9月23日,西北农林科技大学生命学院刘坤祥教授领衔的植物氮素营养团队和哈佛医学院Jen Sheen课题组的研究成果《NLP7转录因子是植物的一个硝酸盐受体》在《Science》在线发表。这是西北农林科技大学继7月份在《Cell》发表重要研究之后的又一重大成果。
推荐下NLP领域内最重要的8篇论文吧(依据学术范标准评价体系得出的8篇名单): 一、Deep contextualized word representations 摘要:We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (., syntax and semantics), and (2) how these uses vary across linguistic contexts (., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals. 全文链接: Deep contextualized word representations——学术范 二、Glove: Global Vectors for Word Representation 摘要:Recent methods for learning vector space representations of words have succeeded in capturing fine-grained semantic and syntactic regularities using vector arithmetic, but the origin of these regularities has remained opaque. We analyze and make explicit the model properties needed for such regularities to emerge in word vectors. The result is a new global logbilinear regression model that combines the advantages of the two major model families in the literature: global matrix factorization and local context window methods. Our model efficiently leverages statistical information by training only on the nonzero elements in a word-word cooccurrence matrix, rather than on the entire sparse matrix or on individual context windows in a large corpus. The model produces a vector space with meaningful substructure, as evidenced by its performance of 75% on a recent word analogy task. It also outperforms related models on similarity tasks and named entity recognition. 全文链接: Glove: Global Vectors for Word Representation——学术范 三、SQuAD: 100,000+ Questions for Machine Comprehension of Text 摘要:We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of , a significant improvement over a simple baseline (20%). However, human performance () is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at this https URL 全文链接: SQuAD: 100,000+ Questions for Machine Comprehension of Text——学术范 四、GloVe: Global Vectors for Word Representation 摘要:Recent methods for learning vector space representations of words have succeeded in capturing fine-grained semantic and syntactic regularities using vector arithmetic, but the origin of these regularities has remained opaque. We analyze and make explicit the model properties needed for such regularities to emerge in word vectors. The result is a new global logbilinear regression model that combines the advantages of the two major model families in the literature: global matrix factorization and local context window methods. Our model efficiently leverages statistical information by training only on the nonzero elements in a word-word cooccurrence matrix, rather than on the entire sparse matrix or on individual context windows in a large corpus. The model produces a vector space with meaningful substructure, as evidenced by its performance of 75% on a recent word analogy task. It also outperforms related models on similarity tasks and named entity recognition. 全文链接: GloVe: Global Vectors for Word Representation——学术范 五、Sequence to Sequence Learning with Neural Networks 摘要:Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT-14 dataset, the translations produced by the LSTM achieve a BLEU score of on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to , which is close to the previous state of the art. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier. 全文链接: Sequence to Sequence Learning with Neural Networks——学术范 六、The Stanford CoreNLP Natural Language Processing Toolkit 摘要:We describe the design and use of the Stanford CoreNLP toolkit, an extensible pipeline that provides core natural language analysis. This toolkit is quite widely used, both in the research NLP community and also among commercial and government users of open source NLP technology. We suggest that this follows from a simple, approachable design, straightforward interfaces, the inclusion of robust and good quality analysis components, and not requiring use of a large amount of associated baggage. 全文链接: The Stanford CoreNLP Natural Language Processing Toolkit——学术范 七、Distributed Representations of Words and Phrases and their Compositionality 摘要:The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible. 全文链接: Distributed Representations of Words and Phrases and their Compositionality——学术范 八、Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank 摘要:Semantic word spaces have been very useful but cannot express the meaning of longer phrases in a principled way. Further progress towards understanding compositionality in tasks such as sentiment detection requires richer supervised training and evaluation resources and more powerful models of composition. To remedy this, we introduce a Sentiment Treebank. It includes fine grained sentiment labels for 215,154 phrases in the parse trees of 11,855 sentences and presents new challenges for sentiment compositionality. To address them, we introduce the Recursive Neural Tensor Network. When trained on the new treebank, this model outperforms all previous methods on several metrics. It pushes the state of the art in single sentence positive/negative classification from 80% up to . The accuracy of predicting fine-grained sentiment labels for all phrases reaches , an improvement of over bag of features baselines. Lastly, it is the only model that can accurately capture the effects of negation and its scope at various tree levels for both positive and negative phrases. 全文链接: Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank——学术范 希望可以对大家有帮助, 学术范 是一个新上线的一站式学术讨论社区,在这里,有海量的计算机外文文献资源与研究领域最新信息、好用的文献阅读及管理工具,更有无数志同道合的同学以及学术科研工作者与你一起,展开热烈且高质量的学术讨论!快来加入我们吧!
两篇都好发。opencv主要以实践和应用为主,同时需要研究成果可以指导应用。NLP是算法中最有挑战性的,因为在CV中,视频可以分割为一帧一帧的图像,像素点是有限的,这很适合计算机去解析。
西农前几天发表sci西农确实是在前几天发表了sci,其实你很优秀,相信每一个优秀就是自我的一个闪光点,每一个闪光点都会让你增强自我应对学习生活的勇气和信心,必将会打造一个更优秀的你。
一般OA的是比较好发的,汉斯出版社有普刊也有核心的,就我知道而言,版面费不怎么高,学生还可6折优惠,见刊什么的还快~
严格上来讲没有容易发的核心,只有方向更为匹配的核心期刊领域也很多,应该先说属于那个行业的才可以帮你推荐从理论上来说,期刊出版周期短的相对而言是要简单一些,但是也并非是绝对的简单一般来讲国内期刊影响因子也会有高低区分,那种这个选刊也是个办法。
1、核心刊现在发表论文都很难,僧多粥少;2、核心刊审稿严格,对论文质量和作者单位级别,个人职称学历,以及基金等要求;3、发表周期很长,北大核心和南大核心现在大都是1年或者是一年半以后的刊期了,所以如果必须要发核心刊请尽快做准备。4、如果对自己文章不自信的话可以找论文一点通,录用率比较高,省时省力。
核心期刊,尽可能自己投,不要找中介,除非有确认的有关系才行。像一个中介一做做几十本核心期刊,不用考虑,100%是。我认识一个C刊的编辑,是经济类的,可以去杂志社直接和主编见面沟通或通过杂志社的主办的培训班才能发表,但需要有人引荐。当然了,其它的要求也比较高,要求副教授或博士,最好有省级以上课题。
我整理了一些热门期刊介绍;
一、 影响因子通过历年影响因子的变化,可以看出一本期刊稳定的水平区间。
二、发文量发文量的多少反应了期刊投稿的难度。而且,发文量还是影响因子的分母,如果没有特殊原因,发文量突然变大的期刊,后年的影响因子基本都会受影响。
三、版面费虽然可以报销,但对于一些资金较少的课题组,版面费的多少也是个重要的期刊选择指标。
四、论文发表网站不是万能很多作者想发表核心期刊,时间上卡得比较死,但是实在没办法通过正常投稿发表出去,于是想到了通过论文发表网站发表论文,且不说现在网上有很多,即便你找到了靠谱的论文发表网站,也并不是说,你给他们钱他们就能给你办好,一个是即便走特别渠道,也是要看论文质量,即便他们上手给你改稿子,也要审核,也是有退稿的可能。
所以,如果不是万不得已,不要找论文网站,尤其是学生,找他们发表费用比较贵,学生又没钱。如果实在避不开,没有其他办法了,那么建议你去淘淘论文网上阅读一些论文发表防知识,然后再去选择靠谱的机构发表论文。
发表论文最好的期刊就是核心期刊c刊,然后这些刊物是比较有代表性,而且有权威性的
从整体上说,发表论文最好的期刊,是本领域本选题方向、刊物等级最高、影响因子最高的正规期刊。即期刊等级越高,期刊越好,比如sci期刊比国家级期刊要好。而在sci期刊中,一区的期刊要比其他分区的期刊更好。从发表论文本身来说:适合的就是最好的。一是要看有没有发表论文的要求;以评职称发表论文为例,要区别发表论文达到职称要求。二是要对论文本身的学术价值进行评估,只是达到发表国家级期刊的水平,就不要选核心期刊。虽然核心期刊比国家级期刊要好,但对本论文来说,国家级期刊是最好的期刊。
核心论文期刊如下:
1、南大核心期刊:
"中文社会科学引文索引"(CSSCI)由南京大学中国社会科学研究评价中心开发研制而成CSSCI来源文献检索界面,收录包括法学、管理学、经济学、历史学、政治学等在内的25大类的500多种学术期刊。
2、北大核心期刊:
又叫中文核心,《中文核心期刊要目总览》是由北京大学图书馆及北京十几所高校图书馆众多期刊工作者及相关单位专家参加的研究项目,项目研究成果以印刷型图书形式出版,此前已由北京大学出版社出了八版。
3、统计源期刊(又称“中国科技核心期刊”):
中国科学技术信息研究所“中国科技论文统计源期刊”,也叫科技核心,分为自然科学卷和社会科学卷,期刊较多。
4、中国社会科学院文献信息中心“中国人文社会科学核心期刊”:
中国社会科学院文献信息中心1996年开始进行人文社会科学文献计量研究工作, 建有“社会科学论文统计分析数据库”、“中国人文社会科学引文数据库”、社科论文摘转量统计库。
5、CSCD期刊:
中国科学院文献情报中心“中国科学引文数据库(CSCD)来源期刊”创建于1989年,收录我国数学、物理、化学、天文学、地学、生物学、农林科学、医药卫生、工程技术和环境科学等领域出版的中英文科技核心期刊和优秀期刊千余种。
企业研究,国家经济类核心期刊,经济研究,世界经济,这几个经济类的核心期刊都是比较好发表的,但是大多数的大学生他们在学术能力是比较弱的,对于论文的发表能力也是需要有待提高的;以上这几个期刊都是比较好发表的,而且他们的通过率都是很高的。
核心论文期刊如下:
1、南大核心期刊:
"中文社会科学引文索引"(CSSCI)由南京大学中国社会科学研究评价中心开发研制而成CSSCI来源文献检索界面,收录包括法学、管理学、经济学、历史学、政治学等在内的25大类的500多种学术期刊。
2、北大核心期刊:
又叫中文核心,《中文核心期刊要目总览》是由北京大学图书馆及北京十几所高校图书馆众多期刊工作者及相关单位专家参加的研究项目,项目研究成果以印刷型图书形式出版,此前已由北京大学出版社出了八版。
3、统计源期刊(又称“中国科技核心期刊”):
中国科学技术信息研究所“中国科技论文统计源期刊”,也叫科技核心,分为自然科学卷和社会科学卷,期刊较多。
4、中国社会科学院文献信息中心“中国人文社会科学核心期刊”:
中国社会科学院文献信息中心1996年开始进行人文社会科学文献计量研究工作, 建有“社会科学论文统计分析数据库”、“中国人文社会科学引文数据库”、社科论文摘转量统计库。
5、CSCD期刊:
中国科学院文献情报中心“中国科学引文数据库(CSCD)来源期刊”创建于1989年,收录我国数学、物理、化学、天文学、地学、生物学、农林科学、医药卫生、工程技术和环境科学等领域出版的中英文科技核心期刊和优秀期刊千余种。
2.《火力与指挥控制》刊期:月刊。中国兵器工业集团有限公司主管,北方自动控制技术研究所主办的核心期刊。国内刊号是14-1138/TJ,国际刊号是1002-0640。
3.《指挥控制与仿真》刊期:双月刊。是由中国船舶重工集团有限公司主管,中国船舶重工集团公司第七一六主办的核心刊物。
随着法学硕士,特别是法律硕士的泛滥,越来越多的院校开办了法学、法律硕士,据不完全统计,开办院校高达近300所!部分法学院校的法学、法律硕士的招生名额远远多于本科生的招生。甚至一些以职业培训为主的,师资力量极度薄弱的高校也办起了法学、法律硕士。法学已经不再是关乎人与神的学科,已经泛滥成有几名教授或者副教授即可办起的普通学科。下面给大家介绍法学硕士比较好发表的核心期刊有哪些。1.人民检察杂志 北大核心期刊统计源期刊《人民检察》(半月刊)自1956年6月创刊至今已走过50余年的历程。是人民检察院的机关刊物、国家法律类核心期刊.
《人民检察》以“交流经验、指导业务”为宗旨,及时反映人民检察院的工作部署,交流推广各地检察机关工作经验,探讨法学理论、检察理论以及检察制度建设、法律适用中的热点、难点问题,详实地记录我国检察事业及相关法学理论的发展历程。
2.甘肃政法学院学报杂志 北大核心期刊CSSCI南大核心期刊
《甘肃政法学院学报》(双月刊)创刊于1986年,是由甘肃省教育厅主管、甘肃政法学院主办的法学类学术期刊,原名《政法学刊》,1994年改为现名,1995年经国家新闻出版署批准在国内公开发行。《甘肃政法学院学报》是法学类专业学术期刊,是我国重要的法学刊物,具有较为广泛的影响。
一般都是省级的比较多,你要用于评职呢 还是?
北大中文核心医学论文发表期刊推荐,如下:
1.中国老年学
2.实用医学
3.中国实用护理
4.山东医药
5.重庆医学
一般三类,五年一评。
以下五种杂志均为妇产科医学核心期刊刊名: 中华妇产科杂志Chinese Journal of Obstetrics and Gynecology主办: 中华医学会周期: 月刊出版地:北京市语种: 中文开本: 16开ISSN 0529-567XCN 11-2141/R邮发代号 2-63刊名: 中国实用妇科与产科杂志Chinese Journal of Practical Gynecology and Obstetrics主办: 卫生部周期: 月刊出版地:辽宁省沈阳市语种: 中文开本: 大16开创刊年:1953ISSN 1005-2216CN 21-1332/R邮发代号 8-172刊名: 实用妇产科杂志Journal of Practical Obstetrics and Gynecology主办: 四川省医学会周期: 月刊出版地:四川省成都市语种: 中文开本: 大16开ISSN 1003-6946CN 51-1145/R邮发代号 62-44创刊年:1985刊名: 生殖与避孕Reproduction and Contraception主办: 上海市计划生育科学研究所周期: 月刊出版地:上海市语种: 中文开本: 大16开ISSN 0253-357XCN 31-1344/R邮发代号 4-294创刊年:1980刊名: 现代妇产科进展Progress In Obstetrics and Gynecology主办: 山东大学周期: 双月出版地:山东省济南市语种: 中文开本: 16开ISSN 1004-7349CN 37-1211/R邮发代号 24-104创刊年:1989