋友排队、路灯等一些生活中的现象,让学生体会间隔的含义。这样,不仅增强了学生的探究欲,而且使他们体会到只要用数学眼光留心观察广阔的生活情境,就能发现在平常事件中蕴含着的数学规律。教学时,让学生为自己的校园设计植树方案,可以进一步帮助学生体会在现实生活中许多事情都有与植树问题相同的数量关系,感悟数学建模的重要意 四、将数学知识应用于生活 数学来源于生活而最终服务于生活,尤其是小学数学知识,基本在生活中都能找到原型。教师要教会学生把所学的知识应用到生活中,使他们能用数学的眼光去观察生活,去解决生活中的实际问题。如学过了“长方体、正方体体积”的有关知识后,让学生去计算教室的空间大小、学校喷水池的容积、为家庭的装潢设计一个购物计划;又如学过“人民币”后,可指导学生到超市购物等。 总之,数学即生活,只有将学生引到生活中去,切实地感受数学的价值,才能使他们真正地理解数学,从而更加热爱生活、热爱数学。 小学数学教学优秀论文篇3:如何提高课堂的有效性思维 有效的课堂教学是通过课堂教学活动,让学生在认知和情感上均有所发展。从事小学数学教学的过程中,对于其有效性有以下几点思考: 一、重视情境创设充分调动学生有效的学习情感 构建良好的师生关系,调动有效的学习情感,对于维持学生的学习兴趣和注意力至关重要。调动有效的学习情感,既能培养学生的学习信心,调动其学习的主动性,又能切实提高课堂教学的有效性。 在情境创设中,应注意以下几点: 1、情境创设应目的明确 每一节课都有一定的教学任务。情境的创设,要有利于学生数学学习,有利于促进学生认知技能、数学思考、情感态度、价值观等方面的发展。所以,教学中既要紧紧围绕教学目标创设情境,又要充分发挥情境的作用,及时引导学生从情境中运用数学语言提炼出数学问题。如果是问题情境, 提出的问题则要具体、明确,有新意和启发性,不能笼统地提出诸如“你发现了什么”等问题。? 2.教学情境应具有一定的时代气息 作为教师,应该用动态的、发展的眼光来看待学生。在当今的信息社会里,学生可以通过多种 渠道 获得大量信息,教师创设的情境也应具有一种时代气息,让他们学会关心社会,关心国家发展。如教学《百分数的应用》, 创设了中国北京申奥成功的情境:出示第二轮得票统计图(北京56票,多伦多22票,巴黎18票,伊斯坦布尔9票)请学生根据统计图用学的百分数知识来提出问题,解决问题。? 3.情境的内容和形式应根据学生的生活经验与年龄特征进行设计? 教学情境的形式有很多,如问题情境、 故事 情境、活动情境、实验情境、竞争情境等。情境的创设要遵循不同年龄儿童的心理特征和认知规律,要根据学生的实际生活经验而设计。对低、中高年级的儿童,可以通过讲故事、做游戏、直观演示等形式创设情境,而对于高年级的学生,则要创设有助于学生自主学习、合作交流的问题情境,用数本身的魅力去吸引学生。? 二、深钻教材,确保知识的有效性。 知识的有效性是保证课堂教学有效的一个十分重要的条件。对学生而言,教学知识的有效是指新观点、新材料,他们不知不懂的,学后奏效的内容。教学内容是否有效和知识的属性以及学生的状态有关。第一,学生的知识增长取决于有效知识量。教学中学生知识的增长是教学成败的关键。第二,学生的智慧发展取决于有效知识量。发展是教学的主要任务,知识不是智慧,知识的迁移才是智慧。在个体的知识总量中并不是所有的知识都具有同样的迁移性,而是其中内化的、熟练的知识才是可以随时提取,灵活运用,这一部分知识称为个体知识总量中的有效知识,是智慧的象征。第三,学生的思想提高取决于有效知识量。这种知识是指教学中学生获得的、融会贯通深思熟虑的、实在有益的内容,即有效知识。第四,教学的心理效应取决于有效知识量。通过对知识的获取产生愉悦的心理效应,才能成为活动的原动力和催化剂。 三、探究有效的学习过程。 课堂教学的核心是调动全体学生主动参与学习全过程,使学生自主地学习、和谐地发展。学习过程是否有效,是课堂教学是否有效的关键。学生是学习的主体,但我们也不得不承认,处于成长发展中的小学生,是不成熟的学习主体。由于受年龄、经验、知识、能力的限制,他们提出问题、分析问题的能力毕竟是有限的。因此,只有发挥教师作为组织者、引导者、点拔者的作用,才能发挥学生的主体性、主动性,让学生学会学习。尤其在学生疑难处、意见分歧处,或在知识、方法归纳概括时,更要及时加以点拔指导。有效的学习过程还可以通过游戏实施。小学生注意的特点是无意占优势,尤其是低年级往往表现出学前儿童所具有的那种对游戏的兴趣和足劲要求,他们能一连几小时地玩,却不能长时间地一动不动地坐在一个地方。新课程要求“面向每一个学生,特别是有差异的学生”。因此针对差异性,可以实施分层教学策略,最大限度地利用学生的潜能实施教学过程分层,放手让学生独立思考,展示学生个性,从而使每一个学生都得到发展。使数学课堂教学真实有效。 四、联系生活实际,创设有效的生活情境 创设有效的生活情境是提高课堂教学有效性的重要条件。《数学课程标准》指出:“力求从学生熟悉的生活情景与童话世界出发,选择学生身边的、感兴趣的数学问题,以激发学生学习的兴趣与动机,使学生初步感受数学与日常生活的密切联系。”数学教学中,教师要不失时机创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情景,使学生从中感悟到数学的乐趣,产生学习的需要,激发探索新知识的积极性,主动有效地参与学习。在创设生活教学情境时,一要选取现实的生活情境。教师可直接选取教材中提供的学生熟悉的日常生活情境进行加工或自己创设学生感兴趣的现实生活素材作为课堂情境。二要构建开放的生活情境。教师要对课内知识进行延伸与拓展,将抽象知识学习过程转变为实践性、开放性的学习过程,引导学生发现问题,大胆提出猜想,不断形成、积累、拓展新的数学生活经验。要创设多元的生活情境。 可以通过对学生生活及兴趣的了解,对教学内容进行二次加工和整合,再次创设生活情境。真正实现课的导入“生活化”——教学的导入仿佛是优美乐章的“序曲”;例题教学“生活化”——例题教学是优美乐章的主旋律;知识运用“生活化”——综合运用知识的能力仿佛是动听的“交响乐”。 生产和生活实际是数学的渊源和归宿,其间大量的素材可以成为数学课堂中学生应用的材料。 要做有心人,不断为学生提供生活素材,让生活走进课堂。真正让文本的“静态”数学变成生活的“动态”数学。要让学生觉得数学不是白学的,学了即可用得上,是实实在在的。这样的课堂教学才是有效的。 五、注重教学 反思 ,促进课堂教学质量 记得有人说过“教无定法,教学是一门遗憾的艺术”。因为我们的教师不是圣人,一堂课不会十全十美。所以我们自己每上一节课,都要进行深入的剖析、反思,对每一个教学环节预设与实际吻合、学生学习状况、 调控状况、课堂生成状况等方面认真进行总结,找出有规律的东西,在不断“反思”中学习。我们反思的主要内容有:思考过程、解题思路、分析过程、运算过程、语言的表述、教学的思想方法进行反思等。以促进课堂教学质量,教学效果也一定会更好。 教学作为一种有明确目的性的认知活动,其有效性是广大教师所共同追求的。无论课程改革到哪一步,“有效的课堂”是我们

小学数学教学论文--在小学数学教学中培养学生的思维能力 培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。 一 培养学生的逻辑思维能力是小学数学教学中一项重要任务 思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。 值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。 《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在10岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第二个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。 二 培养学生思维能力要贯穿在小学数学教学的全过程 现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。 怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。 (一)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。 (二)培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。 (三)培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。 三 设计好练习题对于培养学生思维能力起着重要的促进作用 培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。为此提出以下几点建议供参考。 (一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。( )”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。

对法学的认识的论文

自己去看法学或者争议解决这些 期刊吧,多看几篇你就对法律有认识了

法律的生命在于推理 ——我眼中的中国法学的困境和出路“不可调和的调和,矛盾的结合,对立的综合——这些就是法律的问题。”——卡多佐“法律的生命不在于逻辑,而在于经验。”——霍姆斯摘要:本文从中国法学当下的困境——因非法律因素的干预造成法律结果的不确定性,以至于人们普遍对法律失去信仰,甚至信心——出发,强调在法律适用中法律推理(主要是实践推理)的价值,以期通过对形式正义的追求,使法律更具明确性,挽回普罗大众对法律的信心,最终实现追求实质正义的目的。至于如何使法律更加明确,更具预测性,我选择的进路是建立以类比推理为基础的遵循先例原则。关键词:法学困境? 法律推理?? 演绎推理? 实践理性? 类比推理? 遵循先例? 判例制度?一.我所谓的当下中国法学的困境?在我看来,中国法学的最大困境乃在于它的权威远没有达到它应该有的高度。这种表现是多方面的。“法律必须被信仰,否则它将形同虚设”[1] ,而“敬法者始能成为护法者”,但中国当下的法律人显然没有足够尊敬法律[2]。有学者指出,中国法学困境的关键是因为主体性中国的身份缺失。中国的法律人迷失了自己,成为留声机或者传话筒,看似对一切事物都思考,但唯独“对思想根据本身不思想,根据本身是没有的,或者说是物质的”,以至于“我们没有中国自己的未来,拥有的只是西方的过去和今天”[3]。而这在我看来也是其对中国自有法律信心缺失的表现。法律人尚且如此,遑论普罗大众。中国人并不习惯法律思维,中国人乃是最务实的。中国人习惯的是信仰权威[4],所以,“有困难找政府”才是中国人数千年连绵不绝的思维方式,期待青天大老爷出来给自己做主才是大多数中国人的期望。这种传统乡土中国[5]留下的深深烙印,已经成为我们民族性格的一部分,难以更易。而所谓法治又必须首先活在普罗大众心中成为其生活之常态始有实现之可能[6]。这种悖论造成了法律在现实中的尴尬[7]。而造成这种状况的最主要原因又是什么?我认为是法律的不可预测性。所有人都知道,法律并不是我们寻求解决问题的最终途径,甚至不是主要途径(遑论唯一途径)。“大案讲政治,中案讲影响,小案讲法律”这几乎是一条众所周知的潜规则,深深藏在每个法律人(至少是司法者)的脑海深处,无论遇到什么案件,这条原则总是扮演着过滤器的角色。所以毫不夸张地说,法律最多只是第三选择。这是所有法律人的悲哀。所以,当法律(特别是司法和执法中)过多掺杂进意识形态、政治、民愿、道德等其他因素之后,法律并不能给人以确信。也正是这种不确信导致了普罗大众甚至法律人对法律的不信任。而中国的法律人显然又没有告诉,似乎也没有资格(甚至是违心地)告诉普通人“法律是确定的”[8]。当然即使他们说了,有多少人愿意天真地相信也实在是一个不难想象的问题。二.法律推理中国的法律不是纯粹的法律,中国的法律问题也不是纯粹的法律问题。“天理,国法,人情”,国法夹在两者之间,求上不得,求下不能,不能动弹[9]。即使在有限的运用法律来解决现实问题的时候,法律人所体现的业务素质依然让人难以恭维[10]。弗里德曼用信息论的观点分析了法律制度的一般过程,并将这个过程分为原材料的输入、加工、判决输出和信息反馈等阶段[11]。我在这里集中讨论的是第二阶段,也就是认定事实和适用法律,即法律信息的处理和思维加工过程。其中最主要的是法律分析的问题。按照波斯纳的观点,法律分析是对法律概念之间关系的探讨。而博登海默干脆认为法律分析就是分析推理,也就是法律推理。这两种说法都难免太抽象。那么法律推理究竟是什么呢?德沃金说:“法律推理是建设性阐释的一种运用,我们的法律存在于对我们整个的法律实践的最佳论证之中,存在与对这些法律实践做出尽可能最妥善的叙述之中。”[12]由此可见,法律推理是个极其庞大复杂的概念,甚至可以包含法律解释。它是逻辑思维方法在法律领域中的运用,即对法律命题所进行的一般逻辑推演[13]。可以说,它贯穿于法律适用的始终,甚至还一直都是关键。法律推理根据法律推理在不同难度的案件中所表现出的不同逻辑形式和推理规则,可以划分为形式推理和实质推理两部分[14]。三.法律问题有正确答案吗?但在进行法律推理(分析推理)之前,我们首先应该考虑这样一个前提:法律问题存在正确答案吗?因为这一问题实际上乃是法律推理是否必要、是否有效的合法性基础。德沃金相信法律问题客观上必然存在唯一正确的答案,“多年来我一直在批驳实证主义者的主张,即对有争论的法律问题不可能存在正确的答案而只有不同的答案;我一直坚持认为在大多数案件中可以通过推理和想象的方法去求得正确答案。”[15]但显然波斯纳不能完全赞同这种观点。他称德沃金为“道德实在论者”,主张衡量法律推理结论正确与否只有一个合乎情理的标准,认为客观性是指“我在情理上认为其他具有常规智力和良心的人们都可能会合乎情理地当作正确的东西”[16]。有论者认为,他“把正确性和真理性对立起来,陷入了一种真理神秘论”[17],会导致法律没有明确性,从而变得不可预测[18]。这是不可思议的。我认为法律问题从来不会像数学或者物理逻辑那样能够用公式穷尽一切可能,最终得到真相。法律问题因为人为的参与,不自觉地必然会掺杂很多个人以及群体的价值判断,这种价值判断使得法律问题很难说能有一个客观答案[19]。而只能通过各种综合实践理性的方法找到最为符合我们这个时代大多数人认同的情理的答案。但这并不意味着法律的不可预测。在后面我将论述,建立合理的先例制度就是十分有效的解决方法。四.逻辑推理(司法三段论)的作用与缺陷相信对大多数(法律)人而言,法律推理就是司法三段论。尤其在分析法学家看来,“所谓法治就是要求结论必须是大前提和小前提逻辑必然结果”,但这种将法律适用看作是自动售货机式的简单思维[20],“即使在亚里士多德必然推理和辩证推理的意义上也是一种倒退”[21]。不过在简单案件中,其实演绎逻辑的简单推论已经足够了。演绎推论的实质/关键是:个案是否是规则的一个事例。还是以这个可能是最著名的三段论为例:“所有的人会死;苏格拉底是人;所以苏格拉底会死。”论证的有效性不过在此:苏格拉底会死这一结论,包含在第一个前提——“人”的定义——之中。事实上,大前提说的只是,这里有一只标有标签“人”的盒子,盒子里面有一些东西,其中每一个都是“会死的”。小前提告诉我们,盒子里的东西都是有名字牌,其中一个名字牌上写着“苏格拉底”。当我们把苏格拉底拿出盒子时,我们就知道他会死,因为盒子里仅有的东西都会死。波斯纳指出这种三段论之所以拥有令人信服的有效性是因为使用了一个隐喻,一个箱子的隐喻[22]。演绎推论的适用前提有两个[23]:1、法律体系的公理化:穷尽事理和自成体系。A、法律体系是完备无缺的;B、体系是和谐一致的,不允许同时肯定又否定一个命题;C、消除了所有符号表述规则及其适用领域方面的模糊性。2、法律命题的形式化。演绎推理(司法三段论,或者如波斯纳所言还包括所谓缺省三段论)对于维护法律的确定性和法治原则依然起着至关重要的作用。只是一但遇到疑难案件或是涉及伦理的案件(也就是我们并不能清楚知道什么是那个“箱子”,其中装的又是什么的时候),仅凭演绎推理就无能为力了。除此之外,演绎推理本身还存在一个致命的缺陷[24]:三段论的合法性和它的真实可靠性并不必然一致。它的真实可靠性不仅取决于具体的三段论是否合法,而且取决于前提是否真实。也即,当大小前提存在虚假的情况下,结论是否正确是或然的,并不确定。再用关于苏格拉底的另一个恰当且著名的例子加以说明:“所有的斯巴达人都很聪明;苏格拉底是斯巴达人;因此,苏格拉底很聪明。”在这里,尽管结论正确,但由于大小前提都是错误的,所以它真实但不合法。而这必然在司法实践中给人带来难以名状的困扰。五.实践理性粉墨登场那么,如何克服演绎推理对疑难案件的无能为力呢?波斯纳的方法是主张用“实践理性”的推理方法对逻辑推理加补充[25]。实践理性“这一术语缺乏一种标准含义”,至少有三种不同的用法[26]。但“一般来说,实践理性方法是与逻辑推理的纯粹理性方法相对应的注重行动的方法。实践理性则是人们用以做出实际选择或者伦理的选择而采用的方法;它包括一定行为的正当化论证和相对于一定目的的最佳手段的确定,其中起决定作用的因素是经验智慧。所谓实践理性就是法官、律师在一个个具体案件的法庭审判实践中,在一次次急中生智的法庭辩论中表现出来的经验智慧。”[27]实践推理应该包括若干实践理性的方法,其中常识推理、直觉推理、类比推理和解释推理则是典型。中国其实并不缺乏类比推理的传统,所谓“春秋决狱”在某种意义上说就是一种最为简单朴素的类比推理的方法[28]。只是随着近现代中国选择大陆法系发展道路,并且没有建立起判例制度,才使得类比推理式微。而“在大多数现代法律人看来,法律推理的中心是类比推理”[29]。六.“善推而已矣”——类比推理是什么?“类推推理,亦就是将一条法律规则扩大适用于一种并不为该规则的语词所涉及的、但却被认为属于构成该规则之基础的政策原则范围之内的事实情况。”[30]所以,类比推理实际上就是根据两个对象某些属性相似而推出它们在另一些属性上也可能相似的推理形式。它的基本逻辑形式是:A事物具有a,b,c,d,? B事物具有属性a,b,c;所以,B事物有属性d[31]。就法律适用而言,“类比推理在法律适用过程中的公式大体是:甲规则适用于乙案件,丙案件在实质上都与乙案件类似,因此,甲规则也可适用于丙案件。”[32]所以类推其实就是“以前一个案件的相同方式来判决后一个案件。”[33]这实际上就是遵循先例的判例制度的基本原则。七.遵循先例原则“当今,英美法系中站支配地位的观点认为,明确或隐含地提出某个法律主张的法院判决——特别是终审法院的判决,构成了法律的一般渊源和正式渊源”。但“在罗马法系国家中占支配地位的理论认为,司法先例不应当被视为是法律的正式渊源。”不过我以为随着两大法系的不断交流融汇,大陆法系国家并不能仅仅因为查士丁尼的命令——“案件应当根据法律而不应当根据先例来判决”[34]——就对判例制度心存偏见。而大陆法系国家显然也已经注意到了这个问题,事情正在起变化[35]。在大陆法系国家,“一系列对法律主张做出相同陈述的判例,其效力几乎等同于英美法院的判例或一系列英美法院判例的权威性。注意到判例汇编是颇具意义的,例如,德国最高法院认为,一位律师如果无视法院在其正式的判例汇编中所发表的一个判例,那么他本人便应当对此产生的后果对其当事人负责。”在中国,自1992年开始,最高人民法院也委托中国应用法学研究所每年都主编《人民法院案例选》,也有学者公开呼吁应当尽快建立起“中国自己的判例制度”。我以诚实信用这则号称“帝王条款”的原则为例,来研究遵循先例原则的现实意义。在我国的《民法通则》第四条只简单提及此名称而已,相关法学教科书对此也语焉不详[36]。我以为这就是缺乏判例制度带来的隐忧,因为这种道德条款很难用语言表达清楚。而在英美法系国家,诚实信用原则是建立在一个个具体的案例中的,后来的法官或者律师只要运用亚里士多德所谓的从部分到部分的推理方式便可以轻松得出在他经手的案件中是否存在违反诚实信用原则的问题——尽管这并意味着他们能指望先例能像手套一样被轻松套在新的案件之上。八.建立完善中国自己的判例制度因此,我国建立判例制度势在必行。成文法相对滞后和若干抽象原则难以解释的特点,使得判例制度这种能有效弥补这些缺陷的制度的建立成为迫切的需要。而如前所述,中国的司法传统并不排斥判例制度[37],这使得在我国建立判例制度成为一种可能[38]。甚至有学者指出,我国最高人民法院公布的案例选编是有判例之名而无判例之实,我国早已出现判例制度的端倪。这或许是有道理的,但还是应该注意到案例和判例两者之间还是存在质的区别的。就目前而言,建立判例制度至少有如下几种明了的益处:1.补充成文法漏洞与不足;2.弥补法律解释的抽象性与不足;3.积累经验,推动立法;4.利于法院司法裁判。那么,应该如何建立判例制度呢?这不是我所能探讨的范围了。但“小子姑且妄言之”,这不外乎是谁来/怎么选、怎么编、怎么公布、怎么更改判例的问题,而这一切都需要制度甚至是立法的确定和保障。而一旦建立起行之有效的判例制度,在我看来就可以最大限度地规范和约束法官的司法裁判,减少其任意性。也可以更大程度地提高律师的业务素质,最终带动整个法律人职业共同体的良性发展。这样无疑是恢复民众对法律信任的关键一步。这一步迟早要走出,我们不走谁来走,现在不走何时走?[39]九.结语:敢问路在何方?路在脚下!辩证唯物主义认为:“在绝对真理的长河中,人们对于各个一定发展阶段上的具体过程的认识只具有相对的真理性”。[40]如果我们非得找到真理,找到万全的办法才能行动的话,我们无疑只是在等死。我愿是布莱克笔下的扫烟囱的孩子,又愿如叶芝为自己选的墓志铭一样:“对生与死,冷眼一瞥,纵马向前!”评论(0)00空中飘 2010-12-12一、法律传统资源[1] 界说 (一)关于“传统” 什么是传统?传统在历史之流的滚滚风涛中形成,一个古老民族的历史传统,总给人以混茫幽遥的印象,似乎无比丰厚,而又无从把握。据徐复观先生的考证,“传统”一词在中国典籍中最早出现于《后汉书.东夷传》。[2]但所指的只是统治者的权位继承,与今天所讲的“传统”相去甚远。中国过去有“道统”的名词,但也不等于传统。传统这个词,系从英文“tradition”翻译过来的,而“tradition”又来自拉丁文“traditio”,其次根“tradere”的含义是“引渡”,是一件东西从一个人传到另一个人的意思。E.希尔斯认为,传统意味着许多事物。就其最明显、最基本的意义来看,它的含义是世代相传的东西(tradium),即任何从过去延传至今的东西。[3]关于什么是传统,还有很多观点,在此不一一列举,本文赞同对传统的特殊限定,即它指称得是“一种前近代社会文化成果的总和,具有相对稳定、内部和谐一致的系统的特质”。[4] (二)关于法律传统 本文所说的法律及法律传统是从广义的角度来理解的。狭义上,法律仅仅是法律条文与法典;而广义上的法律及法律传统包括那些实在法、法律程序以及法律的观念和法律传统的思维与价值判断的标准。法律传统可以理解为在现代社会还在发生作用的,古代法律体系中有生命力的法律文化传统。它应该是一个历时性概念,不仅存在于古代社会中,而且存在于现存社会之中,是由传统法律生长和演化而来的对现实社会仍发生作用和影响的未曾间断、不断延伸的法律文化和精神。而传统法律则是一个历史性概念,时间上主要是指前近代。传统法律资源就是所有前近代法律成果的总称,是一个国家法律发展的根基。一定条件下,传统法律可以转化为法律传统。 二、关于法律现代化 (一)现代化衡量的标准 关于现代化的概念,不同的学者曾经从不同的角度作了界定。 ·E·布莱克试图从历史发生学意义上对现代化加以理解,认为现代化一词指的是“近几个世纪以来,由于知识的爆炸性增长导致源远流长的改革进程所呈现的动态形式。现代化的特殊意义在于它的动态特征以及它对人类事务影响的普遍性。它发轫于那种社会能够而且应当转变、变革是顺应人心的信念和心态。如果一定要下定义的话,‘现代化’可以定义为:反映着人控制环境和知识亘古未有的增长,伴随着科学革命的发生,从历史上发展而来的各种体制适应迅速变化的各种功能的过程”。[5] 2.以研究中国现代化问题著称的G·罗兹曼继承布莱克的方法论原则,强调要把现代化看作是一个在科学和技术革命影响下,社会已经或正在发生着变化的过程,是人类历史上社会变革的一个极其戏剧性、深远的、必然发生的事例。[6] ·J·列维则从社会结构功能主义的立场出发,把现代化视为整个人类社会的一条普遍发展道路,指出“现代化毕竟是社会现实中的希望之星,是前所未有的生活方式的飞跃。现代化是社会唯一普遍出路。”[7] 上述种种关于现代化的观点, “尽管侧重有所不同,但都显然包涵着这样一个判断:现代化所谓一个世界性的历史进程,乃是从传统社会向现代社会的转变和跃进,是人类社会自工业革命以来所经历的一场社稷社会生活主要领域的深刻变革过程。”[8]“现代化首先是一个变革的概念,是传统生活方式极其体制向现代生活方式极其体制的历史更替”;[9]“其次,现代化是一个连续的概念。是一个漫长的历史发展和变迁的过程。”[10] 在笔者看来,现代性和传统性并不是互相对立和排斥的极端状态,在任何社会中都不存在纯粹的现代性和纯粹的传统型。相反,现代化过程是一个传统性不断削弱和现代性不断增强的过程。每个社会的传统性内部都有发展出现代性的可能,因此,现代化是传统的制度和价值观念在功能上对现代性的要求不断适应的过程即:经济领域的工业化,政治领域的民主化,社会领域的城市化以及价值观念领域的理性化等方面的互动过程。 (二)法律现代化的含义 法律现代化就是指一个国家的传统型法制向现代型法制变迁的过程。在静态方面,法律现代化意味着已公布的法律是体系完整、层次分明、结构均衡、规范协调、体例统一,并且体现人民意志、适应社会发展、代表人类前进趋势的“良法”;在动态方面,其意味着法律“在任何方面得到尊重而保持无上的权威”。简言之,法律现代化的目标是“法治”(rule of law)的实现。 三、法律传统在法律现代化过程中的地位与作用 (一)内发先行型国家 在现代世界的诸多法律传统中,以大陆法系和英美法系的影响最为广泛,而两大法系在演进的道路上又都和罗马法[11]不期而遇。所不同的是,两大法系的代表性的国家对罗马法却采取了迥然不同的态度:作为英美法系的发源地的英国在很大程度上排斥罗马法的影响,走上了较为独立的法律发展道路,形成了以普通法为核心的一种法律传统;而以德法为代表的欧洲大陆的国家则采取吸收罗马法的方式进行法律的现代化,形成了以罗马法为底蕴的大陆法系。英德两国实质上都是吸收了包括罗马法、日耳曼习惯法在内的诸多先前法律成果的结果,英国吸收了大量的罗马法的先进成分[12],德国中也保留了许多日耳曼习惯法的合理内核。 1.英美法系——以英国为例:英国法律史学家霍兹豪斯认为:西欧国家法律体系的基础,部分是罗马法的残余,主要的是由基督教神学家所调和的蛮族习惯以及教会所保存的罗马法学家的政治与法律思想。从来源看,英国的法律传统综合了日耳曼因素、罗马因素和基督教因素。[13]梁治平教授曾在其硕士论文《英国法中的罗马法因素》⑤中提出英国对罗马法吸收方式与大陆国家的不同也可能是英国法独立于罗马法传统之外的一个原因。在普通法建立之初,法官们都是精通罗马法的,布莱克顿就是一例,他们在签发令状时受罗马法的影响是难以避免的。但问题的关键就在于令状和判例这一普通法的发展方式。普通法以令状为依据,以判例为表现形式,这使得更抽象化、将法律规则和规则的理由相分离的罗马法只能溶于普通法之中,而无法以法律规范这一传统形式表现;另外由于又受制于普通法的思维方式,即便是专家也难以发现罗马法的影响。而且法系之间最直观的区别在于法律的表现形式和思维方式而非内容,这一事实又强化了英国法的独立地位,形成独立于罗马法之外的法律传统。 (1)中央法院系统和巡回审判。11-12 世纪,在中央王权的不断强化过程中,审判权也向中央集中。开始由国王及其政府巡回审判,但随案件的增加和为了消除不定期巡回审判的弊端,逐渐形成了固定于威斯敏斯特大厅的三大王室法院,巡回审判在亨利二世时也进一步制度化。他们的作用是统一地方的习惯,形成了“王国的统一习惯”,这是任何地方领主法院都作不到的。而且,密尔松认为,适用这些习惯的法院由地方法院转为王室法院,使习惯的性质发生了改变,“王室法院……认为这些习惯只是一些规则和抽象的权利,”习惯就变成了法律。这种将不成文的习惯转变为法律,并用判决的形式固定下来的结果就是形成了英国自己的法律传统。 (2)令状制度。令状是王室法院管辖权的依据,也即欲获得王室法院(也即后来的普通法)的救济,必须获得令状。而每一令状都是对一种争端的处理并包括相应的程序。 (3)陪审制。先前的陪审团是证明法律和事实的证人,他们为当时的巡回审判提供当地的习惯,为后来统一全国习惯打下基础。这里指的是小陪审团,它是为取代神明裁判和决斗法等落后的裁判方法而设的理性的审判方法。它的运用使王室法院吸引了更多的当事人,促使王室法院的管辖权不断扩大,这是它对普通法发展的第一个贡献。另一个贡献是,由于陪审团不是上帝,而是由会犯错误的一般人组成的,概括的证据则会诱导他们犯错误,这迫使法院改变以前概括的陈述和抗辩方式,使陪审团“在考虑事实的细节之后才作出”判决。这使得实体法开始产生。 (4)辩护士。辩护士是在王室法院固定和小陪审团产生以后出现的。当固定的王室法院建立以后,邻人誓证就维系不下去了,从地方带一群邻人到伦敦进行诉讼是不经济的,于是伦敦就出现了一批职业法律者。他们既非邻人,其作用就不可能是誓证了。加上陪审团的世俗性(如上所述),于是他们的作用就是替原告详细地而非概括地叙述事实,替被告一句一句地对原告的叙述进行抗辩。而每一种抗辩都是以承认一种规则为前提的,后来人就是从这些辩护士的抗辩中寻找法律规则的。[14]而令状制度的复杂性以及选错令状的后果导致了辩护士的增加和专业化,最终形成了封闭的行会式的律师团体。 (5)法律文件。法律文件是对法律过程的记述,后来则成为法律教育的基础和法律渊源的资料来源。第一种是《令状汇编》,由于诉讼必须以正确的令状开始,而了解王室普通法也需要令状知识,而此类书籍的大量存在又为令状制度的固定化打下基础。第二种是大法官的作品,其中以格兰维尔和布莱克顿的最为著名。书的基本内容是关于令状和判例的使用方法。第三种是《法律年鉴》,它记述了从诉讼以令状开始到判决结束的整个过程,尤其是关于陈述和抗辩,它将陈述士陈述和抗辩中记录下来,也即记录了对案件适应的实体法。没有人像罗马法学家一样写决疑作品之外的法律评述和体系化的教学用书,没有将事实简化成一两句话的评注,只有程序性的令状和具体冗长的辩护辞。这些法律文件为法律教育提供了在当时法院中实用的法律知识;这些法律文件的内容又主要是对令状和判例的评述,这促进了英国法律教育以及英国法律独特传统的形成。 (6)法律职业和法律教育。开始有法官而无法律职业,那时的法官是由教会人士担当的,他们在更大意义上是行政人员;律师并不存在,但后来发生了变革。正如上文所说,由于抗辩和选择令状的复杂性和重要性,陈述士出现了,而且到十三世纪末在高等法院已成为一种封闭性的职业,也即律师了。同时就有从这些律师中选拔王室法院法官的倾向,自十四世纪开始,这种做法已成为确定的习惯。统一的英国的法律职业形成了。 (7)判例法。布雷克顿说:“不过,如果出现了相同的案件,就应该用一种相同的方法来判决:因为从判例到判例比较好处理。”这种因素的作用是将书面形式固定的诉讼中体现的习惯法实质上作为了以后审判的法律依据,也即即使当时没有太多的制定法,法官也可以从以前的判决中寻找到法律依据,而不需要考虑是不是自己按照公平观念、或是吸收外来法进行判决。

不急的话自己去找吧,百度问这些一般回复的都是那号钱的,,我是来看看qq那的

关于对数学的认识论文范文

数学论文范文参考

数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

( 一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

( 二) 教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

( 一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

( 二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

( 三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献:

〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.

〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.

〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.

浅谈高中数学文化的传播途径

一、结合数学史,举办文化讲座

数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、

二、结合教学内容,穿插数学故事

数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、

三、结合生活实际,例解数学问题

作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、

四、结合其他学科,共享文化精华

科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、

五、结合课外活动,小组合作探究

由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、

六、结合教学评价,纳入数学考试

虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。

数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文

大学数学是大学生必修的课程之一,如何提升大学生数学学习兴趣,培养数学型人才,是每一个大学数学教师都需要思考的。下面是我为大家整理的大学数学论文,供大家参考。

大学数学论文 范文 一:大学数学网络 教育 论文

一、教师要转变观念

意识是行动的主宰者。首先,教师要充分认识到网络教学资源对大学数学教学所产生的深刻影响。在网络信息快速发展的当今时代,如果仍旧拘泥于传统教学方式,势必将会处于落伍的境地。不仅影响教学效率,往深层次讲,还会影响学生 毕业 走向社会的适应能力以及生存能力。因此,教师要积极主动投身于教学改革的先行者行列中,构建现代化网络教学平台、加强网络教学资源的建设。

二、进行有效引导

在现代网络信息资源的基础上,学生能够变传统被动接受知识为主动探索知识。因此,教师要进行适当引导,指导学生掌握有效运用现代网络资源的 方法 ,不断发挥学生的主观能动性,培养学生的自主学习与探索能力,进而实现学生主动探索、教师指导的理想教学模式。 课前预习 、课中学习、课后巩固等这些环节,教师均可以让学生先自主学习,而后再进行有效指导。

三、有效整合教学资源

现代网络为我们带来丰富多彩的教学资源的同时,也带来了一些垃圾信息。因此,在大学数学教学中,教师要具备有效甄选、整合教学资源的能力。要根据课程内容,选择适合课时内容的资源融入到教学中。在选择网络资源时要遵循趣味性原则、实用性原则以及内容相符原则。运用网络教学资源进行大学数学教学是提高大学数学教学质量与教学效率的有效途径与方法,也是教育教学发展的必然趋势。教师应当转变传统的教学观念,充分重视网络信息资源,以教材为中心,有效整合网络资源,并运用于教学中,提高学生的学习兴趣,不断培养学生的自主学习能力。

大学数学论文范文二:大学数学教学中网络教育资源研究

一、如何利用网络教育资源提高大学数学教育质量

(一)加强教师对网络教育资源的认知

以前的大学数学教学方式单一,与学生的交流也少之又少,但是随着网络资源的发展,这一切将会有很大的变化,这也是适应社会的发展,提高数学教学质量的一种必然趋势。学校也应加大网络资源建设,顺应社会发展的潮流,不要封闭在传统的教育理念之中。大学教师也应适应社会的发展,不断的学习,摆脱落伍的危机。

(二)教师要把网络教育资源的内容融入到教学之中

教师应该适应网络的发展,把网络教育资源融入到现代教学之中,但是不要盲目的引进,首先就要考虑引进内容的适用性,所引进的内容要与所学的内容有相关性,能起到补充,扩充的作用,这样能够开拓学生们的视野。其次引进的内容还要具有适用性,能够让学生们把所学的内容融入到生活,融入到社会,达到学生们能认识数学,应用数学,培养他们的能力。最后还要具有一定的趣味性,这样才能令学生更能接受所学内容,更愿意去学习数学,应用数学。所以教师合理的引进网络教育资源使十分重要的。

(三)教师要引导学生们自主利用网络教育资源

教师不但要学习引进网络教育资源,还要充分的引导学生利用网络资源,培养他们自主学习数学, 爱好 数学的良好作风。以前的数学教育中,以老师讲解为主,学生被动的接受知识,学习过后学生们无法应用,这是一个很大的失败,而现在的网络发展情况下,老师可以引导学生们更好的利用网络资源,引导学生们自主学习,可以布置学生做课前预习,到网络上寻求资料,还可以让学生们课后巩固学习内容,网上寻求交流,以便达到巩固知识的作用。

(四)增强学生自主学习能力和兴趣

现在大学数学教育尽管很重视学生的学习,教师又会安排课余时间组织学生们给他们进行答疑解惑,但是受到时间性和地域性的限制,效果往往是不太理想,现在网络资源的丰富,不再受时间和地域的限制, 网络技术 可以让学生和老师间进行多样化的交流和辅导,也可以让学生们通过一些论坛,邮箱,视频等等不断的学习巩固自己的知识。学习不再有时间地域的限制,学生们的积极性会大大提高,兴趣也会越来越高,提高数学成绩不再是难事。

二、结束语

大学数学教育充分有效的利用网络课程资源是提高大学数学教育质量的有效办法,教师应该打破传统教学的局限性,以课材为中心,充分利用网络资源融入到现在教学之中,补充课本上的不足,增强教育之中的趣味性,这样会开拓学生们的视野,培养学生们的 兴趣爱好 ,让他们更加具备学习数学的激情,更加具备自主学习的能力。只有这样学生们才会更加有发展,大学数学的教育才会更加成功。

大学数学论文范文相关 文章 :

1. 大学生论文范文

2. 大学论文格式范文

3. 大学生论文范文模板

4. 大学毕业论文范文

5. 大学生毕业论文范文

6. 大学毕业生论文范文

从数学学习的过程上来分析,我们往往会看到这样的现象,一个孩子的数学学习较好,他的思维灵活性就比较强,在这种情况下,他的热情和积极性就很高,善于表达自己的思想与方法,这样这个孩子的交往能力就会得到一定程度的锻炼,他的自信心也必然会逐步得到加强。

  • 索引序列
  • 对数学的认识的毕业论文
  • 对数学与应用数学的认识论文
  • 对小学数学教育的认识论文
  • 对法学的认识的论文
  • 关于对数学的认识论文范文
  • 返回顶部