首页 > 期刊论文知识库 > 丙酮精馏文献综述论文

丙酮精馏文献综述论文

发布时间:

丙酮精馏文献综述论文

丙酮、乙醇、水三组分的纯组分沸点分别是℃、℃、100℃。丙酮-乙醇-水三元混合物在常压下有一个乙醇-水二元共沸点,不存在三元共沸点。乙醇-水二元共沸点为℃,共沸摩尔组成为乙醇96%、水4%。从相图可以看出,乙醇-水的二元共沸温度℃要低于丙酮纯组分的沸点56℃。可以判断,乙醇-水的二元共沸基本不会影响精馏塔顶得到要求浓度的丙酮产品,不需要特殊考虑乙醇与水共沸的影响。

常压下,无水乙醇沸点: °C丙酮的沸点:℃二者混合后的沸点一般比沸点较低的那个稍低点。无水乙醇和丙酮的混合溶剂沸点约48度左右。

物料平衡物料平衡是单位时间内进塔的物料量等于离开塔的各种物料之和;物料平衡有助于维持精馏塔的正常平稳操作及上下工序的协调工作。气液相平衡气液相平衡主要是产品的质量及损失情况;气液相平衡有助于控制产品质量,使之达到纯度要求或控制在一定范围之内。

丙酮与乙醇共沸组成的溶液沸点在48度左右。常压下, 无水乙醇沸点: °C 丙酮的沸点:℃ 二者混合后的沸点一般比沸点较低的那个稍低点

丙烯精馏塔论文答辩

塔板效率精馏塔在实际运行中,由于气液相传质阻力、混合、雾沫夹带等原因,气液相的组成与平衡状态有所偏离,所以在确定实际塔板数量时,应考虑塔板效率。系统物性、流体力学、操作条件和塔板结构参数等都对塔板效率有影响,塔板效率还不能精确地预测。 塔板效率一般是根据经验来确定的。常用的经验关联式是基于一些工业装置的数据,分析归纳成为经验式求取塔的效率,适用于一般烃类物系和化学物系的大多数设计。如德里卡默和布罗德福(Drickarner,H.G.和Bradford,J.R.)经验关系曲线、奥康奈尔(0’Connell,H.E.)经验关系曲线等。对于丙烯精馏塔来说,一般塔的操作压力在御a左右,塔顶塔底平均温度在53℃左右,该温度下其进料粘度为~·S,丙烯一丙烷相对挥发度为。按德里卡默和布罗德福经验关系曲线查得的塔板效率范围为92%~96%。该关系曲线使用说明中认为:“直径大于2133mm的塔,其操作效率可以较高。”因进料粘度与丙烯一丙烷相对挥发度乘积小于,超出奥康奈尔经验关系曲线的使用范围,其经验关系曲线不适用于丙烯精馏塔。文献r90通过大量的模拟计算,推荐丙烯一丙烷分离物系的塔板效率为95%~100%。某厂气体分馏装置丙烯精馏塔径为,共设有181层塔板,塔板效率设计值为85%,1999年10月开车以来运行平稳,计算表明实际塔板效率为95%。该结果与德里卡默和布罗德福经验关系曲线查得的数据是吻合的。文献报道福建炼油化工有限公司气体分馏装置改造中采用ADV浮阀塔盘,设计板效率为101%,标定的塔盘效率为105%。奥康奈尔经验关系曲线的使用范围,其经验关系曲线不适用于丙烯精馏塔。 塔板效率理论分析丙烯精馏塔板效率经验关系曲线和实际运行结果均可达到95%,文献报道的数据甚至高达100%以上。从物系分析来看,丙烯精馏操作压力高,意味着操作温度高,液相粘度和相对挥发度均较小,均对提高塔板效率有利。随着装置规模日趋大型化,精馏塔直径随之增大,塔内液流长度增加,减少了液流的轴向返混,增加了液体与汽体的接触传质时间,也对提高塔板效率有利。文献。J分析认为:“塔内液体流过塔板时,不起返混作用,故液体进入塔板时含低沸物较多,经过两相汽液接触,离开此塔板时,则含量变低,上升蒸气与进入塔板的液体接触,致使蒸汽离开塔板时的组成,较离开塔板的液体的平衡蒸气组成高”。又认为:“在C2~C4烃类的加压普通精馏时,应用浮阀塔全塔效率经常在100%左右,有时可超过100%,若在加压下进行丙烯一丙烷的分离,则塔板效率超过100%”。 据文献到报道,异丁烷一正丁烷物系,操作压力(表压)由上升到,塔板效率由70%~80%上升至90%~95%;文献…’认为该物系在、塔径为、采用F1型浮阀时,塔板效率可达122%。

塔板效率是理论塔板数与实际塔板数之比。其影响因素有:

1、气相与液相中物质交换速度的快慢;

2、塔板上气液的混合程度;

3、蒸汽夹带液体雾滴进入上层塔板的多少;

4、塔板的设计和布置;

5、操作条件;

6、处理物料的物理性能。

随着催化裂化装置工艺技术的进步、原料多样化和多产液态烃等新工艺的不断推广应用,液态烃产量不断增加,特别是作为气体分馏装置经济效益核心的丙烯产量更是呈现出大幅上升的趋势。

气体分馏装置中丙烯精馏塔的实际塔板数较多,回流比较大,对塔板进行较为深入地分析研究,确定合理的设计参数,对节省工程投资和提高经济效益具有非常重要的意义。

扩展资料:

精馏塔在实际运行中,由于气液相传质阻力、混合、雾沫夹带等原因,气液相的组成与平衡状态有所偏离,所以在确定实际塔板数量时,应考虑塔板效率。系统物性、流体力学、操作条件和塔板结构参数等都对塔板效率有影响,塔板效率还不能精确地预测。

丙烯精馏塔板效率经验关系曲线和实际运行结果均可达到95%,文献报道的数据甚至高达100%以上。从物系分析来看,丙烯精馏操作压力高,意味着操作温度高,液相粘度和相对挥发度均较小,均对提高塔板效率有利。

随着装置规模日趋大型化,精馏塔直径随之增大,塔内液流长度增加,减少了液流的轴向返混,增加了液体与汽体的接触传质时间,也对提高塔板效率有利。

参考资料来源:百度百科——塔板效率

丙烯精馏塔的毕业论文

丙烯精馏塔的特点主要是丙烯与丙烷的相对挥发度接近于1,丙烯产品要达到聚合级质量标准,就需要更多的塔板数。所以丙烯精馏塔一般是乙烯装置最高的塔,需要高的回流比。

【1】学士学位论文:基于相关系数辨识法的PID自整定算法及其应用指导教师:孙德敏、吴刚、吴福明,获中国科学技术大学自动控制专业工学学士学位【2】硕士学位论文:基于多元逐步回归分析的丙烯腈反应器在线优化控制指导教师:孙德敏教授,获中国科学技术大学自动控制理论及应用专业工学硕士学位【3】博士学位论文:典型工业过程的先进控制与优化指导教师:孙德敏教授,获中国科学技术大学控制科学与工程专业工学博士学位教学工作:【1】计算机控制(专业基础课,课程编号:01018601)教材:李嗣福编著,计算机控制基础(第2版),合肥:中国科学技术大学出版社,【2】最优化方法(本硕贯通课程,课程编号:本01060701,硕CN04132)教材:孙德敏编著,工程最优化方法及应用(修订版),合肥:中国科学技术大学出版社,学术论文:【1001】薛美盛,白东进,张毅,何丹玉. 基于相关分析法的PID控制回路的模型验证. 控制工程,已录取.【1002】陈根杰,魏衡华,薛美盛. 带Smith预估器的预测PID控制器的设计. 电子技术,已录取.【1003】薛美盛,白东进,王川. 基于Pade近似一般形式的IMC-PID控制器设计. 控制工程,已录取.【1004】樊弟,薛美盛,魏衡华. 多变量系统的广义预测控制解耦设计. 控制工程,已录取.【1005】王川,薛美盛,白东进. 基于子空间辨识的多变量预测控制器设计. 控制理论与应用,已投稿.【1006】薛美盛,苏阳,祁飞,张毅. 一种评估PI控制回路的LQG基准. 控制理论与应用,已投稿.【0901】胡志宏,郝卫东,薛美盛. 运行优化降低燃煤锅炉NOx排放的试验研究. 电站系统工程,2009,25(1):41-43.【0902】李自强,薛美盛. 用于闭环PID参数自动整定的性能指标仿真研究. 自动化与仪表,2009,24(2):30-33.【0903】白东进,祁飞,薛美盛. 基于动态矩阵控制的比值控制新算法. 化工自动化及仪表,2009,36(2):23-28.【0904】崔宇,薛美盛. 基于局部学习方法的火电锅炉飞灰含碳量LSSVM软测量. 仪表技术,2009(5):62-64.【0905】李祖奎,Marianthi Ierapetritou,薛美盛. 过程工业不确定条件下的计划与调度优化. 化工进展,2009,28(7):1122-1128+1133.【0906】薛美盛,祁飞,张毅,王川,白东进. 控制回路性能评估综述. 控制工程,2009,16(5):507-512.【0907】薛美盛,陶呈纲,郑涛. pH控制策略研究. 化工自动化及仪表,化工自动化及仪表,2009,36(5):7-12+17【0801】张毅,薛美盛,王伟. 带前馈的PID控制回路的控制器性能评估. 化工自动化及仪表,2008,35(1):20-23.【0802】王伟,薛美盛,张毅,刘云松. 丙烯腈流化床反应器先进控制. 化工自动化及仪表,2008,35(3):58-61+66.【0803】鲍茂潭,赵春江,薛美盛,王成. 用于农产品信息管理的RFID读写器设计. 电子技术应用,2008,34(3):68-71.【0804】李晋,秦琳琳,岳大志,吴刚,薛美盛等. 试验温室温度系统建模与仿真. 系统仿真学报,2008,20(7):1869-1875.(EI20081811232440)【0805】吕旭涛,薛美盛. 正交试验优化在算法效率评价中的应用. 电子技术,2008,45(7):53-55.【0806】何德峰,俞立,薛美盛. 丙烯聚合装置牌号切换的在线操作指导. 2008年中国过程控制年会(CPCC2008)论文集,,北京:339-342.【0807】李祖奎,Marianthi Ierapetritou,薛美盛. 过程工业不确定条件下的计划与调度优化. 2008年过程系统工程年会(PSE2008)论文集,,上海:313-320.【0808】陈多刚,周广,张毅,相天成,薛美盛. 基于相关分析法的PID控制回路性能评估. 2008年工业自动化与仪表装置应用学术交流会论文集,,青岛:140-148.【0809】何德峰,薛美盛,季海波. 约束非线性系统构造性模型预测控制. 控制与决策,2008,23(11):1301-1304+1310.(EI20085111797520)【0701】陈薇,秦琳琳,吴刚,薛美盛,王俊. 硝酸根离子选择电极建模. 传感技术学报,2007,20(1):14-17.【0702】张庆武,吴刚,薛美盛,王嵩,何德峰,祁飞. 聚乙烯装置模块多变量在线操作指导. 信息与控制,2007,36(1):79-85+92.【0703】张庆武,吴刚,薛美盛,沈之宇,孙德敏. 氨合成塔温度先进控制. 信息与控制,2007,36(1):108-114.【0704】秦琳琳,吴刚,薛美盛等. 网纹甜瓜营养液深液流栽培管理与环境调控. 中国科学技术大学学报,2007,37(2):195-201.【0705】王俊,成荣,薛美盛,吴刚,秦琳琳,胡振华. 温室环境测控系统的设计与运行. 控制工程,2007,14(2):195-197.【0706】陈祥,薛美盛,王俊,吴刚,秦琳琳,成荣. 基于Zigbee协议的温室环境无线测控系统. 自动化与仪表,2007,22(3):39-41+50.【0707】陈杰,何晓红,薛美盛. 基于MA的智能建筑实时远程监控系统. 合肥工业大学学报(自然科学版),2007,30(4):436-439.【0708】沈之宇,阎镜予,薛美盛,孙德敏. 中小型氮肥合成氨生产系统操作条件优化. 化工学报,2007,58(4):963-969.(EI20072110613706)【0601】薛美盛,祁飞,张庆武等. 一种全新的精馏塔回流罐液位控制系统. 化工自动化及仪表,2006,33(2):57-60.(EI2006229913058)【0602】薛美盛,祁飞,吴刚,孙德敏. 丁烯-1精馏装置在线节能优化的研究. 化工自动化及仪表,2006,33(3):17-21.(EI2006279980837)【0603】刘长远,薛美盛,孙德敏,王磊. 阶梯式广义预测控制在浮法玻璃窑中的应用. 自动化博览,2006,23(3):62-63.【0604】阎镜予,沈之宇,薛美盛等. 用于过程优化的改进模式识别方法及其应用. 模式识别与人工智能,2006,19(3):342-348.(EI20063310069117)【0605】薛美盛,李祖奎,吴刚,孙德敏. 油品调合调度优化问题的分步求解策略. 中国科学技术大学学报,2006,36(8):834-839.【0606】张庆武,吴刚,凌青,金辉宇,罗国娟,沈之宇,薛美盛. 并列电站锅炉主蒸汽温度先进控制. 中国科学技术大学学报,2006,36(8):840-844.【0607】薛美盛,霍敏端,吴刚,石春. DVD光驱聚焦伺服系统中的重复控制器. 计算机仿真,2006,23(4):294-297.【0608】薛美盛,胡振华,秦琳琳等. 基于CAN总线的温室可控环境综合测控系统软件设计. 测控技术,2006,25(10):61-64.【0609】陈杰,孙德敏,薛美盛. 基于Fibonacci数列的变步长相关分析辨识算法. 合肥工业大学学报(自然科学版),2006,29(5):517-520.【0610】陈祥,薛美盛,王俊,成荣,吴刚. 无线测控技术在现代农业中的应用与展望. 农业工程技术,2006(19):14-15.【0611】薛美盛,祁飞,吴刚,孙德敏. 精馏塔控制与节能优化研究综述. 化工自动化及仪表,2006,33(6):1-6.(EI2007041038942)【0501】薛美盛,李祖奎,吴刚,孙德敏. 汽油调合优化软件的开发. 化工自动化及仪表,2005,32(1):34-36.(EI2005279198109)【0502】沈之宇,张庆武,阎镜予,薛美盛等. 氨合成生产系统的两步逐级正交优化. 中国科学技术大学学报,2005,35(2):277-283.【0503】祁睿,秦琳琳,薛美盛,吴刚,孙德敏. 基于CAN总线的温室监控系统设计与应用. 工业仪表与自动化装置,2005(3):32-35.【0504】薛美盛,李祖奎,吴刚,孙德敏. 成品油调合调度优化模型及其应用. 石油炼制与化工,2005,36(3):64-68.【0505】薛美盛,李祖奎,吴刚,孙德敏. 油品管道调合质量控制研究. 化工自动化及仪表,2005,32(5):14-17.(EI2005479497670)【0506】薛美盛,祁 飞,吴 刚,孙德敏. 先进控制与优化应用中的若干问题研究. 自动化博览,2005(6):14-17.【0401】Qing Tao, Xin Liu, Meisheng Xue. A Dynamic genetic algorithm based on continuous neural networks for a kind of non-convex optimization problems. Applied Mathematics and Computation, 2004, 150(3):811-820.(SCI802YO,EI2004098043233)【0402】薛美盛,杨再跃,吴刚,孙德敏. 基于遗传算法的动态矩阵控制器参数设计. 工业仪表与自动化装置,2004(3):6-9.【0403】李敏,薛美盛,杨再跃,王占成,吴刚. 自适应内模PID控制器在梭式窑温度控制中的应用. 自动化与仪表,2004(4):46-49.【0404】王嵩,吴刚,薛美盛,张培仁,孙德敏. 辊道窑现场总线计算机控制系统. 自动化仪表,2004,25(1):55-58.【0301】孙德敏,吴刚,薛美盛,王永,李俊. 工业过程先进控制及优化软件产业. 自动化博览,2003(2):5-13.【0302】罗国娟,吴刚,薛美盛等. 基于阶梯式动态矩阵控制的电烤箱温度控制系统. 东南大学学报(自然科学版),2003,33(增刊):150-154.【0303】薛美盛,孙德敏,吴刚. 丙烯腈流化床反应器进料系统的PID自动整定. 化工自动化及仪表,2003,30(5):19-21.(EI2004328307475)科研课题:【11】带宽受限网络化控制系统中的丢包问题研究(国家自然科学基金项目,60904012),,国家自然科学基金委员会,任技术负责人;【10】合成氨清洁生产监控网络系统(国家水体污染控制与治理科技重大专项课题,2008ZX07010-003),,环保部,任课题负责人;【09】硫酸生产系统先进控制工程,,铜陵有色金属集团公司铜冠冶化分公司,任课题负责人;【08】循环流化床锅炉先进控制与优化,,临泉化工股份有限公司,任课题负责人;【07】火电锅炉节能降耗减排集成优化控制(863计划目标导向型课题,2007AA04Z195),,科学技术部,任课题负责人;【06】温室无线测控网络系统关键技术研究与集成(863计划探索导向型课题,2006AA10Z253),,科学技术部,任技术负责人;【05】中石油兰州石化公司丙烯腈反应器在线操作优化,,中石油兰州石化公司,任课题负责人;【04】车载信息处理系统的开发研究,,广东惠州天缘电子有限公司,任课题负责人;【03】可控环境农业数据采集与自动控制系统研究(863计划课题,2004AA247020),,科学技术部,任技术负责人;【02】现场辊道窑计算机控制系统,,佛山东鹏陶瓷公司,任课题负责人;【01】油品调合算法研究及调合软件开发,,北京汉盟科技公司,任课题负责人。鉴定获奖:【10】课题“统计机器学习和神经网络若干问题研究”,获2008年安徽省科学技术奖三等奖(,),安徽省人民政府,排名3/5;【09】课题“中石油兰州石化公司丙烯腈反应器在线操作优化”,中石油兰州石化公司会议验收(),排名1/6;【08】获得中国科学技术大学“2007年度考核优秀教职工”称号(校人字【2008】26号);【07】获得中国科学技术大学2006年度优秀招生组二等奖,排名2/4;【06】获得“2005年度中国科学技术大学优秀青年教职工津贴”;【05】课题“可控环境农业数据采集与自动控制系统研究”(863计划课题,2004AA247020),科技部2005年10月会议验收,排名3/14;【04】课题“可控环境农业数据采集与自动控制系统研究”(863计划课题,2001AA247021),科技部2003年12月会议验收,排名5/21;【03】论文《火电厂锅炉主蒸汽压力的阶梯式广义预测控制》,获安徽省第四届自然科学优秀学术论文奖三等奖,省科协,,排名1/3;【02】论文《模块多变量预测控制及其在羰基合成反应其中的应用》,获安徽省第四届自然科学优秀学术论文奖三等奖,省科协,,排名2/4;【01】论文《聚类分析在丙烯腈反应器操作优化中的应用》,获安徽省第四届自然科学优秀学术论文奖三等奖,省科协,,排名3/4。软件专利:【12】基于Zigbee协议的温室环境无线控制节点装置,(实用新型专利,授权),国家知识产权局,排名4/6;【11】基于MSP430的温室环境信息无线采集节点装置,(实用新型专利,授权),国家知识产权局,排名4/6;【10】丙烯腈生产装置及其控制反应器温度的方法,(发明专利,公告),国家知识产权局,排名1/5;【09】丙烯腈流化床反应器在线操作优化软件(简称:ANOPT),2008SR16720(授权),国家版权局,排名1/4;【08】AtLoop PID自动整定软件(简称:AtLoop),2008SR16719(授权),国家版权局,排名1/4;【07】丙烯腈流化床反应器温度预测控制软件(简称:ANGPC),2008SR16718(授权),国家版权局,排名1/4;【06】温室无线测控网络传感节点系统软件(简称:温室无线传感节点软件),2008SR06696(授权),国家版权局,排名3/5;【05】温室无线测控网络控制节点系统软件(简称:无线控制节点软件),2008SR06695(授权),国家版权局,排名3/5;【04】营养液自动检测装置,(实用新型专利,授权),国家知识产权局,排名3/5;【03】营养液自动循环装置,(实用新型专利,授权),国家知识产权局,排名2/5;【02】基于现场总线的温室环境控制系统软件,2005SR09137(授权),国家版权局,排名1/5;【01】灯箱式动态模拟屏及其控制方法,(发明专利,授权),国家知识产权局,排名2/5。兼职工作:【5】2009年5月起,担任教育部学位与研究生教育发展中心评估专家;【4】2008年12月起,担任合肥市招投标评审(咨询)专家;【3】2007年11月起,担任中国石化核心科技期刊《石油化工自动化》第八届编辑委员会委员(任期:);【2】2007年4月,受聘成为国家高技术研究发展计划(863计划)同行评议专家;【1】2006年8月起,担任中文核心期刊《化工自动化及仪表》第九届编辑委员会委员(任期:)。

精馏化工论文文献

E1, E2, E3, E4—换热器F1, F2, F3—闪蒸罐EX1—膨胀装置T1—精馏塔R1—反应罐FEED1—初始混合气体FEED2—苯PRODUCT1—主要产品甲烷PRODUCT2—主要产品枯烯BOTTOMS—尾气罐中出来的上部气体S10中主要为甲烷、乙烷和未反应完全的丙烯, 进一步冷凝后作两相分离, 气体尾气BOTTOMS 中主要为乙烷和丙烷, 液体S12中含有丙烯回流进入反应罐。2热力学方法的选择在化工流程模拟软件PRO / II中, 需要通过不多的已知物性数据对物系的热力学性质和传递性质进行估算, 估算的准确与否将直接影响模拟结果的准确性。选择适当的物性方法经常是决定模拟结果的精确度的关键步骤, 选用不恰当的物性方法将得到错误的计算结果。对于绝大多数炼油和石化装置, 所处理的物系均为烃类系统和石油馏分, 其中可能含有一些非烃气体, 如氢气、空气、二氧化碳、一氧化碳、硫化氢等。这些都可以认为是非极性物质。对于非极性物质, 可以选用状态方程来计算热力学性质。迄今为止, 文献上发表的状态方程已上百个, 但是经常使用的方程只有十来个, 而最重要、最符合本模型的仅仅2~3个。现选用不同的热力学方法进行估算。211Soave - Redliofi - Kwong状态方程( SRK方程)该方程是Georgi Soave在1972年发表的,其计算公式如下:P =RTV - b-a ( T)V (V + b)式中b = Σixi bibi = 0108664RTci /PciTci、Pci ———成分i的临界温度和临界压力a ( T) = ΣiΣjXiXj ( ai aj ) 1 /2 (1 - Kij )ai = aciαiaci = 0142747 (RTci ) 2 /Pciαi015 = 1 +mi (1 - Tci015 )mi = 01480 + 11574ωi - 01176ωi2ωi ———成分i的离心因子Kij ———成分i和j的二元交互作用参数希腊字母α的导入是为了改善纯组分蒸汽压力的预测, 而联合公式通过Kij的导入来计算a ( T)是为了改善混合物的压力预测。使28 化工流程模拟在蒸馏与反应流程中的应用用Soave公式预测混合物包括两个步骤: 第一, 这个组分的偏心因子ωi 对每个组分都是已调谐的, 这样组分的蒸汽压力可以精确预测; 第二, 字母Kij是组分i和j的二元交互系统的实验数据所确定的, 以便相平衡能够匹配。输入各单元参数和原工艺条件后运算结果见表1。表1 选用SRK方程模拟运算后结果流体名称FEED1 FEED2 PRODUCT1 PRODUCT2 BOTTOMS流量kmol·h - 1 1300197 350 759104 403132 172147成分甲烷01576 01000 01986 01000 01005乙烷01077 01000 01011 01026 01535丙烷01057 01000 01000 01057 01293丁烷01009 01000 01000 01015 01030丙烯01281 01000 01003 01034 01136枯烯01000 01000 01000 01784 8107 ×10 - 6苯01000 11000 01000 01840 01001212Peng - Robinson状态方程( PR方程)该方程于1976 年由Peng和Robinson 提出, 这是另一个立方型状态方程:P =RTV - b-a ( T)V (V + b)式中b = Σixi bibi = 0107780RTci /PciTci、Pci ———成分i的临界温度和临界压力a ( T) = ΣiΣjXiXj ( ai aj ) 1 /2 (1 - Kij )ai = ac iαiaci = 0145724 (RTci ) 2 /Pciαi015 = 1 + ni (1 - Tci015 )ni = 01480 + 11574ωi - 01176ωi2ωi ———成分i的离心因子Kij ———成分i和j的二元交互作用参数代入与SRK方程相同的数据运算模型, 结果见表2。表2 选用PR方程模拟运算后结果流体名称FEED1 FEED2 PRODUCT1 PRODUCT2 BOTTOMS流量kmol·h - 1 1300197 350 749125 405101 170155成分甲烷01576 01000 01982 01000 01005乙烷01077 01000 01013 01028 01478丙烷01057 01000 01000 01059 01292丁烷01009 01000 01000 01015 01029丙烯01281 01000 01005 01035 01195枯烯01000 01000 01000 01780 915 ×10 - 6苯01000 11000 01000 01830 01001213Benedict - Webb - Rubin - Starling状态方程(BWRS方程)该方程于1973年由Starling提出, 计算公式为:P =ρRT + (B0 RT -A0 C0T2 -E0T4 )ρ2+ ( bRT - a -dT)ρ3 +α( a +dT)ρ6+cρ3T2 (1 + rρ2 ) exp ( - rρ2 )对此方程进行运算, 所得结果为模型运行错误。根据两种方法计算结果与实际情况的比较, SRK热力学方法比PR热力学方法在本模型中更接近实际, 故优先选用。3工艺优化运用化工流程模拟软件可以很方便地修改工艺参数, 从而得出更好的工艺。311改变S4的进料位置S4为初始混合流体冷凝闪蒸后的液态混合物, 改变其进入蒸馏塔塔板的位置, 综合比较各产品和剩余气体的流量、浓度, 从而得到最佳进料点。模拟运算结果见表3。从表3可以看出, 根据产品甲烷的浓度和尾气枯烯的含量对比, 物料S4的最佳进料位置为蒸馏塔塔板的第4层。312改变蒸氨后换热器E3、E4的换热温度换热器E3、E4的换热温度改变后, 产品《化工装备技术》第28卷第4期2007年29表3 选用PR方程模拟运算后结果进料塔板位置甲烷流量kmol·h - 1甲烷浓度%枯烯流量kmol·h - 1枯烯浓度%尾气枯烯含量×10 - 6第1层74813022 98153 31519965 77178 810865第2层74813057 98155 31611300 78138 810683第3层74813071 98157 31611293 78138 810557第4层74813073 98157 31611291 78138 810547第5层74813075 98156 31611290 78137 810551第6层74813074 98156 31611289 78137 810556第7层74813072 98155 31611287 78137 810552和尾气中枯烯的流量和浓度及回流进入反应罐的回流流量也相应改变, 运算后结果见表4、表5, 综合比较可得最佳温度控制点。表4 换热器E3换热温度的改变温度℃产品枯烯流量kmol·h - 1产品枯烯浓度%尾气流量kmol·h - 1尾气枯烯含量×10 - 6S12回流流量kmol·h - 78138 17212960 810547 71429040 31614791 79147 17710329 810236 101454045 31618976 80147 18019907 810753 141356650 31714018 81139 18413300 811881 191354355 31719984 82104 18710697 813625 251656560 31813206 82155 18912116 816035 3814790从表4可以看出, 随着换热器E3换热温度的升高, 产品枯烯的产量和浓度增加, 尾气中枯烯的浓度也升高, 但变化不是很大, 只是回流流量增加较快, 选择换热温度为50℃。表5 换热器E4换热温度的改变温度℃产品枯烯流量kmol·h - 1产品枯烯浓度%尾气流量kmol·h - 1尾气枯烯含量×10 - 6S12回流流量kmol·h - 1- 25 31714018 81139 18413300 811881 1913543- 28 31716092 81119 18218178 410633 3415521- 29 31717248 81108 18119248 310836 4416888- 30 31718947 80194 18017796 212878 6011557- 31 31811412 80177 17911549 116735 8319138- 32 31815234 80158 17619915 112163 12117759分析表5的数据可以得到, 温度越高, 虽然产品中枯烯的浓度越高, 但尾气中枯烯的含量也越高, 当温度过低时, 在产品浓度降低的同时, 回流量也加大了, 回流管线的负荷也就较大。所以综合考虑, 选择换热器E4的冷却出口温度为- 30℃。313调节苯的加入量根据蒸馏后塔底流体的丙烯含量, 再考虑回流流体中的丙烯及苯的含量, 调节苯的加入量。从表6可以看出, 随着原料苯的增多, 产品丙烯的产量有所提高, 其浓度变化不大, 尾气中丙烯的含量也增加了。根据表6数据, 苯的加入量控制在365kmol/h左右为最好。表6 调节苯的加入量苯流量kmol·h - 1产品枯烯流量kmol·h - 1产品枯烯浓度%尾气流量kmol·h - 1尾气枯烯含量×10 - 6S6回流流量kmol·h - 1350 31718947 80194 18017796 212878 6011557360 32616796 81109 17119535 215423 4910288365 33110751 81117 16715021 216837 4411746370 33514825 81125 16311646 218253 3919938380 34413002 81143 15414345 311396 3216252390 35311362 81161 14518579 314811 2616930314优化前后数据对比比较优化前后产品的流量和浓度, 以及尾气中有毒气体枯烯的含量, 从表7 中可以看出, 优化后产品中枯烯的浓度得到提高, 尾气中枯烯的含量也降低到规定的标准之下。表7 优化前后数据比较甲烷流量kmol·h - 1甲烷浓度%枯烯流量kmol·h - 1枯烯浓度%尾气流量kmol·h - 1尾气中枯烯含量×10 - 6优化前74813057 98155 31611300 78138 17214739 810683优化后74813073 98157 33110751 81117 16715021 2168374结束语(1 ) 选择了最符合本模型的热力学方法, 对工艺流程进行了优化。(2) 提高了产品的浓度和流量, 尾气中枯烯的含量也控制在规定范围以内。(3) 为工艺控制提供理论依据, 实际生产中还可以通过调节换热器(E3、E4)的换热温

板式精馏塔的设计 文档类别: 课程设计 文档大小: MB 文档评级: 文档格式: Word文件,WPS格式文档 文档更新: 2006-6-14 17:48:33 页面刷新: 2009-7-5 23:34:15 下载次数: 3782 其它信息: 全文下载Word文件格式下载6 文钱文钱不够?文档介绍: 之外,恳请各位读者批评指正。目 录前 言 2第一章 总论 1一、化工原理课程设计能力目标 1二、化工原理课程设计的内容 1三、化工原理课程设计的步骤 1四、化工原理课程设计的注意事项 2第二章 板式精馏塔的工艺设计 4一、概述 4二、板式精馏塔设计的内容 4三、精馏塔设计的一般步骤 5四、设计方案的确定 6五、板式精馏塔的工艺计算 7(四)塔效率估算 13六、塔板及塔的主要工艺尺寸设计 14(三)溢流装置 18第三章 板式塔的结构设计初步 32(一)结构初步 32(二)辅助设备 33第四章 常用设计数据 34(一)单流型塔板系列参数 34主要参考文献 50 这里有自己去下载

总黄酮综述论文范文

药学论文提纲怎么写

药学论文提纲怎么写呢?下面是我分享的珍珠透骨草总黄酮提取与纯化工艺的研究的药学论文提纲,欢迎大家阅读,也希望能够通过药学论文提纲,让大家了解论文提纲的写作包括哪几方面。

论文题目: 珍珠透骨草总黄酮提取与纯化工艺的研究

本课题研究了珍珠透骨草总黄酮的提取纯化工艺,建立了珍珠透骨草及其有效部位总黄酮含量测定方法,并初步建立了珍珠透骨草有效部位的质量标准。

提取工艺方面,在确定乙醇为提取溶剂后,分别采用回流法和渗漉法对珍珠透骨草总黄酮进行提取,结果回流法提取总黄酮效果较好,故选用回流法为提取方法。

在通过单因素考察后,分别考察了醇浓度、提取溶剂倍量、提取时间、提取次数四个因素对提取工艺的影响,最后通过正交试验确定珍珠透骨草总黄酮的最佳提取工艺为:药材粗粉,加12倍量70%乙醇在75℃下回流提取3次,每次提取1h。纯化工艺方面,经过筛选,采用D101大孔吸附树脂对珍珠透骨草总黄酮进行纯化。

通过对泄漏曲线、吸附流速、吸附时间、上样浓度、洗脱溶剂、洗脱体积、洗脱流速考察,最后确定珍珠透骨草总黄酮最佳纯化工艺为经最佳提取工艺提取的药材干浸膏用相当于生药材4倍量的水溶解,制成 g生药/mL的样品液,将此样品液以1BV/h流速上样,药液重复过柱两次,吸附12h后,用5BVH_2O以2BV/h洗脱除杂,最后5BV60%乙醇 4BV/h洗脱。

为了更好地开展对珍珠透骨草开发研究和利用,制定规范的、科学的中药质量标准,本课题对珍珠透骨草总黄酮提取物的质量标准进行了较为全面深入的研究。

实验采用高效液相色谱法测定珍珠透骨草中A的含量,结果表明此测定方法的线性、精密度、稳定性、重现性和回收率良好,为制订质量标准提供理论和实验依据。通过DPPH抗氧化活性试验,发现珍珠透骨草总黄酮有很强的抗氧化活性,与VE相近。

中文摘要6-7

英文摘要7-8

前言8-10

第一章 绪论10-20

1 中药透骨草的研究进展10-14

透骨草类中药的基源研究10-12

透骨草类中药的化学成分研究12

透骨草类中药的药理作用及毒性反应12-13

透骨草类中药的临床应用情况13

小结与讨论13-14

2 总黄酮提取与纯化工艺及测定方法研究进展14-20

提取工艺研究14-17

纯化工艺研究17-18

测定方法研究18-19

展望19-20

第二章 珍珠透骨草总黄酮提取纯化工艺研究20-38

1 仪器与材料20-21

药材来源20

仪器20

试剂20-21

2 实验内容21-38

珍珠透骨草提取工艺的研究21-29

纯化工艺研究29-38

第三章 珍珠透骨草总黄酮质量标准的研究38-46

1 珍珠透骨草提取物的质量标准38-39

名称珍珠透骨草提取物38

处方38

制法38

性状38

鉴别38

检查38

含量测定38-39

贮藏39

2 质量标准草案起草说明39-46

名称39

制法39

性状39

鉴别39

检查39-41

含量测定41-46

第四章 珍珠透骨草总黄酮的抗氧化活性研究46-50

1 黄酮类化合物抗氧化作用46-47

黄酮类化合物抗氧化机理46

黄酮类化合物结构和抗氧化活性的关系46

黄酮类化合物的抗自由基作用46-47

2 珍珠透骨草总黄酮清除DPPH自由基能力研究47-50

材料与仪器47

方法与结果47-50

第五章 总结50-51

致谢51-52

参考文献52-57

知识扩展:药学专业毕业论文格式要求

1.题目:题目应简洁、明确、有概括性,字数不宜超过20个字(不同院校可能要求不同)。本专科毕业论文一般无需单独的题目页,硕博士毕业论文一般需要单独的题目页,展示院校、指导教师、答辩时间等信息。英文部分一般需要使用Times New Roman字体。

2.版权声明:一般而言,硕士与博士研究生毕业论文内均需在正文前附版权声明,独立成页。个别本科毕业论文也有此项。

3.摘要:要有高度的概括力,语言精练、明确,中文摘要约100—200字(不同院校可能要求不同)。

4.关键词:从论文标题或正文中挑选3~5个(不同院校可能要求不同)最能表达主要内容的`词作为关键词。关键词之间需要用分号或逗号分开。

5.目录:写出目录,标明页码。正文各一级二级标题(根据实际情况,也可以标注更低级标题)、参考文献、附录、致谢等。

6.正文:专科毕业论文正文字数一般应在5000字以上,本科文学学士毕业论文通常要求8000字以上,硕士论文可能要求在3万字以上(不同院校可能要求不同)。

毕业论文正文:包括前言、本论、结论三个部分。

前言(引言)是论文的开头部分,主要说明论文写作的目的、现实意义、对所研究问题的认识,并提出论文的中心论点等。前言要写得简明扼要,篇幅不要太长。

本论是毕业论文的主体,包括研究内容与方法、实验材料、实验结果与分析(讨论)等。在本部分要运用各方面的研究方法和实验结果,分析问题,论证观点,尽量反映出自己的科研能力和学术水平。

结论是毕业论文的收尾部分,是围绕本论所作的结束语。其基本的要点就是总结全文,加深题意。

7.致谢:简述自己通过做毕业论文的体会,并应对指导教师和协助完成论文的有关人员表示谢意。

8.参考文献:在毕业论文末尾要列出在论文中参考过的所有专著、论文及其他资料,所列参考文献可以按文中参考或引证的先后顺序排列,也可以按照音序排列(正文中则采用相应的哈佛式参考文献标注而不出现序号)。

9.注释:在论文写作过程中,有些问题需要在正文之外加以阐述和说明。

10.附录:对于一些不宜放在正文中,但有参考价值的内容,可编入附录中。有时也常将个人简介附于文后。

随着我国医药行业的快速发展,技术水平也得到了快速的提高,为人民做出了很大的贡献。下面是我为大家整理的中药制药专业论文,供大家参考。

《 现代中药制药工艺学的 教学 方法 探索 》

摘要:从课程的准确定位、多元化教学、补充新的中药制药工艺技术以及全面评价等四个方面论述中药制药工艺学课程教学方法,提高专业课的授课质量进行探讨。

关键词:中药制药工艺学;中药现代化;教学方法

中图分类号: 文献标志码:A 文章 编号:1674-9324(2014)22-0069-02

我过于上世纪90年代提出中药现代化,旨在继承和发扬我国中医药优势和特色,综合运用现代制药技术和手段,提供“安全、有效、稳定、可控”的中药产品。这既是提高中药竞争力和国际化的必由之路,也是中药发展的内在要求。实现中药现代化,不仅需要技术创新,也需要专业技术人员的培养;不仅需要科研院所的努力,更需要中药企业的积极参与。针对中药制药技术进行联合攻关,提高中药的质量和竞争力,现代中药制药工艺对于实现中药现代化具有举足轻重的作用。现代中药制药工艺涉及两个相辅相成的重要环节:中药原料药的生产工艺和中药制剂的生产工艺。其中本文所讨论的中药制药工艺主要是指中药原料药的生产工艺,涉及中药的前处理、中药有效成分的提取工艺、分离纯化工艺、浓缩工艺和干燥工艺,这也是决定现代中药质量的关键环节[1,2]。现代中药制药工艺学研究的对象是中药,涉及中药学、生药学、天然药物化学、中药制药工程等多门专业课的综合理论知识。中药制药工艺学与化学制药工艺学和生物制药工艺学的相通之处在于对现代制药技术的采用,但中药制药工艺又具有自身的显著特色:以中医理论为基础,新技术和手段的应用要围绕中医药理论进行,若离开这个基础,就成为植物药或天然药物。因此,在中药制药工艺学的教学中,要在中医药理论这个基础上,积极采用现代化的提取纯化工艺。

一、准确定位

中药制药工艺学是专业性课程,针对大三下学期或大四上学期的学生开设。所以在中药制药工艺学的教学工程中,要以专业性、技术性为导向,突出这门课的应用性。这门课以中药学、天然药物化学、制药工程学课程为基础,突出其综合性以及在日后中药生产中的桥梁作用。中药制药工艺学的落脚点是工艺技术,不能过于强调其基础原理。

二、多元化教学

虽然中药制药工艺学目前的发展总体上较化学制药和生物制药有所差距,但仍有不少发展良好的中药制药企业,积极采用新技术,实现了中药生产的升级换代。同时积极吸收现代化学制药与生物制药领域的先进技术,与中医药理论相结合,在保证中医特色的前提下,实现中药的现代化生产。这就需要高校为企业输送既懂传统中医药理论,又掌握现代制药工艺的专业人才,这对制药工程专业的教学,特别是中药制药工艺学提出了新的要求。该课程的教学,要立足课本,但也要根据实际需要采用多种资源提高教学成效。

1.充分利用网络资源。采用网络资源,特别是国际上植物药生产的工艺的相关资料,对于提高中药制药工艺学的教学质量非常重要。目前,限于课堂教学条件限制,学生不能从教材上直观地感受工艺过程。根据课堂教学的需要,选用一些直观、说明生产流程的视频讲义。水蒸气蒸馏法提取中药材的精油章节,可以利用flash演示加热、汽化、冷凝过程,同时播放水蒸气蒸馏提取薰衣草精油的视频,这比教材的示意图更加直观和富有吸引力。等视频网站有动态表现生产工艺的flash和视频资料,可以直观地表现工厂车间的生产流程和原理,同时增加学生的学习兴趣。

2.强化实践教学。工科专业的学生,在学习中药制药工艺学这门课之前,会有专业见习和实习的机会,充分利用这些机会,让学生在车间里最直接地认知中药生产工艺,同时,车间操作人员的现场操作也可以加深学生对工艺流程、参数设置的理解。充分利用学校资源和企业资源,将理论学习与基本训练结合起来,增强学生的专业技能,切实提高课堂教学的实际效果。切不可将见习或实习简单化、形式化,在开始实习前,老师要和车间的带教老师沟通好,在保证学生和生产安全的前提下,要让学生对生产流程有深入的了解,最好有一定的亲手操作的机会。同时利用学校的中试车间,让学生分组分批完成实验任务,让每个小组(3~4学生)都独立地完成提取、纯化、浓缩、干燥以及压片或灌装胶囊的中药制药流程。该课程配套的实验分为两部分:一次是集中实验,统一学习操作技能;一次是进入到中药或生药方向的课题组中,跟随研究生做实验,要求每位学生从提取、纯化、浓缩、干燥等环节中,挑1~2种练习。这部分实验需要和各课题组的负责人沟通好,虽然实行起来有难度,但效果较好。

三、充分吸收最新的工艺技术

目前所采用的教材对新技术、新工艺有所更新,但仍不充分。但目前在国家政策的支持下和研究院所的共同努力下,一些中药企业加大研发力度,对新技术和新工艺的采用比较积极,引进了一批较高技术含量的生产工艺。所以在教学中需要补充已经被企业采用或行将被企业采用的新的技术或手段。在这方面比较有代表性的是膜分离(浓缩)技术。比如一些中药企业采用无机陶瓷膜工艺代替传统的醇沉工艺,减少生产环节,缩短生产周期;减少乙醇使用量,对中药有效成份基本无截留,除杂彻底;无机膜性质稳定,再生方便等特点。与纤维滤膜组合使用,即可以延长滤膜的使用寿命,又可以提高药品品质。但关于无机陶瓷膜的介绍以及在中药生产中的应用,在目前的教材中较少,可以利用网络资源,及时补充到讲课材料中,使学生接触到代表中药制药工艺发展方向的新技术。采用有机超滤膜精制中药多糖类成分,较传统的水提醇沉工艺具有得糖率高、工序简省的优点,是非常具有前景的生产工艺。以香菇多糖的制备为例,可以从超滤原理、多糖分子截留、多糖的组成等几个方面介绍有机膜超滤工艺在中药多糖制备工艺中的应用。同时利用flash动画模拟超滤过程,多糖的电镜测定等手段直观的对比膜过滤与传统工艺的不同,让学生有更深入的理解。

四、全面评价教学效果

中药制药工艺学是一门突出技术工艺的专业课,不能当作理论课来讲授,在考察学生时也应兼顾课本知识和实际应用能力。因此考察环节中应该有一定比例的实验课环节,考察学生实际解决问题能力以及对中药制药工艺的理解。笔者在学习结束后设置了中药制药工艺学综合实验:银杏总黄酮的提取及滴丸制备,涉及微波、超声以及传统煎煮等不同的提取工艺,采用UV和HPLC定量法,考察不同工艺对总黄酮的提取效率的影响。比较大孔吸附树脂柱、膜分离以及醇沉工艺对总黄酮部位质量的影响。让学生不仅加深对课本知识的理解,而且锻炼工艺设计的能力。

现代中药制药工艺学是传统技术与现代技术的结合,在坚持传统中医药理论的基础上,积极采用现代的技术,特别是源于化学制药和生物制药领域的先进技术,对于提升中药的生产水平至关重要,毕竟,目前中药制药领域新技术的独立创新成果较少。在设置中药制药工艺学实验课时要兼顾中药学、中药制剂等传统学科和生物学、材料学、波普学等现代技术。既懂传统中医药理论,又掌握现代制药工艺的专业人才,是实现中药现代化的重要依赖,也是生产现代中药的重要保障。所以,现代中药制药工艺学的教学要立足课堂,联系实践,培养既有扎实理论功底,又有实际工艺设计能力的工学人才。

参考文献:

[1]陈平.中药制药工艺与设计[M],北京:化学工业出版社,2009:2-5.

[2]潘林梅.加强对中药制药工程专业人才工程综合技能的培养[J]. 教育 教学论坛,2013,(38):95-96.

[3]李淑清,李淑霞.《制药工艺技术》课程特色的探讨[J].教育教学论坛,2013,(38):129-130.

《 高新技术在中药制药领域应用的分析 》

摘 要:如今,人们对于中药制药质量要求越来越高,这也使中药制药面临了巨大的机遇和挑战,越来越多先进科学技术与专业设备出现在中药制药市场中。然而,我国目前中药制药领域中,高新技术得到了广泛的应用,高新技术的出现,不仅大大提高了中药制药生产的效率,还能够有效保障药品的安全卫生质量,对于中药制药行业的稳定发展有着重要的作用。因此,本文就具体介绍了高新技术在中药制药领域中的应用,并对其中存在的一些问题进行分析, 总结 出以下几点注意事项。

关键词:高新技术;中药制药;应用;分析

目前,高新技术受到了中药制药领域的高度重视,被广泛应用于中药制药过程中,取得非常好的效果。但是,就我国目前高新技术水平而言,虽然取得了一定的发展与进步,可总体来说尚不成熟,在实际的中药制药领域的应用中,仍旧存在很多的问题和不足,使得药品质量无法得到充足的保障,严重影响了中药制药的生产效率,这无疑会对中药制药领域产生一定的冲击。因此,本文以高新技术在中药制药领域的应用为主要内容,加少了几种不同类型的高新技术,提出一些自身的观点,仅供参考。

1 高新技术在中药制药工程中的应用与分析

泡制全浸润工艺与装备

一般情况下,我们对于中药的认识只存于表面,并不了解中药具体的制药过程。但是,在实际的中药的生产过程中,制药工艺非常繁琐,难度较大,这也导致大多数中药在制药过程中发生一些问题,使得药品的治疗效果受到一定的影响。其次,中药浸润工序是整个中药制药过程中最为关键的环节之一,制药人员必须要对浸润时间进行严格的控制,不能过长,也不能过短,充分保证药品的质量。因此,我们可以将先进的高新技术与设备应用到中药的泡制全浸润工艺中,以此来简化复杂的制药工艺,从而有效的降低制药生产工作的难度。此外,制药人员要对不同类型的药物进行分别处理,更根据药物的性质采取适合的制药工艺,并制定合理的浸润时间。

动态提取技术

结合目前我国中药制药生产过程现状而言,其中还存在很多的弊端,尤其是在进行重要药物的提取过程中,制药人员依旧延续了传统陈旧的提取方法,施工设备也非常滞后,这就导致药物的提出率不高,并不能发挥很好的治疗效果,从而严重制约了我国中药制药领域的发展。那么,如何才能提高中药的使用率,达到良好的治疗作用呢?那就必须将动态提出技术应用于中药制药的生产中,并对滞后的设备进行及时的更新,这样不仅能够充分保障药物的提出率,还大大提高了药物的使用率,使得我国中药制药领域真正满足于现代社会发展的需求。

仿生技术

仿生技术是从生物药剂学的角度模拟人口服给药及药物经胃、肠运转的原理,将药物研究与分子药物研究相结合,为经消化道给药的中药制剂设计的一种新的提取工艺技术。中药材粉末在一定的pH酸性水溶液提取,然后再用一定PH碱性水溶液提取,选择pH的最佳值和其他一些辅助条件和工艺参数。它主要是以生物学的相关理念为基础,从而对药物特性进行相应的分析,通过人体环境模拟的办法,来对中药药物生产的相关内容进行详细的分析和了解。而且在药物提纯的过程中,人们也可以采用仿生技术来对其进行相应的处理,从而使得药物在提取的过程中,药材的利用率得到了进一步的提升。

生物酶技术

与上述仿生技术使用一样,生物酶技术是借鉴了生物工程技术的酶工程技术来实现对中药的提取。生物酶是一种具有特殊催化性质的高效催化剂,大多数酶的主要构成成分是蛋白质,利用这项技术的优点在于,一方面多数植物中药的有效成分主要是靠生物酶的作用才能实现将其溶解出来,同时还可以借助酶的运输将药物的有效成分作用于细胞内部发挥药效。另一方面中药材在经过提取后其中还是含有一定量的杂质,如大分子的多糖、蛋白质、胶质类等,这些物质通过生物酶的催化都会将其降解而挥发出去。但是在使用生物酶技术时要注意,由于中药材包含的领域十分的广阔,包括了植物、动物、矿物质等物质,生物酶具有专一性,一种酶只能催化一种物质。

2 中药制剂应用高新技术应注意的问题

重要活性成分或药物配比的关系

一种中药的发现,其中活性成分和要用部位的确定和使用,使之进一步成为确定的药物很重要,但是研究清楚每一味中草药植物中所含有的活性成分的种类、用药部位之间的量效关系在医学研究领域有着更重要的意义,因为这种研究和最终各项理论的确定为人类利用中药开拓了广泛的药物资源。目前,我国中医中药药性和药味组成之间的关系研究主要是从哲学的辩证态度的分析进行的,缺乏相关药物之间量效方面的深入研究。因此,我们在继承和发扬我国传统中医中药理论和处方方剂的基础上,要从理论研究与实验方式相结合的方式进行发展和研究。

中药产品的内在质量和技术含量问题

目前我国中药制药生产过程中常常出现农药超标、化学成分过多等质量问题,这些药品一旦投入市场中,将会极大威胁人们的身心健康,甚至还会引发其他的并发症,后果不堪设想。虽然现代中药制药领域中引入了更多的高新技术和施工设备。但是,中药产品内在质量问题仍是中药制药行业非常关注的问题,还需要相关技术人员更加深入的研究和开发,不断加强和完善高新技术,进一步提高高新技术水平,促进中药制药领域长期稳定的发展。因此,中药制药行业要高度重视中药产品内在质量和技术含量问题,对于农药超标和化学成分较高的中药药材进行分析调查,充分保障药物的使用质量,达到理想的治疗效果,从而大大缓解了患者的病痛情况,为我国中药制药行业做出巨大的贡献。

应用现代检测技术控制

为了提高中药制药产业的生产技术和质量控制水平,大力发展想指纹图谱技术和其他的相关控制技术是十分有必要的,在未来应采用更加先进的高新技术,例如薄层色谱、高效液相色谱、并与二极管阵列检测器、质谱联用等。

3 结束语

综上所述,可以得知,高新技术的出现,对于中药制药领域的生存和发展起到了重要的作用,不仅提高了中药制药的生产效率,还充分保障了药物的质量,减少了繁琐的制药工序,打破以往传统的中药制药生产方法,采取更多先进的制药技术,加大对高新技术的推广和应用,及时对制药设备进行优化和更新,使其能够充分满足于现代社会发展的需求,对药物内在质量进行严格的质量把关,根据不同类型的药物,采用适合的高新技术,确保药物能够起到绝佳的治疗效果,从而进一步提高我国高新技术水平,促进中药制药领域长期稳定的发展。

参考文献

[1] 付廷明,来庆发.超高分子量聚乙烯纤维的发展与应用现状浅析[J].硅谷,2011,8(05):22.

[2] 徐少萍,何熹.超临界流体萃取技术的应用及其发展[J].山东轻工业学院学报,2003,4(02):45.

[3] 王成东,杨华登,季晓. 先进萃取技术及装备在中药生产中的应用[J]. 机电信息. 2008(11)

有关中药制药专业论文推荐:

1. 关于中药毕业论文

2. 生物制药技术论文范文

3. 生物制药专业论文范文

4. 中药学本科论文

5. 生物工程论文范文

6. 有机化学教育论文

  • 索引序列
  • 丙酮精馏文献综述论文
  • 丙烯精馏塔论文答辩
  • 丙烯精馏塔的毕业论文
  • 精馏化工论文文献
  • 总黄酮综述论文范文
  • 返回顶部