首页 > 期刊论文知识库 > 钾钠元素检测论文

钾钠元素检测论文

发布时间:

钾钠元素检测论文

卷烟纸中钾钠元素的快速测定应用曹婷婷,曹 忠*,梁海琴,苏 威,龙 姝,何婧琳,肖忠良【摘 要】卷烟纸中钾钠元素含量的快速检测是研究关注的重点。将PNa玻璃电极和PK电极分别应用于卷烟纸中钠离子和钾离子的测定,响应时间短,对常规金属离子的选择性好;钠电极在pH=的二异丙胺缓冲溶液中对钠离子的线性响应范围为 ×10-6~×10-2mol/L,能斯特响应斜率为 ± mV/-pC(25℃),检测下限为×10-7mol/L;钾电极在pH=的Tris-HCl缓冲溶液中对K+离子的线性响应范围为×10-5~×10-2mol/L,能斯特响应斜率为 ± mV/-pC(25 ℃),检测下限为 ×10-6mol/L;且对卷烟纸样品中Na和K含量测定的回收率分别为~、~,与火焰原子吸收光谱方法比较,结果一致,有应用前景。【期刊名称】化学传感器【年(卷),期】2014(000)002【总页数】8【关键词】离子选择性电极;卷烟纸;钠离子;钾离子;快速测定0 引言卷烟纸由植物纤维和遍布在其结构中的无机填料组成。其中,钾、钠离子作为矿质元素,一方面,在烟草生长过程中,钠起到了保证烟草正常生长、积累和形成不同化学成分的作用;而钾能维持细胞渗透压、调节细胞电中性,参与蛋白质合成、光合作用以及调节酶活性,并且钾的存在能改善烟叶吸湿性。另一方面,有机酸钾盐和钠盐是卷烟纸中的重要助燃剂,能减少卷烟燃烧时产生的焦油,使卷烟纸燃烧时达到低焦油、低一氧化碳的目的,从而能有效减轻吸烟对人和环境的影响[1]。因此,准确测定卷烟纸中的钾钠含量,对于评价卷烟纸性能和卷烟纸质量,进一步研究开发安全型卷烟纸具有重要意义。随着人们对卷烟纸质量的日益关注,测定钾钠元素的方法也越来越多,主要有离子色谱法[2~4]、高效液相色谱法[5~7]、原子发射光谱法[8~9]、电感耦合等离子发射光谱法[10~12]、火焰原子吸收光谱法[13~15]和流动注射分析法[16]等。这些方法都需要昂贵的精密仪器和复杂的样品制备流程而使其应用受到限制。因此,寻求一种简单、快速且方便的方法测定卷烟纸中钾钠离子的含量显得至关重要。离子选择性电极 (ISE)方法由于具有速度快、制备简易、成本低和灵敏度高等优点,近年来已在环境监测、食品、医疗卫生和生化分析等领域得到广泛应用[17~19]。邱会东等[20]利用pK-1型PVC膜钾离子选择性电极测定含钾离子药物,测得的线性范围为 ×10-6~×10-1mol/L,检出限为 ×10-6mol/L。 任跃红实验组[21]提出以亚戊基双苯并-15-冠-5为中性载体,以邻苯二甲酸二辛酯为增塑剂,以PVC为支持体的离子选择电极法测定钾肥中的钾离子,其检出限为×10-6 mol/L,验证了离子选择电极法简便、快速、准确的优点,可以作为钾肥中钾含量测定的通用方法。刘建华等[22]用104-2型缬安霉素钾电极和102型PNa电极测定陶瓷原料中的钾、钠,从准确度和精确度以及回收率方面证明了此类离子选择性电极能够满足陶瓷生产原料的分析要求。Gupta等[23]用席夫碱聚合物作为膜电极的离子载体选择性测定镉(Ⅱ),这种方法可以很好地用于各种水和土壤样品中镉的检测。Anastasova等[24]已开发一种一次性固体接触选择性电极用于监测环境中的铅离子,这类传感器可以对水质进行原位监测。Rounaghi等[25]报道了一种基于含羟基和苯氧基的癸烷化合物敏感膜离子选择性电极,在 ×10-8~×10-1mol/L 范围内对铈离子有能斯特响应。Ramanjaneyulu等[26]制作了一种灵敏的铯离子选择电极,其敏感膜为杯[4]芳烃-冠6化合物,检测结果显示,其对Cs检测限可达到×10-8mol/L。 Yuan 研究组[27]设计了一种基于席夫碱复合物的铅离子选择性电位传感器,可在pH为4~10的溶液环境中实现对铅离子的检测,且响应速度很快,仅为10 s。基于此,该文研究小组采用PNa玻璃电极与PK-1钾离子电极用于卷烟纸中钠元素与钾元素含量的测定,探讨了两种离子选择电极的电位响应性能,并与火焰原子吸收方法进行比较。实验结果表明,两种电极能满足烟草卷纸中钾钠离子的快速检测,在烟草等行业工业领域具有重要的应用前景。1 实验部分 主要仪器与试剂PHSJ-3F型PH计(上海雷磁仪器厂),集热式磁力加热搅拌器(DF-Ⅱ型,江苏荣华仪器制造有限公司),AA-6800型火焰原子吸收光谱仪(日本岛津公司)。实验用钠离子工作电极为6801型PNa玻璃电极,参比电极为6802型甘汞电极,钾离子工作电极为PK-1钾离子电极,参比电极为217型双盐桥饱和甘汞电极,均购于上海越磁电子科技有限公司。卷烟纸由湖南中烟工业有限责任公司长沙卷烟厂(长沙)提供,二异丙胺、三羟甲基氨基甲烷(Tris)、氯化铯(CsCl)购于国药集团化学试剂有限公司(上海),氯化钾、氯化钠、硝酸、高氯酸及其它化学试剂购于湖南化学试剂总厂(长沙),所用试剂均为分析纯,实验用水为超纯水 (电导率≥ MΩ·cm)。 卷烟纸样品预处理称取 ~ g 卷烟纸样品,剪成碎片,置于25mL烧杯中,加入 65%的硝酸和高氯酸,酸化静置两小时以上;然后置于调压控温电炉上消解(温度控制在110℃左右),赶酸至近干。冷却后移至50mL容量瓶中,用5%的硝酸定容至刻度。移取该试样的消化液于100mL容量瓶中,加入 5 g/L的氯化铯溶液,用5%的硝酸定容至刻度。 电极的测试方法钠离子的测定:以6801型PNa玻璃电极为工作电极,6802型甘汞电极为参比电极,通过测试一系列已知浓度的钠离子标准溶液的电位值,以电位值对浓度值做工作曲线,然后测试未知浓度钠离子样品溶液的电位值,通过工作曲线求出样品溶液中钠离子的浓度值或含量。其中, 所用缓冲溶液为 ~ 的二异丙胺溶液( mol/L),采用 mol/L 的 HCl溶液调节被测溶液,用pH玻璃电极校正其pH值。钾离子的测定:以PK-1钾离子电极为工作电极,217型双盐桥饱和甘汞电极为参比电极,所用缓冲溶液为 ~ 的 Tris-HCl溶液( mol/L),测试和调制方法同上。2 结果与讨论 最佳pH的选择分别探讨 PNa玻璃电极在 pH为 、、、、、 条件下, 电极电位随钠离子溶液浓度的变化关系,并依此求出能斯特响应斜率,作出斜率与pH的关系图,如图1a所示。从图1a中可以看出,当pH=时PNa玻璃电极的响应斜率最大,其斜率值为± mV/-pC(25 ℃),且接近能斯特响应斜率的理论值。这说明,当pH=时,PNa玻璃电极响应灵敏度最大,从而得到测钠的最佳pH值为 。同样的,探讨了钾离子电极在pH为、、、、、、 下 的 斜 率 与 pH 的 关系,如图1b所示。由图1b可知,当pH=时PK-1钾离子电极响应斜率最大,其斜率值为±(25 ℃)。这说明, 当 pH= 时PK-1钾离子电极响应最好,从而得到其最佳的pH 值为 。 电极响应范围和检测下限实验分别考查了PNa电极与PK电极对Na+和K+的测试响应性能,图2是PNa玻璃电极在二异丙胺缓冲溶液pH=时,结合不同浓度Na+后得到的电位响应曲线图。由图2可知,随着Na+浓度的增加,电极电位逐渐增大,说明电极玻璃膜结合的 Na+增加,且该电极在pH=的二异丙胺缓冲溶液中对 Na+离子在 ×10-6~×10-2mol/L(~1170 mg/L)的浓度范围有良好的线性响应关系(如图2内插图 ),采用最小二乘法拟合得线性方程为 ΔE= log10c,根据作图法得到其检测下限为×10-7mol/L。图3是PK钾离子电极在Tris-HCl缓冲溶液pH=时,加入不同浓度K+后得到的电位响应曲线及其线性关系图。由图3知,随着K+浓度的增加,电极电位也逐渐增大,且在pH=的Tris-HCl缓冲溶液中对K+离子的线性响应范围为 ×10-5~×10-2mol/L(~1490mg/L),线性方程为 ΔE= log10c(见图3 内插图 ),根据作图法得到其检测下限为×10-6mol/L。 电极的响应时间与重现性实验分别考查了PNa电极与PK电极对Na+和K+的响应时间,如图4所示。图4a是PNa电极在二异丙胺缓冲溶液中加入不同浓度Na+离子后的动态电位变化曲线图,以达到电位响应最大值的 95%来计算。即通过在 ×10-7~×10-3mol/L范围内从低浓度到高浓度进行连续测量并记录随时间变化的电位值,可以看出,在整个浓度范围内PNa电极达到平衡的反应时间很短,即≤24s,表明该PNa电极对钠离子有很快的响应速度。同样的,图4b是PK电极在Tris-HCl缓冲溶液中加入不同浓度K+离子后的动态电位变化曲线图,由图4b 可知,在 ×10-6~×10-2mol/L 浓度范围内电极达到平衡的反应时间为≤30 s,表明该PK电极对钾离子也有较快的响应速度。实验还分别考查了PNa电极与PK电极对Na+和K+的电位响应重现性,将PNa电极对两种不同浓度样品(×10-5mol/L 和 ×10-4mol/L)来回测定电位值10次,其相对标准偏差分别为和 ; 同样,PK 电极对 ×10-4mol/L和×10-3mol/L的 K+样品来回测定 10次,相对标准偏差分别为和,说明这两支电极的重现性好。 电极的选择性离子选择性电极的重要特性之一就是它对溶液中某种离子的特定响应,其选择性系数是衡量电极性能的最重要指标。因此该实验采用固定干扰离子浓度法(Fixed interference method,FIM)测定了该电极的离子选择性系数,即以一定活度的干扰离子为底液,来配制一系列主离子活度不同的混合溶液,用选择性电极和参比电极组成的电池来测定它们的电位值,通过Nicolskii-Eisenman公式[28]计算选择性系数:其中,表示主离子选择性系数,aPq+表示主离子活度,aMn+表示干扰离子活度。实际计算时,忽略离子强度系数,用浓度近似代替活度。PNa电极与PK-1钾离子电极对不同金属离子的选择性系数分别列于图5中。由图5可知,这些金属离子的选择性系数都比较小,不干扰电极对钾钠离子的测定,说明PNa电极与PK电极分别对钠离子与钾离子都表现出良好的选择性。 回收率的测定在优化的实验条件下,分别利用PNa玻璃电极与PK电极对实际卷烟纸中钠钾元素进行检测。测定时,采用标准加入法,在实际样品中加入已知浓度的钠离子和钾离子,测出其电位的变化量,对照工作曲线找出浓度,比较实际加入量和测得量,分别得到钠元素的回收率为~ (见表1), 钾元素的回收率为 ~(见表 2)。为了验证该方法的准确性,把这几种不同浓度的样品采用火焰原子吸收光谱法测定,结果见表1与表2。由表1与表2可知,两种离子选择性电极测定的数据与火焰原子吸收法测定的数据无明显差异,说明PNa电极与PK电极可以分别用于卷烟纸中钾钠元素含量的测定。 卷烟纸中钠钾元素含量的测定取卷烟纸样品 6 g,分别用火焰原子吸收光谱和离子选择性电极测定卷烟纸中钾钠元素的含量,根据中华人民共和国烟草行业标准计算方法,钾钠元素的含量χ以质量分数(%)表示,按式(2)进行计算:χ—试样中钾或钠的含量,%;C—测试样中钾或钠的浓度,单位为毫克每升(mg/L);C0—试样空白中钾或钠的浓度,单位为毫克每升(mg/L);V—试样消化液的总体积,单位为毫升(mL);n—试样消化液的稀释倍数;m—试样质量,单位为克(g);ω—试样水分含量,%。采用两种电极测得该卷烟纸样品中钠钾的含量分别为 5%、 0%(其中 ω为),如表3所示,与火焰原子吸收光谱方法比较,相对误差分别为和,说明这两种方法无明显差异。但火焰原子吸收法需要昂贵的精密仪器、复杂的样品制备流程和熟练的操作人员,且不能或不方便在户外使用,从而限制了其在卷烟纸中钾钠元素含量检测的实际应用。而该方法所利用的离子选择性电极方法成本低,操作简单、快速,且所用仪器简单轻巧,有潜力实现微型化,在烟草等行业工业领域具有重要的应用价值。3 结论该工作利用PNa玻璃电极与PK玻璃电极分别测定了卷烟纸中钠钾元素含量,测试实验结果显示,两种电极与火焰原子吸收方法测得的结果一致,且测得卷烟纸样品中钾钠的含量分别为 5%和 0%。综上所述,该方法设备简单、操作方便、灵敏度高且选择性好,有利于连续和自动分析,可望实现对卷烟纸中钾钠元素含量的超灵敏现场监测和安全评估,为卷烟纸的质量控制提供有效的方法,具有十分重要的现实意义。参考文献[1]李劲峰,向能军,李春,等.卷烟纸助燃剂含量对卷烟烟气有害物质的影响[J].中国造纸,2012,31(6):32~35.[2]Caland L B,Silveira E L C,Tubino of sodium,potassium,calcium and magnesium cations in biodiesel by ion chromatography[J].Analytica Chimica Acta,2012,718:116~120.[3]Farcas F,Chaussadent T,Fiaud C,et of the sodium monofluorophosphate in a hardened cement paste by ion chromatography[J].Analytica Chimica Acta,2002,472(1):37~43.[4]冯广林,李力,朱立军,等.微波消解样品-离子色谱法测定卷烟纸中钠、钾、镁、钙的含量[J].理化检验-化学分册,2012,48(4):449~455.[5]Ruckmani K,Shaikh S Z,Khalil P,et of sodium hyaluronate in pharmaceutical formulations by HPLC– UV[J].Journal of Pharmaceutical Analysis,2013,3(5):324~329.[6]Li F Q,Xu S,Su H,et of a gradient reversed-phase HPLC method for the determination of sodium ferulate in beagle dog plasma[J].Journal of Chromatography B,2007,846(1-2):319~322.[7]Barnes A of caffeine and potassium sorbate in a neonatal oral solution by HPLC[J].International Journal of Pharmaceutics,1992,80(1):267~270.[8]Barros A I,de Oliveira A P,de Magalhães M R L,et of sodium and potassium in biodiesel by flame atomic emission spectrometry,with dissolution in ethanol as a single sample preparation step[J].Fuel,2012,93:381~384.[9]Dancsak S E,Silva S G,Nóbrega J A,et determination of sodium,potassium,chromium and vanadium in biodiesel fuel by tungsten coil atomic emission spectrometry[J].Analytica Chimica Acta,2014,806(2):85~90.[10]叶楠,肖作兵,冯涛,等.ICP-AES测定卷烟烟气中钾、钠金属离子[J].食品工业,2012,3:122~124.[11]Yan Q H,Yang L,Wang Q,et of major and trace elements in six herbal drugs for relieving heat and toxic by ICP-AES with microwave digestion[J].Journal of Saudi Chemical Society,2012,16(3):287~290.[12]Murcia M A,Vera A,Martínez T M,et determination of the Ca,Mg,K,Na and Zn contents in milk and nondairy imitation milk using ICP-AES without mineralization stage[J].LWT-Food Science and Technology,1999,32(3):175~179.[13]蒋衍钜.原子吸收光谱法测定卷烟纸中钾、钠含量不确定度评定[J].研究与开发,2013,34(14):36~38.[14]de Jesus A,Silva M M,Vale M G use of microemulsion for determination of sodium and potassium in biodiesel by flame atomic absorption spectrometry[J].Talanta,2008,74(5):1 378~1 384.[15]Ieggli C V S,Bohrer D,do Nascimento P C,et of sodium,potassium,calcium,magnesium,zinc and iron in emulsified chocolate samples by flame atomic absorption spectrometry[J].Food Chemistry,2011,124(3):1 189~1 193.[16]Doku G N,Gadzekpo V P determination of lithium,sodium and potassium in blood serum by flame photometric flow-injection analysis[J].Talanta,1996,43(5):735~739.[17]Liu Y L,Xue Y H,Tang H F,et K+-selective ionophore for potentiometric and optical sensors[J].Sensors and Actuators B,2012,171-172:556~562.[18]Ma Y H,Yuan R,Chai Y Q,et new aluminum(Ⅲ)-selective potentiometric sensor based on N,N’-propanediamide bis(2-salicylideneimine)as a neutral carrier[J].Materials Science and Engineering C,2010,30(1):209~213.[19]Mashhadizadeh M H,Sheikhshoaie (Ⅱ)ionselective polymeric membrane sensor based on a recently synthesized Schiff base[J].Talanta,2003,60(1):73~80.[20]邱会东,熊伟.离子选择性电极法快速测定含钾类药物实验[J].重庆科技学院学报,2009,11(4):58~59.[21]任跃红,杨娜,张彩凤.离子选择电极测定钾肥中钾含量的方法研究[J].腐植酸,2011,3:22~25.[22]刘建华,李建英,熊淑萍.用离子选择性电极测定陶瓷原料中的钾、钠[J].中国陶瓷,2006,42(8):43~44.[23]Gupta V K,Singh A K,Gupta bases as cadmium(Ⅱ)selective ionophores in polymeric membrane electrodes[J].Analytica Chimica Acta,2007,583(2):340~348.[24]Anastasova S,Radu A,Matzeu G,et solidcontact ion-selective electrodes for environmental monitoring of lead with ppb limit-of-detection[J].Electrochimica Acta,2012,73:93~97.[25]Rounaghi G,Kakhki R M Z,Sadeghian new cerium(Ⅲ)ion selective electrode based on 2,9-dihydroxy-1,10-diphenoxy-4,7-dithia decane,a novel synthetic ligand[J].Electrochimica Acta,2011,56(27):9 756~9 761.[26]Ramanjaneyulu P S,Kumar A N,Sayi Y S,et new ion selective electrode for cesium (Ⅰ)based on calix[4]arene-crown-6 compounds[J].Journal of Hazardous Materials,2012,205-206:81~88.[27]Yuan X J,Wang R Y,Mao C B,et Pb(Ⅱ)-selective membrane electrode based on a new schiff base complex[J].Inorganic Chemistry Communications,2012,15:29~32.[28]Yan Z N,Wang S Q,Wang H X,et (Ⅲ)PVC membrane ion selective electrodes based on two compounds:Acylhydrazoneand thiosemicarbazonewith 1,3,4-thiadiazole[J].Materials Science and Engineering C,2013,33:2 562~2 568.¥百度文库VIP限时优惠现在开通,立享6亿+VIP内容立即获取卷烟纸中钾钠元素的快速测定应用卷烟纸中钾钠元素的快速测定应用曹婷婷,曹 忠*,梁海琴,苏 威,龙 姝,何婧琳,肖忠良【摘 要】卷烟纸中钾钠元素含量的快速检测是研究关注的重点。将PNa玻璃电极和PK电极分别应用于卷烟纸中钠离子和钾离子的测定,响应时间短,对常规金属离子的选择性好;钠电极在pH=的二异丙胺缓冲溶液中对钠离子的线性响应范围为 ×10-6~×10-2mol/L,能斯特响应斜率为 ± mV/-pC(25℃),检测下限为×10-7mol/L;钾电极在pH=的Tris-HCl缓冲溶液中对K+离子的线性响应范围为×10-5~×10-2mol/L,能斯特响应斜率为 ± mV/-pC(25 ℃),检测下限为 ×10-6mol/L;且对卷烟纸样品中Na和K含量测定的回收率分别为~、~,与火焰原子吸收光谱方法比较,结果一致,有应用前景。第 1 页【期刊名称】化学传感器【年(卷),期】2014(000)002【总页数】8【关键词】离子选择性电极;卷烟纸;钠离子;钾离子;快速测定0 引言卷烟纸由植物纤维和遍布在其结构中的无机填料组成。其中,钾、钠离子作为矿质元素,一方面,在烟草生长过程中,钠起到了保证烟草正常生长、积累和形成不同化学成分的作用;而钾能维持细胞渗透压、调节细胞电中性,参与蛋白质合成、光合作用以及调节酶活性,并且钾的存在能改善烟叶吸湿性。另一方面,有机酸钾盐和钠盐是卷烟纸中的重要助燃剂,能减少卷烟燃烧时产生的焦油,使卷烟纸燃烧时达到低焦油、低一氧化碳的目的,从而能有效减轻吸烟对人和环境的影响[1]。因此,准确测定卷烟纸中的钾钠含量,对于评价卷烟纸性能和卷烟纸质量,进一步研究开发安全型卷烟纸具有重要意义。

做焰色反应实验,

钠:物理性质:1.银白色金属。2.质软。3.密度比水小,能浮在水面上。4.熔点底,小于100度。5.能导电导热。原子体积:(立方厘米/摩尔)金属钠很软,可以用刀切割。切开外皮后,可以看到钠具有银白色的金属光泽。钠是热和电的良导体。钠的密度是,比水的密度小,钠的熔点是℃,沸点是℃。元素在太阳中的含量:(ppm) 40地壳中含量:(ppm)23000元素在海水中的含量:(ppm)10500晶胞参数:a = pmb = pmc = pmα = 90°β = 90°γ = 90°氧化态:Main Na+1Other Na-1 (in liquid NH3)莫氏硬度:声音在其中的传播速率:(m/S)3200电离能 (kJ/ mol)M - M+ - M2+ - M3+ 6912M3+ - M4+ 9543M4+ - M5+ 13353M5+ - M6+ 16610M6+ - M7+ 20114M7+ - M8+ 25490M8+ - M9+ 28933M9+ - M10+ 141360热导率: W/(m·K)142化学性质钠原子的最外层只有1个电子,很容易失去。因此,钠的化学性质非常活泼,主要表现在:1.钠跟氧气的反应在常温时��4Na+O2=2Na2O在点燃时��2Na+O2=Na2O2(淡黄色)���������� 过氧化钠比氧化钠稳定。2.钠能跟卤素、硫、磷、氢等非金属直接发生反应,生成相应的化合物,如2Na+Cl2=2NaCl2Na+S=Na2S(硫化钠)(跟硫化合时甚至发生爆炸。)3.钠跟水的反应�2Na+2H2O=2NaOH+H2↑钠的化学性质很活泼,所以它在自然界里不能以游离态存在,因此,在实验室中通常将钠保存在煤油里。钠由于此反应放出大量的热,能引起氢气燃烧,所以钠失火不能用水扑救。钠具有很强的还原性,可以从一些熔融的金属卤化物中把金属置换出来。由于钠极易与水反应,所以不能用钠把居于金属活动性顺序钠之后的金属从其盐溶液中置换出来。钠还能与钾、锡、锑等金属生成和金;金属钠与汞反应生成汞齐,这种合金是一种活泼的还原剂,在许多时候比纯钠更适用。钠离子能使火焰呈黄色,可用来灵敏地检测钠的存在。名称由来:钠,原子序数11,原子量,是最常见的碱金属元素。元素名来源拉丁文,原意是“天然碱”。在地壳中钠的含量为,居第六位,主要以钠盐的形式存在。发现人: 戴维 (用电解熔融的氢氧化钠的方法制得钠 )时间: 1807 地点: 英格兰中世纪拉丁文:sodanum(头痛药);元素符号来自于拉丁文“natrium”(钠)。元素描述:柔软的银白色金属,在地壳中含量第六。在空气中燃烧时发出耀眼的白色火焰。元素来源:通过电解熔融的氯化钠(食盐),硼砂或冰晶石获得。元素用途:纯净的金属钠并没有多大用处,然而钠的化合物可以应用在医药、农业和摄影器材中。氯化钠就是餐桌上的食盐。液态的钠有时用于冷却核反应堆{钠钾合金在室温下呈液态,是核反应堆的导热剂,起把反应堆产生的热量传导给蒸气轮机的作用。以往金属钠主要用于制造车用汽油的抗暴剂,但由于会污染环境,已经日趋减少。金属钠还用来制取钛,及生产氢氧化钠、氨基钠、氰化钠等。熔融的金属钠在增值反应堆中可做热交换剂。生理作用1.钠是细胞外液中带正电的主要离子,参于水的代谢,保证体内水的平衡。2.维持体内酸和碱的平衡。3.是胰汁、胆汁、汗和泪水的组成成分。4.参于心肌肉和神经功的调节缺乏人体内钠在一般情况下不易缺乏、但在某些情况下,如禁食、少食,膳食钠限制过严而摄入非常低时,或在高温、重体力劳动、过量出汗、肠胃疾病、反复呕吐、腹泻使钠过量排出而丢失时,或某些疾病,如艾迪生病引起肾不能有效保留钠时,胃肠外营养缺钠或低钠时,利尿剂的使用而抑制肾小管重吸收钠时均可引起钠缺乏。钠的缺乏在早期症状不明显,倦怠、淡漠、无神、甚至起立时昏倒。失钠达体重以上时,可出现恶心、呕吐、血压下降、痛性吉尔痉挛,尿中无氯化物检出。过量正常情况下,钠摄入过多并不蓄积,但某些情况下,如误将食盐当食糖加入婴儿奶粉中喂养,则可引起中毒甚至死亡。急性中毒,可出现水肿、血压上升、血浆胆固醇升高、脂肪清楚率降低、胃黏膜上皮细胞受损等。那的适宜摄入量(AI)成人为2200mg/d。来源钠普遍存在于各种食物中,一般动物性食物高于植物性食物,但人体钠来源主要为食盐、以及加工、制备食物过程中加入的钠或含钠的复合物(如谷氨酸、小苏打等),以及酱油、盐渍或腌制肉或烟熏食品、酱咸菜类、发酵豆制品、咸味休闲食品等。

焰色反应 Na+为黄色,K+透过蓝色钴玻璃为紫色化学方法Na+ 加入锑酸钾饱和溶液 产生白色结晶状沉淀K+ 加入钴亚硝酸钠产生 亮黄色沉淀

99元论文检测

1、知网查重系统价格:300-400元/一篇适用范围:硕士、博士毕业论文唯一与高校研究生学校一模一样的系统,如果您抄袭了其他硕博论文,建议使用此系统,分解系统检测不到。字数限制:30万字以内,不支持多篇合并检测,系统可以识别。2、知网pmlc系统价格:150-200元/一篇适用范围:本/专科毕业论文特有大学生论文联合对比库,如果您摘抄过其他的本科论文,建议使用此系统检测,该系统也是专/本科最权威、最靠谱检测系统。字数限制:6万字以内。3、知网论文小分解检测系统价格:25-68元/一篇适用范围:一般用于本科、专科生、硕博的毕业论文分段进行检测,区别是需要将论文分成段落来进行检测,最终分段后检测出的结果再进行简单计算可获得最终的抄袭结果,检测的文献库范围跟知网系统一致,也同样包含硕士、博士论文文献库等;可用于检测中文、英文毕业论文。检测不到抄袭的硕博论文。字数限制:万字以内,如字数超过,需要分割论文,参考下面第五条如果没有抄袭其他硕博论文,检测结果与知网基本一致4、知网论文大分解检测系统价格:80-100元/一篇与小分解一样,只是字数不同。字数限制:3万字以内。5、期刊论文检测(amlc)价格:25-60元/一篇适使用范围:杂志社学术论文投稿发表使用字数限制:万字以内,如您论文字数为2万字,则拍两件,同时将自己论文分为两部分,以此类推!

知网所需要的论文查重费用,不同查重入口的查重费用不一。本专科学术论文检测,论文字数通常在8000字左右,所需要的的费用为300元人民币左右。硕士研究生博士撰写的学术论文使用VIP论文检测系统入口,VIP学术论文检测系统使用高等学术资源库校对方式比对,所需要的费用较高为400元人民币左右,期刊论文发表所需要的费用,根据字节数的不同,通常检测的费用为300元人民币左右。其中还包括大小分解论文检测系统,检测的字数上限为万字,同本专科系统检测系统一致,费用为100-200元人民币左右。

当下,论文查重的话题再次引发关注,也说明了在这个问题上,依然需要对学术知识平台的服务进行更深层次的规范化管理,需要把这个问题放在更高的层次上去解决。

学术数据库为人们提供了一套论文查重的解决方案,这本身有助于维护学术研究的严谨,也有助于知识产权的保护。可以说,日常商业化功能的发挥,保证了平台的顺利运营,但商业化与公共属性两者如何达到一个平衡,这是需要一个更加完善的方案。在人们对这个话题热度不减的当下,相关平台更应当明确好自身的责任,做好积极的回应。

同时,我们也应当看到,除了个人查重成本的高企外,论文查重引发关注的另一方面是,重复率的量化标准依然有可以商榷的空间。在大学的专业设置里,不同学科的论文产出有着差异化的一面。

首先要看您在哪里检测,在知网官网查重的话是元1000字。这是比较正规比较准确的平台,一般大学是在知网检测的。其次现在也有一些免费的小程序可以提供论文检测,但都不太准确。

我国许多毕业论文查重入口和技术专业为大学毕业生出示论文查重服务项目的论文检测系统,尽管一些论文检测系统初次不是收费标准的,可是中国论文查重入口的收费标准早已变成了必定的发展趋势。那么,知网论文检测资费标准是如何的?是依照篇幅来收费标准?还是依照毕业论文的难度系数水平来收费标准?知网论文查重是怎么收费的?paperfree小编来解答这个问题。我国知网论文检测的资费标准现阶段是依照篇幅来收费标准的,假如是万字符上下的毕业论文的话,那么收费标准一次将会要180元左右。针对很一般的毕业论文而言,即便内容再短,知网论文检测服务平台还可以查出来有关的重复率,并出示技术专业的论文查重报告,报告之中会详尽的将内容开展细腻的分解,分解内容里包含了标红一部分,和其他毕业论文的类似一部分,及其参考文献的出处等部分,论文检测报告是十分详尽的,它会显示许多个细致的一部分,这种细致的一部分,能够一目了然的看得出一篇毕业论文存有哪一方面的难题。自然最关键的还是重复率层面的问题,即然中国知网是叫论文查重服务平台,那么它查的毫无疑问并不是只检测毕业论文的重复率,只是毕业论文之中的重复率一部分,重复率一部分过多的话,就是说学术造假的剽窃个人行为,重复率不高,表明参考文献一部分的来源于将会和他人类似。知网论文检测的检验报告一般三十多分钟内就能够出示,必须打印的话,在打印机上就能够打印出去的,知网论文检测服务平台一次论文查重算一次的花费,尽管同一个课题研究的毕业论文要验很数次,可是中国知网每一次都是扣除论文查重花费,四千五百字的,中国知网会依照一篇来收费标准,八千多字的会依照一篇来进行收费。

论文检测500元

论文查重费一年内暴涨10倍,论文查重乱象太多

5月26日,话题#大四学生知网账号被盗后现电商平台#冲上微博热搜,揭开论文查重背后的多个乱象。不少毕业生反映称,论文查重率的要求更严格了,不仅为论文查重、降重“掏空了身体”,还“掏空了钱包”。

近日,“翟天临,睡了吗”这一话题在社交媒体引起热议。在该话题下,有网友称“论文改的面目全非,降重还没降下去”“学校的查重费已经飙升到800+了”“查重了四次还不过,翟天临你赔我的生活费”……

24日凌晨,演员翟天临通过个人实名认证微博发文:“我知道写论文的过程挺难的,如果骂我能帮助大家缓解论文季的压力,那我觉得被骂也是一件有意义的事。希望大家文明宣泄,宣泄完了加把劲儿,加油!保过(保佑过)”。

2019年年初,翟天临因在直播间问“知网是个什么东西”,其博士学位真实性遭到舆论质疑,也引起了学术界对论文抄袭现象的高度关注。此后,不少高校纷纷压低论文查重率。有当年毕业的网友回忆称,“往年是20%的论文查重率被压至15%以下”。

今年也被广大毕业生戏称为“天临三年”,也就是翟天临“不知知网”事件发生的第3年。不少毕业生反映称,论文查重率的要求更严格了,不仅为论文查重、降重“掏空了身体”,还“掏空了钱包”。

那么,论文查降重究竟多烧钱?

“购买论文查重、降重服务,总共花了6000多元。当时重复率显示合格,但学校查重时却没通过。”临近毕业季,河北某高校研究生李飞仍为毕业论文未能过审而发愁,为了降低论文重复率,他在某电商平台上购买了论文查重、降重服务,但“服务”效果并不理想。“论文写了大概6万字,光降重就花了3700元,但对方降重后,论文意思都变了。”

和李飞一样,不少高校毕业生也为论文查重降重担忧。于是,一些毕业生选择在电商平台购买论文查重、降重服务,而论文查降重的价格也因此一路水涨船高,部分店铺内的查重价格一年内暴涨10倍。

查重价格一年内暴涨10倍

“查重价格涨得太快了,我年前在淘宝买查重只花了128元,现在想再次购买,发现价格已经涨到380元了。”四川某高校毕业生张悦表示,从论文初稿到定稿,她购买了五、六次知网查重,目前她已在论文查重上投入近两千元。

尽管学校每年都会向毕业生提供免费论文查重机会,但往往查重次数较少,并不能满足毕业生论文写作的需求。且论文查重率又是论文送审及答辩的重要参考标准,因此毕业生们会想方设法寻求更多查重机会。

打开某电商平台搜索关键词“知网查重”,注意到,提供此项服务的卖家不在少数。其中,本科论文查重价格在180元至500元之间,硕士论文查重价格多在1300元以上,最高定价1800元。

知网论文查重报告单

论文重复率要求因学校、学历不同而有所差异,据论文查重网站PaperFree显示,部分高校对论文重复率要求在20%—30%之间即认为合格,另一些高校要求则较为严格,论文重复率需控制在5%—10%以内才能合格。

四川某高校毕业生论文查重要求

以毕业生的身份联系到某电商平台上自称可提供论文查重服务的卖家,该店客服称在售的本科论文及硕博论文查重服务皆为知网查重,“我们使用的是学校剩余名额”。该店铺信息显示,本科论文查重售价220元,硕博论文查重售价1380元。

该店所售产品的历史价格信息披露,从2020年5月至2021年5月,硕博论文查重价格从140元飙升至1380元,去年7月甚至涨至1980元,其价格一年内暴涨近10倍。

某电商平台所售硕博论文查重服务历史价格截图

5月19日,中国知网官方客服表示,知网所提供的论文查重服务只针对机构开放,个人无法通过知网官方渠道购买到查重服务。“我们也不太清楚查重服务定价方式和具体价格,需要问负责查重业务的销售。”

专家:花高价购买降重是投机取巧

北京云嘉律师事务所赵占领律师在接采访时表示,虽然电商平台高价出售学校向学生免费提供的知网论文查重名额不涉嫌违法,高校教师暗中倒卖知网查重机会也并未触及相关法律规定,但上述两种行为可能违反知网的相关约定,需要承担相应的违约责任。一般情况下知网会将出现违约转让、租借等行为的账号进行封禁处理。

“高校学生购买有偿论文降重服务不涉及违法,但从大原则上来讲可能存在学术行为不规范。”赵占领指出,毕业论文重复率过高不尽然是因为抄袭,很多学生只是不清楚学术规范,从而造成引用文献过多或引用格式不合理,导致论文查重率偏高。“与其花高价钱购买降重服务,不如在写作过程中严格遵守学术论文写作规范,从自身出发思考可行的论文提升路径。”

盘古智库高级研究员江瀚称,论文查重的目的是为了让学生的学术创作过程更加规范,保证学术成果的原创性。花高价去购买降重服务实际上是一种投机取巧的行为,对于整个学术规范而言,没有更好发挥其执行力,更没有发挥传统论文查重的价值。

整治论文查重黑市,需要联合发力

有需求就有市场,论文查重黑市就是这样。不仅有盗卖查重指标收费几元到几千元的,还有以假网站乱真的,让查重失去了价值和意义。对论文查重黑市必须联合整治。学生要从自我做起,端正学术思想,合理借鉴写出真知灼见。查重平台要加快系统升级,实行实名制认证,让盗用“无门”。学校要做好保密工作,敦促学生及时修改密码。相关部门要加强执法,共同发力,打击论文查重黑市。唯有多方共同发力,才能铲除黑市,肃清学术环境。

近日,正值毕业论文答辩季,与论文相关的.话题多次引发热议。

5月26日,话题#大四学生知网账号被盗后现电商平台#冲上微博热搜,揭开论文查重背后的多个乱象。

临近毕业,武汉一高校的多名大四学生反映,学校提供的免费中国知网账号被盗。查询后得知,其账号里附带的论文查重机会,被当作商品挂在电商平台上售卖。

据新京报消息,该校另有学生告诉记者,有班级共有38人,其中被盗号的就有14个人。

一位毕业生提到,并非所有高校都会提供知网免费查重的机会,有些学生就会选择上网购买。

知网:不对个人提供检测服务

其实,近些年大学生论文查重账号被盗屡禁不止。

2018年,广东中山市警方就曾接到过此类报案,警方调查发现,账号被盗用的学生人数多达两百余人;2019年,中国传媒大学南广学院多名学生也曾反映,学校提供的两次论文查重机会被人占用。

记者在多个平台搜索“知网论文查重”,发现有大量提供论文查重服务的网站与店铺,一次查重的价格从几元到上千元不等。

对于上述情况,知网法务部工作人员回应称,“知网不对个人提供检测服务,网上售卖的知网论文检测基本都是违规的。”建议学生拿到账号后立即修改密码,如有账号被盗,应联系学校或报警。

论文查重价格一年内暴涨10倍

近些年,不少高校纷纷压低论文查重率。据 消息,有当年毕业的网友回忆称,“往年是20%的论文查重率被压至15%以下”。

部分为论文降重担忧的毕业生选择在电商平台购买论文查重、降重服务,而论文查降重的价格也因此一路水涨船高,部分店铺内的查重价格一年内暴涨10倍。

该店所售产品的历史价格信息披露,从2020年5月至2021年5月,硕博论文查重价格从140元飙升至1380元,去年7月甚至涨至1980元,其价格一年内暴涨近10倍。

而店家则称,“我们使用的是学校剩余名额”。

为何高校免费查重名额会被拿到电商平台高价出售呢?中国知网法务部相关负责人此前在接受央视财经采访时曾表示,“一种情况是,高校内部存在部分人倒卖知网账号,学校有一些多余的检测篇数,可能就会被一些人拿去使用。”

目前大部分高校都对论文查重制定了明确的论文查重重复率要求,对学术不端的行为持零容忍的态度。如果不进行论文查重的话,可能就会有一些人会选择论文造假,随意剽窃他人的学术成果,甚至原文抄袭别人的论文,从而“轻松”获得学位。

1.中国知网论文查重

想必大家都知道中国知网可以查找参考文献,那大家知不知道中国知网也可以为大家提高论文查重服务呢?中国知网查重平台具有权威性、专业性的特点,查重率也十分准确。但是这个平台并不面向个人用户提高服务,大家得依托学校图书馆等机构进行论文查重。除此之外知网论文查重的费用也比较高。

2.万方论文查重

客观、公正、精确、全面是万方论文查重的服务原则,万方旨在为用户提高精确、多维度的论文查重结果。这个系统采取的技术也较为先进、科学。万方论文查重的价格是一千个字两块钱。

论文查重

PaperPass论文查重系统具有海量数据库并采用先进、优秀的算法作为技术支撑,致力于为用户提供优质的论文查重服务。该系统的论文查重结果准确率高,并且很详细,可以方便大家进一步对论文内容进行修改。而且,它还为用户提供“免费使用”功能。用户只需在系统页面点击“免费使用”进行申请,就可以获得免费检测量!以上就是关于“论文查重渠道有哪些”的全部内容了,想了解更多论文查重知识,请持续关注PaperPass论文知识频道,小编会为大家收集更多的论文知识哦

毕业论文查重是什么?毕业论文查重是指在本科、硕士、博士毕业时,自己要提交的毕业论文需要通过学校的学术不端检测系统,论文才能算合格,你才能毕业。学校的学术不端检测系统通常采用的是中国知网检测。一般而言,硕士论文复制比不超过15%,博士论文复制比不超过10%,不过每个学校的具体规定不一样。目前市面上有哪些查重途径?市面上现有的查重方式有15种,包括有:万方检测、维普检测、PaperOK、PaperTime、Checkpass、PaperPass、知网检测系统、PaperQuery、PaperAsk、大雅论文检测系统、paperYY论文检测系统、WriteCheck、PaperRight、笔杆、PaperCheck等。可谓是眼花缭乱,百度学术就聚合了上面15种查重方式中的10种查重方式。不过这里数读社会推荐的查重检测系统有八种,从检测严格程度来看,根据毕业同学的反映,检测严格程度从高到低分别是:PaperPass、知网检测系统、万方检测、维普检测、PaperTime、PaperOK、WriteCheck、CheckPass。查重费用对比这七家的查重费用价格不等,费用最高的是知网检测系统,无论你是从某宝购买,还是在所谓的官网购买,毕业季都在500元左右一篇。最便宜的是CheckPass,1元/万字符。学术不端文献检测系统现在的检测费用在500-700元一篇不等。其他查重系统的查重费用分别是:PaperPass查重价格:元/千字,万方检测查重价格:2元/千字PaperTime查重价格:元/千字,WriteCheck查重价格:3元/万字符。万方检测、维普检测均价在2元/千字。

1.知网

这个是最权威的,大部分高校校最后对学生的论文进行查重都是通过知网进行的,是最权威的。

之前知网只对机构开放,现在个人也可以进行查重。元/千字,我试着把论文提交上去查了一下价格,一万六的字25块钱。

查重的过程不算复杂,也就是先把自己的论文题目,然后再把作者写上,也就是你自己,然后再把论文上传上去。上传论文的时候,如果文件比较大的话,就需要比较长的时间,要20分钟左右吧,就需要等一下。等完之后支付之后,就可以获得你的查重报告。不复杂就是有点贵。

知网不会把你的论文进行暂存,那些的话也比较安全。

这个网站可以多次免费查重,而且可以使用手机进行查询,超级无敌方便。

如果在手机上进行查重的话,可能就没有那么方便,因为它后面会有一个压缩包会对你的论文进行重复率的红色表记,方便你后面进行降重处理。 如果你需要对论文进行后面的降重处理的话,就用电脑。如果单纯想知道他的查重率的话,用手机还是比较方便的,因为很快就可以出结果。

3.百度学术

进入百度学术的查重系统的话,你可以进入很多个系统,然后进行对比,然后他各个系统之间的话,可能结果会稍微有一点差别,但是差别不会太大。其中,paper time和paperyy的话,它都会有首单免费的这个优惠。

在百度学术中,除了那个万方数据和龙源期刊是3元/千字,其他系统的查重都是元/千字。

但是其实我把同一篇论文从知网导入和在那papertime个中导入的话,它的价格是不一样的,知网的话,我导入是25块钱,然后导入的话是37块钱,他价格差别还是挺高的。

总的来说,如果大家是在修改的过程中先用那个百度学术先把免费的查一下,或者是paperyy在免费查一下。然后修改差不多了,再在知网上查一次。这样子的话也比较放心。

4.大雅

大雅这个系统的话我没有用过,听说也是比较权威,但是也会稍微有点贵。可以进行查询一下。

金属钠和钾与水反应比较研究论文

做着两个实验时都要先切一下,就是因为钾和钠在空气中迅速与氧气反应生成氧化物,根据金属活泼性顺序,钾比钠活泼,即钾与氧气反应的速率比钠快。而且氧化钾和氧化钠与水反应不剧烈。理论上是钾与水反应剧烈过钠,但由于氧化反应,等质量的钾和钠与水反应,实验现象钠活泼过钾。

相同点:都会浮在水面上,熔化成闪亮的小球在水面四处游动,并发出嘶嘶的响声,酚酞溶液变红。

不同点:钾与水反应程度更剧烈,甚至会产生火光和爆炸。

1、相同点原因解释:

钠的密度:³(室温);熔点℃

钾的密度:(293K);熔点336K(63℃)

反应原理:2Na+2H2O=2NaOH+H2↑

2K+2H2O=2KOH+H2↑

(1)钠钾的密度都比水小,所以会浮在水面上,

(2)反应剧烈并放出大量热,钠钾的熔点都很低,所以会熔化成闪亮的小球,

(3)有氢气产生,因此在水面四处游动,并发出嘶嘶的响声

(4)都生成了强碱,故酚酞溶液变红。

2、不同点解释:

钠和钾是同主族元素,但钾比钠多一个电子层,钾的原子半径大于钠,故钾原子更易失电子,所以钾比钠活泼,与水反应是程度更剧烈,故有火光和爆炸(产生的氢气在空气中被点燃)的现象。

估计你应该从以下几个方面来思考:1、等质量的Na、K比较;2、考虑生成热或焓变;3、考虑密度:Na密度小于水,浮于水面,显示出反应剧烈;K密度大于水,处于水下,部分热量被水吸收。但就我做过的实验来看,一般未察觉有何区别,都剧烈。。。。。相当的剧烈!!

不对吧,应该是钾比钠强烈。钠的电子层结构为281,钾为2881,钾的电子层数多,最外面的那个电子更容易脱离原子核的束缚,因此特性比较活泼。钾投入水里浮在水面上,反应比钠与水反应剧烈,常使放出氢气燃烧,并发出轻微爆炸声。

电镀污泥中铜镍锌元素检测论文

电镀污泥是电镀废水处理过程中产生的排放物,其中含有大量的铬、镉、镍、锌等有毒重金属,成分十分复杂。在我国《国家危险废物名录》(环发[1998]89号)所列出的47类危险废物中,电镀污泥占了其中的7大类,是一种典型的危险废物。目前,由于我国电镀行业存在厂点多、规模小、装备水平低及污染治理水平低等诸多问题,大部分电镀污泥仍只是进行简单的土地填埋,甚至随意堆放,对环境造成了严重污染[1]。因此,如何采取有效的技术处理处置电镀污泥,并实现其稳定化、无害化和资源化,一直都是国内外的研究重点。 本文综述了国内外电镀污泥处理技术的研究进展。 1 电镀污泥的固化/稳定化技术 目前,电镀污泥的固化/稳定化研究主要集中在固化块体稳定化过程的机理和微观机制等方面。Roy等[2]以普通硅酸盐水泥作为固化剂,系统地研究了含铜电镀污泥与干扰物质硝酸铜的加入对水泥水化产物长期变化行为的影响,发现硝酸铜与含铜电镀污泥对水泥水化产物的结晶性、孔隙度、重金属的形态及pH等微量化学和微结构特征都有重要的影响,如固化体的pH随硝酸铜添加量的增加而呈明显的下降趋势,孔隙度则随硝酸铜添加量的增加而增大。Asavapisit等[3]研究了水泥、水泥和粉煤灰固化系统对电镀污泥的固化作用,分析了固化体的抗压强度、淋滤特性及微结构等的变化特性,发现电镀污泥能明显降低两系统最终固化块体的抗压强度,原因是覆盖在胶凝材料表面上的电镀污泥抑制了固化系统的水化作用,但粉煤灰的加入不仅能使这种抑制作用最小化,而且还能降低固化体中铬的浸出率,原因可能是粉煤灰部分取代高碱度的水泥后,使混合系统的碱度降到了有利于重金属氢氧化物稳定化的水平。Sophia等[4]认为,单一水泥处理电镀污泥的抗压强度优于水泥和粉煤灰混合系统,但只要水泥与粉煤灰的配比适宜,同样能满足对铬的固化需要。而固化过程中粉煤灰的使用对铜的长期稳定性并无益处[5]。 添加剂的使用能改善电镀污泥的固化效果[6]。在电镀污泥的固化处置中,根据有害物质的性质,加入适当的添加剂,可提高固化效果,降低有害物质的溶出率,节约水泥用量,增加固化块强度。在以水泥为固化剂的固化法中使用的添加剂种类繁多,作用也不同,常见的有活性氧化铝、硅酸钠、硫酸钙、碳酸钠、活性谷壳灰等[6]。 2 电镀污泥的热化学处理技术 热化学处理技术(如焚烧、离子电弧及微波等)是在高温条件下对废物进行分解,使其中的某些剧毒成分毒性降低,实现快速、显著地减容,并对废物的有用成分加以利用。近年来,利用热化学处理技术实现对危险废物电镀污泥的预处理或安全处置正引起人们的重视[7~9]。 目前,有关电镀污泥热化学处理技术的研究,以对在焚烧处理电镀污泥过程中重金属的迁移特性等问题的研究比较突出。Espinosa等[10]对电镀污泥在炉内焚烧过程的热特性及其中重金属的迁移规律进行了研究,发现焚烧能有效富集电镀污泥中的铬,灰渣中铬的残留率高达99%以上,而在焚烧过程中,绝大部分污泥组分以CO2,H2O,SO2等形态散失,因此减容减重效果非常明显,减重可达34%。Barros等[11]利用水泥回转窑对混合焚烧电镀污泥过程进行了研究,分析了添加氯化物(KCl,NaCl等)对电镀污泥中Cr2O3和NiO迁移规律的影响,认为氯化物对Cr2O3和NiO在焚烧灰渣中的残留情况几乎没有任何影响,焚烧过程中Cr2O3和NiO都能被有效地固化在焚烧残渣中。刘刚等[12]利用管式炉模拟焚烧炉研究电镀污泥的热处置特性时,分析了铬、锌、铅、铜等多种重金属的迁移特性,认为焚烧温度在700℃以下时,污泥中的水分、有机质和挥发分就能被很好地去除,且高温能有效抑制污泥中重金属的浸出,但这种抑制对各种重金属的影响各不相同,如镍是不挥发性重金属,在焚烧灰渣中的残留率为100%,铬在灰渣中的残留率也高达97%以上,而锌、铅、铜的析出率则随焚烧温度的升高而有不同程度的增大。 在离子电弧、微波等其他热化学处理研究方面,Ramachandran等[13]用直流等离子电弧在不同气氛下对电镀污泥进行处理,并对处理后的残渣及处理过程中产生的粉末进行了研究,认为此法在实现铜、铬等有价金属回收的同时可将残渣转化成稳定的惰性熔渣。Gan等[14]通过微波辐射对电镀污泥进行了解毒和重金属固化实验,发现微波辐射处理对电镀污泥中重金属离子的固化效果显著,原因可能是在高温干燥与电磁波的共同作用下,有利于重金属离子同双极聚合分子之间发生强烈的相互作用而结合在一起,而经微波处理的电镀污泥具有粒度细、比表面积高、易结团等特性。 此外,热化学处理有利于降低电镀污泥中铬的毒性。Ku等[15]研究了高温热处理电镀污泥过程中铬的毒性价态变化,认为高温热处理能将铬(Ⅵ)转化成铬(Ⅲ),且温度越高转化效果越明显;在经高温处理的电镀污泥中,主要以铬(Ⅲ)为主。Cheng等[16]将电镀污泥与黏土的混合物分别在900℃和1100℃的电炉中热养护4h后,对其中铬的价态进行了分析,发现在经900℃热养护处理的混合物中,铬(Ⅵ)占有绝对优势,而经1100℃热养护处理的混合物中,铬则主要以铬(Ⅲ)存在。 3 电镀污泥中有价金属的回收技术 酸浸法和氨浸法 酸浸法是固体废物浸出法中应用最广泛的一种方法[17],具体采用何种酸进行浸取需根据固体废物的性质而定。对电镀、铸造、冶炼等工业废物的处理而言,硫酸是一种最有效的浸取试剂[17],因其具有价格便宜、挥发性小、不易分解等特点而被广泛使用[18]。Silva等[19]以磷酸二异辛酯为萃取剂,对电镀污泥进行了硫酸浸取回收镍、锌的研究实验。Vegli惏等[20]的研究显示,硫酸对铜、镍的浸出率可达95%~100%,而在电解法回收过程中,二者的回收率也高达94%~99%。 也可用其他酸性提取剂(如酸性硫脲)来浸取电镀污泥中的重金属[21]。Paula等[22]利用廉价工业盐酸浸取电镀污泥中的铬,浸取时将5mL工业盐酸(纯度为,质量浓度为)添加到大约1g预制好的试样中,然后在150r/min的摇床上震荡30min,铬的浸出率高达。 氨浸法提取金属的技术虽然有一定的历史[23],但与酸浸法相比,采用氨浸法处理电镀污泥的研究报道相对较少,且以国内研究报道居多。氨浸法一般采用氨水溶液作浸取剂,原因是氨水具有碱度适中、使用方便、可回收使用等优点[23]。采用氨络合分组浸出-蒸氨-水解渣硫酸浸出-溶剂萃取-金属盐结晶回收工艺,可从电镀污泥中回收绝大部分有价金属,铜、锌、镍、铬、铁的总回收率分别大于93%,91%,88%,98%,99%[24]。针对适于从氨浸液体系中分离铜的萃取剂难以选择的问题,祝万鹏等[25]开发了一种名为N510的萃取剂,该萃取剂在煤油-H2SO4体系中能有效地回收电镀污泥氨浸液中的Cu2+,回收率高达99%。王浩东等[26]对氨浸法回收电镀污泥中镍的研究表明,含镍污泥经氧化焙烧后得焙砂,用NH3质量分数7%、CO2质量分数5%~7%的氨水对焙砂进行充氧搅拌浸出,得到含Ni(NH3)4CO3的溶液,然后对此溶液进行蒸发处理,使Ni(NH3)4CO3转化为NiCO3·3Ni(OH)2,再于800℃锻烧即可得商品氧化镍粉。 酸浸或氨浸处理电镀污泥时,有价金属的总回收率及同其他杂质分离的难易程度,主要受浸取过程中有价金属的浸出率和浸取液对有价金属和杂质的选择性控制[23]。酸浸法的主要特点是对铜、锌、镍等有价金属的浸取效果较好,但对杂质的选择性较低,特别是对铬、铁等杂质的选择性较差;而氨浸法则对铬、铁等杂质具有较高的选择性,但对铜、锌、镍等的浸出率较低[8]。 生物浸取法 生物浸取法的主要原理是,利用化能自养型嗜酸性硫杆菌的生物产酸作用,将难溶性的重金属从固相溶出而进入液相成为可溶性的金属离子,再采用适当的方法从浸取液中加以回收,作用机理比较复杂,包括微生物的生长代谢、吸附,以及转化等[27]。就目前能收集到的文献来看,利用生物浸取法来处理电镀污泥的研究报道还比较少[28],原因是电镀污泥中高含量的重金属对微生物的毒害作用大大限制了该技术在这一领域的应用[29]。因此,如何降低电镀污泥中高含量的重金属对微生物的毒害作用,以及如何培养出适应性强、治废效率高的菌种,仍然是生物浸取法所面临的一大难题[30],但也是解决该技术在该领域应用的关键。 熔炼法和焙烧浸取法 熔炼法处理电镀污泥主要以回收其中的铜、镍为目的[31]。熔炼法以煤炭、焦炭为燃料和还原物质,辅料有铁矿石、铜矿石、石灰石等。熔炼以铜为主的污泥时,炉温在1300℃以上,熔出的铜称为冰铜;熔炼以镍为主的污泥时,炉温在1455℃以上,熔出的镍称为粗镍。冰铜和粗镍可直接用电解法进行分离回收。炉渣一般作建材原料。 焙烧浸取法的原理是先利用高温焙烧预处理污泥中的杂质,然后用酸、水等介质提取焙烧产物中的有价金属[7,8]。用黄铁矿废料作酸化原料,将其与电镀污泥混合后进行焙烧,然后在室温下用去离子水对焙烧产物进行浸取分离,锌、镍、铜的回收率分别为60%,43%,50%[8]。 4 电镀污泥的材料化技术 电镀污泥的材料化技术是指利用电镀污泥为原料或辅料生产建筑材料或其他材料的过程。Ract[32]开展了以电镀污泥部分取代水泥原料生产水泥的实验,认为即使是含铬电镀污泥在原料中的加入量高达2%(干基质量分数)的情况下,水泥烧结过程也能正常进行,而且烧结产物中铬的残留率高达。Magalh es等[33]分析了影响电镀污泥与黏土混合物烧制陶瓷的因素,认为电镀污泥的物化性质、预制电镀污泥与黏土混合物时的搅拌时间,是决定陶瓷质量优劣的主导因素,如原始电镀污泥中重金属的种类(如铝、锌、镍等)和含量明显地决定着电镀污泥及其与黏土混合物的淋滤特性,而预制电镀污泥与黏土混合物时,剧烈或长时间的搅拌作用则有利于混合物的均匀化和烧结反应的进行。此外,将电镀污泥与海滩淤泥混合可烧制出达标的陶粒[34]。 5 结语 电镀污泥的处理一直是国内外的研究重点,虽然有关人员在该领域已经开展了很多研究并取得了一定成果,但仍存在许多急需解决的问题,如传统的以水泥为主的固化技术、以回收有价金属为目的的浸取法存在对环境二次污染的风险等,要解决这些问题必须采取新的研究途径。近年来,利用热化学处理技术实现对电镀污泥的预处理或安全处置为未来电镀污泥的处理提供了更广阔的发展空间和前景。新近的研究显示,热化学处理技术在电镀污泥的减量化、资源化及无害化方面都有明显的优势,因此,必将成为未来电镀污泥处理领域的一个重要研究方向。 然而,由于热化学处理技术在电镀污泥处理方面的应用与研究还比较少,许多问题还需进一步探索,如对热化学处理电镀污泥过程中重金属的迁移特性、重金属在灰渣中的残留特性、热化学处理过程中重金属的析出特性及蒸发特性等都需要

电镀污泥必须由有资质的专业处理公司处理.

污泥经浆化后用稀硫酸浸出,浸出液经硫化钠沉铜、碳酸钙除铬后;采用工业纯碱为沉淀剂对除铬后液进行镍富集,沉淀温度为85~90℃,反应时间为4h,终点pH值为7·8~8·0,得到沉淀物的主要化学成分为铜、铁、镍和铬;通过沉淀法富集镍的同时,其他杂质如铜、铁和铬也被富集,而且富集倍数基本相同.碳酸镍经稀硫酸溶解后可用于电积镍工艺;整个工艺过程中,Cu总回收率可达98%以上,铬回收率可达99%以上.两段除铬工序降低了镍的损失,使镍总回收率达到94%以上。

提炼比较难的,没有找到相关资料找了一个处理方面的文章,供参考!电镀污泥是电镀废水处理过程中产生的排放物,其中含有大量的铬、镉、镍、锌等有毒重金属,成分十分复杂。在我国《国家危险废物名录》(环发[1998]89号)所列出的47类危险废物中,电镀污泥占了其中的7大类,是一种典型的危险废物。目前,由于我国电镀行业存在厂点多、规模小、装备水平低及污染治理水平低等诸多问题,大部分电镀污泥仍只是进行简单的土地填埋,甚至随意堆放,对环境造成了严重污染[1]。因此,如何采取有效的技术处理处置电镀污泥,并实现其稳定化、无害化和资源化,一直都是国内外的研究重点。 本文综述了国内外电镀污泥处理技术的研究进展。 1 电镀污泥的固化/稳定化技术 目前,电镀污泥的固化/稳定化研究主要集中在固化块体稳定化过程的机理和微观机制等方面。Roy等[2]以普通硅酸盐水泥作为固化剂,系统地研究了含铜电镀污泥与干扰物质硝酸铜的加入对水泥水化产物长期变化行为的影响,发现硝酸铜与含铜电镀污泥对水泥水化产物的结晶性、孔隙度、重金属的形态及pH等微量化学和微结构特征都有重要的影响,如固化体的pH随硝酸铜添加量的增加而呈明显的下降趋势,孔隙度则随硝酸铜添加量的增加而增大。Asavapisit等[3]研究了水泥、水泥和粉煤灰固化系统对电镀污泥的固化作用,分析了固化体的抗压强度、淋滤特性及微结构等的变化特性,发现电镀污泥能明显降低两系统最终固化块体的抗压强度,原因是覆盖在胶凝材料表面上的电镀污泥抑制了固化系统的水化作用,但粉煤灰的加入不仅能使这种抑制作用最小化,而且还能降低固化体中铬的浸出率,原因可能是粉煤灰部分取代高碱度的水泥后,使混合系统的碱度降到了有利于重金属氢氧化物稳定化的水平。Sophia等[4]认为,单一水泥处理电镀污泥的抗压强度优于水泥和粉煤灰混合系统,但只要水泥与粉煤灰的配比适宜,同样能满足对铬的固化需要。而固化过程中粉煤灰的使用对铜的长期稳定性并无益处[5]。 添加剂的使用能改善电镀污泥的固化效果[6]。在电镀污泥的固化处置中,根据有害物质的性质,加入适当的添加剂,可提高固化效果,降低有害物质的溶出率,节约水泥用量,增加固化块强度。在以水泥为固化剂的固化法中使用的添加剂种类繁多,作用也不同,常见的有活性氧化铝、硅酸钠、硫酸钙、碳酸钠、活性谷壳灰等[6]。 2 电镀污泥的热化学处理技术 热化学处理技术(如焚烧、离子电弧及微波等)是在高温条件下对废物进行分解,使其中的某些剧毒成分毒性降低,实现快速、显著地减容,并对废物的有用成分加以利用。近年来,利用热化学处理技术实现对危险废物电镀污泥的预处理或安全处置正引起人们的重视[7~9]。 目前,有关电镀污泥热化学处理技术的研究,以对在焚烧处理电镀污泥过程中重金属的迁移特性等问题的研究比较突出。Espinosa等[10]对电镀污泥在炉内焚烧过程的热特性及其中重金属的迁移规律进行了研究,发现焚烧能有效富集电镀污泥中的铬,灰渣中铬的残留率高达99%以上,而在焚烧过程中,绝大部分污泥组分以CO2,H2O,SO2等形态散失,因此减容减重效果非常明显,减重可达34%。Barros等[11]利用水泥回转窑对混合焚烧电镀污泥过程进行了研究,分析了添加氯化物(KCl,NaCl等)对电镀污泥中Cr2O3和NiO迁移规律的影响,认为氯化物对Cr2O3和NiO在焚烧灰渣中的残留情况几乎没有任何影响,焚烧过程中Cr2O3和NiO都能被有效地固化在焚烧残渣中。刘刚等[12]利用管式炉模拟焚烧炉研究电镀污泥的热处置特性时,分析了铬、锌、铅、铜等多种重金属的迁移特性,认为焚烧温度在700℃以下时,污泥中的水分、有机质和挥发分就能被很好地去除,且高温能有效抑制污泥中重金属的浸出,但这种抑制对各种重金属的影响各不相同,如镍是不挥发性重金属,在焚烧灰渣中的残留率为100%,铬在灰渣中的残留率也高达97%以上,而锌、铅、铜的析出率则随焚烧温度的升高而有不同程度的增大。 在离子电弧、微波等其他热化学处理研究方面,Ramachandran等[13]用直流等离子电弧在不同气氛下对电镀污泥进行处理,并对处理后的残渣及处理过程中产生的粉末进行了研究,认为此法在实现铜、铬等有价金属回收的同时可将残渣转化成稳定的惰性熔渣。Gan等[14]通过微波辐射对电镀污泥进行了解毒和重金属固化实验,发现微波辐射处理对电镀污泥中重金属离子的固化效果显著,原因可能是在高温干燥与电磁波的共同作用下,有利于重金属离子同双极聚合分子之间发生强烈的相互作用而结合在一起,而经微波处理的电镀污泥具有粒度细、比表面积高、易结团等特性。 此外,热化学处理有利于降低电镀污泥中铬的毒性。Ku等[15]研究了高温热处理电镀污泥过程中铬的毒性价态变化,认为高温热处理能将铬(Ⅵ)转化成铬(Ⅲ),且温度越高转化效果越明显;在经高温处理的电镀污泥中,主要以铬(Ⅲ)为主。Cheng等[16]将电镀污泥与黏土的混合物分别在900℃和1100℃的电炉中热养护4h后,对其中铬的价态进行了分析,发现在经900℃热养护处理的混合物中,铬(Ⅵ)占有绝对优势,而经1100℃热养护处理的混合物中,铬则主要以铬(Ⅲ)存在。 3 电镀污泥中有价金属的回收技术 酸浸法和氨浸法 酸浸法是固体废物浸出法中应用最广泛的一种方法[17],具体采用何种酸进行浸取需根据固体废物的性质而定。对电镀、铸造、冶炼等工业废物的处理而言,硫酸是一种最有效的浸取试剂[17],因其具有价格便宜、挥发性小、不易分解等特点而被广泛使用[18]。Silva等[19]以磷酸二异辛酯为萃取剂,对电镀污泥进行了硫酸浸取回收镍、锌的研究实验。Vegli惏等[20]的研究显示,硫酸对铜、镍的浸出率可达95%~100%,而在电解法回收过程中,二者的回收率也高达94%~99%。 也可用其他酸性提取剂(如酸性硫脲)来浸取电镀污泥中的重金属[21]。Paula等[22]利用廉价工业盐酸浸取电镀污泥中的铬,浸取时将5mL工业盐酸(纯度为,质量浓度为)添加到大约1g预制好的试样中,然后在150r/min的摇床上震荡30min,铬的浸出率高达。 氨浸法提取金属的技术虽然有一定的历史[23],但与酸浸法相比,采用氨浸法处理电镀污泥的研究报道相对较少,且以国内研究报道居多。氨浸法一般采用氨水溶液作浸取剂,原因是氨水具有碱度适中、使用方便、可回收使用等优点[23]。采用氨络合分组浸出-蒸氨-水解渣硫酸浸出-溶剂萃取-金属盐结晶回收工艺,可从电镀污泥中回收绝大部分有价金属,铜、锌、镍、铬、铁的总回收率分别大于93%,91%,88%,98%,99%[24]。针对适于从氨浸液体系中分离铜的萃取剂难以选择的问题,祝万鹏等[25]开发了一种名为N510的萃取剂,该萃取剂在煤油-H2SO4体系中能有效地回收电镀污泥氨浸液中的Cu2+,回收率高达99%。王浩东等[26]对氨浸法回收电镀污泥中镍的研究表明,含镍污泥经氧化焙烧后得焙砂,用NH3质量分数7%、CO2质量分数5%~7%的氨水对焙砂进行充氧搅拌浸出,得到含Ni(NH3)4CO3的溶液,然后对此溶液进行蒸发处理,使Ni(NH3)4CO3转化为NiCO3·3Ni(OH)2,再于800℃锻烧即可得商品氧化镍粉。 酸浸或氨浸处理电镀污泥时,有价金属的总回收率及同其他杂质分离的难易程度,主要受浸取过程中有价金属的浸出率和浸取液对有价金属和杂质的选择性控制[23]。酸浸法的主要特点是对铜、锌、镍等有价金属的浸取效果较好,但对杂质的选择性较低,特别是对铬、铁等杂质的选择性较差;而氨浸法则对铬、铁等杂质具有较高的选择性,但对铜、锌、镍等的浸出率较低[8]。 生物浸取法 生物浸取法的主要原理是,利用化能自养型嗜酸性硫杆菌的生物产酸作用,将难溶性的重金属从固相溶出而进入液相成为可溶性的金属离子,再采用适当的方法从浸取液中加以回收,作用机理比较复杂,包括微生物的生长代谢、吸附,以及转化等[27]。就目前能收集到的文献来看,利用生物浸取法来处理电镀污泥的研究报道还比较少[28],原因是电镀污泥中高含量的重金属对微生物的毒害作用大大限制了该技术在这一领域的应用[29]。因此,如何降低电镀污泥中高含量的重金属对微生物的毒害作用,以及如何培养出适应性强、治废效率高的菌种,仍然是生物浸取法所面临的一大难题[30],但也是解决该技术在该领域应用的关键。 熔炼法和焙烧浸取法 熔炼法处理电镀污泥主要以回收其中的铜、镍为目的[31]。熔炼法以煤炭、焦炭为燃料和还原物质,辅料有铁矿石、铜矿石、石灰石等。熔炼以铜为主的污泥时,炉温在1300℃以上,熔出的铜称为冰铜;熔炼以镍为主的污泥时,炉温在1455℃以上,熔出的镍称为粗镍。冰铜和粗镍可直接用电解法进行分离回收。炉渣一般作建材原料。 焙烧浸取法的原理是先利用高温焙烧预处理污泥中的杂质,然后用酸、水等介质提取焙烧产物中的有价金属[7,8]。用黄铁矿废料作酸化原料,将其与电镀污泥混合后进行焙烧,然后在室温下用去离子水对焙烧产物进行浸取分离,锌、镍、铜的回收率分别为60%,43%,50%[8]。 4 电镀污泥的材料化技术 电镀污泥的材料化技术是指利用电镀污泥为原料或辅料生产建筑材料或其他材料的过程。Ract[32]开展了以电镀污泥部分取代水泥原料生产水泥的实验,认为即使是含铬电镀污泥在原料中的加入量高达2%(干基质量分数)的情况下,水泥烧结过程也能正常进行,而且烧结产物中铬的残留率高达。Magalh es等[33]分析了影响电镀污泥与黏土混合物烧制陶瓷的因素,认为电镀污泥的物化性质、预制电镀污泥与黏土混合物时的搅拌时间,是决定陶瓷质量优劣的主导因素,如原始电镀污泥中重金属的种类(如铝、锌、镍等)和含量明显地决定着电镀污泥及其与黏土混合物的淋滤特性,而预制电镀污泥与黏土混合物时,剧烈或长时间的搅拌作用则有利于混合物的均匀化和烧结反应的进行。此外,将电镀污泥与海滩淤泥混合可烧制出达标的陶粒[34]。 5 结语 电镀污泥的处理一直是国内外的研究重点,虽然有关人员在该领域已经开展了很多研究并取得了一定成果,但仍存在许多急需解决的问题,如传统的以水泥为主的固化技术、以回收有价金属为目的的浸取法存在对环境二次污染的风险等,要解决这些问题必须采取新的研究途径。近年来,利用热化学处理技术实现对电镀污泥的预处理或安全处置为未来电镀污泥的处理提供了更广阔的发展空间和前景。新近的研究显示,热化学处理技术在电镀污泥的减量化、资源化及无害化方面都有明显的优势,因此,必将成为未来电镀污泥处理领域的一个重要研究方向。 然而,由于热化学处理技术在电镀污泥处理方面的应用与研究还比较少,许多问题还需进一步探索,如对热化学处理电镀污泥过程中重金属的迁移特性、重金属在灰渣中的残留特性、热化学处理过程中重金属的析出特性及蒸发特性等都需要

  • 索引序列
  • 钾钠元素检测论文
  • 99元论文检测
  • 论文检测500元
  • 金属钠和钾与水反应比较研究论文
  • 电镀污泥中铜镍锌元素检测论文
  • 返回顶部