首页 > 期刊论文知识库 > 制冷及低温工程研究生论文

制冷及低温工程研究生论文

发布时间:

制冷及低温工程研究生论文

东大的制冷与低温工程属于东南大学能源与环境学院。 如果是本科的话,可以报考热能与动力工程或者建筑环境与设备专业,都可以研究学习制冷与低温方向。 如果是研究生的话,东大的这方面也是很不错的。特别是张小松教授、陈振乾教授、陈亚平教授等在这个方向很是厉害。 其中,陈亚平教授的研究方向为换热器强化传热、空气调节与制冷新技术。主持完成国家自然科学基金1项,主持在研国家自然科学基金1项(波纹板束上双面液膜反转对吸收传热传质过程复合强化);参与完成1项“973” 国家重点基础发展计划项目,为“主要学术骨干”;主持或参与多项横向课题;发表论文60余篇,被EI收录15篇;获国家发明专利授权2项,实用新型专利授权多项,并有已申请但尚处于实审阶段的国家发明专利7项。而且陈亚平教授在核能方向也是非常的厉害。 张小松教授的研究方向为新型制冷循环与方法、制冷空调节能、测控和太阳能利用等。主持完成30余项“863”、自然科学基金和教育部重大科技项目等课题;发表论文100余篇,其中50余篇被三大收录系统收录;获得国家发明专利授权8项;获省科技进步二等奖1项,三等奖2项。入选江苏省“333工程”中青年科技领军人才。兼任国际制冷学会(IIR)E2委员会委员,中国制冷学会教育工作委员会委员,建设部建筑环境与设备专业评估委员会委员。现在张小松教授正在与张耀明院士合作研究太阳能空调方向。 陈振乾教授为制冷与人工环境系主任。研究方向为制冷空调模拟与优化、建筑环境与建筑节能、微流动和多孔介质传热。主持或参加完成国家“973”、国家自然科学基金和美国NASA等课题20多项;发表论文70余篇;申请发明专利5项;获江苏省科技进步三等奖2项。入选江苏省“333工程” 首批中青年科学技术带头人。兼任建设部建筑环境与设备学科指导委员会委员,美国供热制冷空调工程师学会会员,江苏省工程热物理学会副秘书长等。 至于就业之类的完全没有问题啦,只要不是学得非常的烂。出国深造也可以的,也是有一定的机会。

其实我想问一下,我是建环的,考上理能源动力学院的制冷或者环境建筑学院的暖通,这两者区别哪呢真心求教查看原帖>>

合肥工业大学,制冷及低温工程 (专业代码:080705 )一、学科、专业简介:合工大的制冷及低温工程专业始建于1987年,1990年开始硕士研究生培养工作,已培养出研究生60多名。本学科现有人员15名,其中教授1人(另有外聘兼职教授2人),副教授2人,具有博士学位2人,硕士学位10人。研究队伍年龄结构合理、学术水平较高、研究能力较强。本学科、专业科研工作和成果在全国制冷界具有一定的特色和影响,承担多项国家及省部级重大科研项目和地方、企业委托项目。近年来在国内外期刊和会议上发表论文120多篇。二、研究方向:1.制冷空调装置现代设计与制造技术2.制冷空调中的节能与环境保护3.低温物理与低温工程4.热工理论与应用三、学习年限:二年至二年半。规定总学分:28-32学分,其中学位课不少于16学分。跨专业及同等学力考生须补修本专业本科阶段至少2-3门主干课程,不计学分。

一楼的,南大根本就没有制冷与低温工程。工科方面,南大完全是从零起步。

低温机械合金化制备研究论文

多孔金属材料的制备工艺及性能分析多领域有着广泛的应用前景。本文概述了多孔金属材料的常用制备方法及其主要性能。关键词:多孔金属材料;制备;性能;应用摘 要 :多孔金属材料是一种性能优异的新型功能材料和结构材料 ,具有独特的结构和性能 ,在很科学家极大的兴趣 ,成为材料类研究的热点方向之1 引言一 ,自 20世纪 90年代以来 ,美国的哈佛大学、英国在传统的金属材料中 ,孔洞 (宏观的或微观的 )的剑桥大学、德国的 Fraunhofer材料研究所、日本的被认为是一种缺陷 ,因为它们往往是裂纹形成和扩东京大学等对多孔金属材料的制备工艺和性能进行展的中心 ,对材料的理化性能及力学性能产生不利了广泛的研究 ,获得了一批研究成果 [2-5]。在我国 ,的影响。但是 ,当材料中的孔洞数量增加到一定程多孔金属材料的基础和应用研究也逐步得到重视和度时 ,材料就会因孔洞的存在而产生一些奇异的功发展。近年来 ,研究队伍不断壮大 ,在制备技术、结能 ,从而形成一类新的材料 ,这就是多孔金属材料。构和物性等方面的基础研究以及在各种民用和国防按照孔之间是否连通 ,可以把多孔金属材料分为闭领域的应用研究均取得了一定的进展 ,已经引起我孔和通孔两类 ,如图 1所示。该类材料具有良好的国政府、中科院和航空航天等部门的高度重视 ,尤其吸能性能、高阻尼性能、吸声性能、电磁屏蔽性能及值得一提的是 ,我国在 2005年立项的国家重大基础良好的导热导电性能 [1] ,因而在一般工业领域 (如研究计划 (973计划 )“超轻多孔材料和结构创新构汽车工业 )、国防科技领域及环境保护领域等有着型的多功能化基础研究 ” ,更是体现了对该类材料广泛的应用前景 ,它的设计、开发和应用引起了中外研究的重要性和迫切性。水化物等,然后将均混的混合物压制成密实块体即到目前为止 ,已开发的制备多孔金属的方法很多 ,涉及到的领域也非常广。根据在制备过程中金属所处的状态 ,可将多孔金属的制备工艺分为以下三类 :液相法、粉末烧结法和沉积法。 2. 1 液相法液相法包括的种类比较多 ,且较易制备大块的多孔金属和产品易商业化 ,成为多孔金属材料制备的主要手段,液相法主要包括以下几种: 2. 1. 1 颗粒渗流法颗粒渗流法[ 6 ]原理是首先将颗粒在模具内压实,烘干形成预制块。然后通过压力将金属液渗入中,并强烈搅拌使空心小球分散,最后得到空心球与金属基体形成的多孔金属材料。空心球铸造法的特点是孔径和孔隙率易于控制,材料综合力学性能好。2. 2 粉末冶金法粉末冶金法主要包括粉末烧结发泡法、烧结-脱溶法、松散粉末烧结法、中空球烧结法等。2. 2. 1 粉末烧结发泡法这种工艺[ 12 ]是首先将金属粉末和相应的发泡剂按一定比例均匀混合,发泡剂可以是金属氢化物、半成品,最后将此半成品加热到接近或高于混合物熔点的温度,使发泡剂分解,金属熔化,从而形成多孔泡沫材料。此种方法易于制作近半成品的零件和到颗粒预制块的间隙中,最后将颗粒溶除即可得到通孔结构的多孔金属材料。2. 1. 2 精密铸造法精密铸造法 [8]是首先用耐火材料浆料填满海绵状泡沫塑料的孔隙 ,待耐火材料固化后 ,加热除去塑料 ,即形成一个多孔预制块体。然后把液态金属液浇入到预制块上 ,加压渗流 ,这一点类似于渗流过程。最后再除去耐火材料 ,就形成与原来海绵状塑料结构相同的多孔金属材料。 2. 1. 3 熔融金属发泡法熔融金属发泡工艺可分为两种 ,发泡剂发泡和通气发泡 [9, 10 ]。前者是在熔融的金属液中加入发泡剂 (如 TiH2 ) ;后者则是在金属液中通入气体 (如惰性气体 )。这两种工艺的共同特点是可制备孔隙率高、尺寸大、闭孔结构的多孔金属 ,但过程控制较为复杂 ,孔结构分布均匀性不高。 2. 1. 4 空心球铸造法空心球铸造法 [11 ]的原理是先采用商用酚醛塑料小球在惰性气体环境中加热直至塑料碳化 ,形成中空的小球。然后将这些中空的小球加入到金属液三明治式的复合材料 ,而且孔隙率较高 ,孔分布均匀。 2. 2. 2 烧结 -脱溶法这种制备工艺 [13 ]首先是将金属粉末和可去除填充颗粒均匀混合 ,其中可去除填充颗粒一般包括两类 ,一类为可溶于水或其它溶剂的盐 (如 NaCl等 ),一类为可分解有机物 (如尿素、碳酸氢氨等 ),均混后把混合物压制成致密的半成品 ,然后在一合适的温度烧结。若填充颗粒为可分解有机物 ,则烧结过程中颗粒会分解气化 ;若填充颗粒为可溶性盐 ,则在烧结后可用溶剂将其溶去便得到多孔金属材料。2. 2. 3 松散粉末烧结法松散粉末烧结 [14 ]是把松散状态的金属粉末不经压实直接进行烧结的方法。此种方法可用于生产多孔金属电极。 2. 2. 4 中空球烧结法通过将金属中空球烧结 ,使之扩散结合而制造多孔材料的方法。此方法制造的多孔材料兼有通孔和闭孔。金属中空球可通过下述方法制备 :在球形树脂上化学沉积或电沉积一层金属 ,然后将树脂除 明显的三阶段特征 ,即初始的弹性段 (Linear Elasticity)、中间的平台段 ( Plateau)和最后的致密段 (Densification)。其中 ,平台段的起始点应力称为泡沫材料的屈服或坍塌强度 ,此强度远小于其基体的屈服强度 [1]。当多孔金属材料受到外加载荷时 ,因屈服强度低很容易发生变形 ,而且变形量大、流动应力低 ,在变形过程中通过孔的变形、坍塌、破裂、胞壁摩擦等形式消耗大量能量而不使应力升的。高 ,从而能有效地吸收冲击能。这种在较低应力水形成金属烟。金属烟在自身重力作用及惰性气流的平下吸收大量冲击能的特征正是冲击缓冲所需要携带下沉积和冷却。因其温度低 ,原子难以迁移和扩散 ,故金属烟微粒只是疏散地堆砌起来 ,形成多孔3. 2 高阻尼性能泡沫结构 [16 ]。 多孔金属材料可看作是由三维网络状金属骨架去 ,或将树脂球和金属粉一同混合 ,随后烧结使金属粉结合 ,同时树脂球挥发 [ 15 ]。 2. 3 沉积法沉积法主要包括金属气相蒸发沉积法、原子溅射沉积法和电化学沉积法三种。 2. 3. 1 金属气相蒸发沉积法在较高惰性气氛中 ,缓慢蒸发金属材料 ,蒸发出来的金属原子在前进过程中与惰性气体发生一系列碰撞作用 ,使之迅速失去动能 ,从而部分凝聚起来 ,与高压惰性气体原子碰撞 2. 3. 2 原子溅射沉积法在惰性气体的压力下,元素原子在飞溅路程中,金属原子一方面捕获气体原子 ,另一方面凝聚成金属液滴 ,然后到达衬底。在衬底上获得均匀包裹气体原子的金属体 ,最后在高于金属熔点的温度下把金属加热足够长的时间使捕获的气体膨胀 ,形成多孔金属材料。这种方法的特点是孔结构非常理想 ,但成本昂贵 ,不易制备大件 [ 17 ]。 2. 3. 3 电化学沉积法这种方法是以聚氨基甲酸乙脂发泡材料为骨架 ,进行电解沉积 ,然后加热去除有机聚合物骨架 ,得到多孔金属材料。这种方法制备的多孔材料不但孔隙率高 ,孔分布均匀 ,且孔互相连通呈三维网状结构 [ 18 ]。 3 多孔金属材料的主要性能多孔金属材料作为一类区别于致密材料的新型材料 ,具有一些其基体或母体所不具备的特殊性能和功能 ,主要表现如下 : 3. 1 吸能性能图 4 多孔金属材料典型的压缩应力 -应变曲线多孔金属材料的应力 -应变 (σ -ε)响应具有与孔洞所组成的两相复合材料。除了孔洞与金属基体之间所形成的界面外 ,材料内部还存在其它大量微观的 (主要是位错 )和宏观的 (较小的孔洞和裂纹 )缺陷 ,其组织状态和缺陷分布极不均匀。因此当外力作用于多孔金属材料上时 ,将在基体中产生不均匀的应变 ,特别是在孔洞 (宏观的或微观的 )或裂纹附近 ,其应变情况更为复杂 ,从而引起缺陷区域原子重排。缺陷区的这种响应是粘滞性的 ,因而引起粘滞性应变 ,造成能量的损耗 ,导致材料的阻尼增加。 3. 3 吸声性能多孔金属材料的高孔隙率结构使其具有良好的吸声性能 [19 ]。一般来讲 ,通孔或半通孔多孔金属的吸声效果比闭孔的好。多孔金属材料的吸声机制主要可归为两种 ,即声波经过多孔金属时流动阻力的升高造成的粘性损失以及声波与孔洞表面热量交换造成的热损失。 3. 4 电磁屏蔽、导热和导电性能多孔金属具有良好的导电性和很高的比表面积 ,因此具备很高的电磁屏蔽性能 ,即良好的吸收和反射电磁波的能力。同时又具有良好的导热性能 [ 20, 21 ]。 3. 5 其它性能质轻 ,易着色 ,易加工 ,耐高温。 4 结语 (1)多孔金属材料具有良好的理化性能和力学性能 ,因而可以作为功能材料和结构材料 ,具有良好的应用前景。多孔金属材料的制备工艺很多 ,因而可以满足多样化的需求 ,可以根据不同的应用需求 采用不同的制备工艺。 and energy absorbing characteristic of foamed aluminum. (2)部分制备工艺在结构的可控性、孔径的均Metall[J]. Mater. Trans, 1998 (A29): 2497-2502. 匀性、样品的大尺寸化等方面仍存在局限性 ,因而制[10 ]Cymat Corp, Canada. Product Information Sheets. http: / / 备工艺还需要进一步的探索和完善。 www. cymat. com. (3)随着工业和科技的进步 ,人们对多孔金属[11 ]张勇 ,舒光冀 ,何德坪 .用低压渗流法制备泡沫铝合金 [J ].材料科学进展 , 1993 (7) : 473 -47. 材料的需求量越来越大 ,要求也越来越高 ,但目前的[12]J. Baumeister, J. Banhart, M. Weber[M]. German Pa2研究也只是涉及到了多孔金属材料的一部分性能特terntDE 4426627. 1997. 点 ,相当多的潜在价值尚未被开发出来 MechanicalBehaviorofMetailicFomas[J]. . Mater. Sci, 2000 (30):191-227. Olurin,. ,或仅局限在(44) : 105 -110. [ 14 ]B. C.社,1982. [13]YA Novel sintering processformanufacturingAlfoams[J]. . Y. Zhao, D. X. Sun. -dissolution 实验室阶段 ,因而对性能的研究又提出了新课题。Scr. Mater, 2001 参考文献 : [1]L. J. Gibson, M. F. Ashby. Cellular Solids: Structure and 拉科夫斯基 .工程烧结材料 [M ].冶金工业出版Properties. 2nd ed[M ], Cambridge University Press, UK, 1997. [15]O. Andersen, U. Waag, L. Schneider, G. Stephani, B. [2 ]L. J. Gibson. Kieback. Novel Metallic Hollow Sphere Structures [ J ]. Annu. RevAdv. Eng. Mater, 2000 (2) : 192 -195. [3]O. B. Fleck, M. F. Ashby, Deformation and [16]张流强 ,常富华 .低密度金属泡沫的研制 [J ].功能材FractureofAluminum Foams[J]. Mater. Sci. Eng. 2000 料 , 1996, 27 (1) : 88 -91. (A291): 136-146. [17]. Lavernia,N. J. Grant. SprayDepositionofMetals?: [4]J. Banhart, W. Brinkrs. FatigureBehaviorofAluminum AReview[J]. Mater. Sci. Eng, 1998 (98):381-394. Foams[J]. J. Mater. Sci, 1999 (18):617-619. [18]X. Badiche, S. Forest, T. Guibert, Y. Bienvenu, M. [5]Y. Yamada, C. Wen, K. Shimojima,M. Mabuchi. Effects Corset, H. Bernet. MechanicalPropertiesandNon-Hom2 ofCellGeometryon theCompressivePropertiesofNickelFo2 ogeneousDeformation of Open -Cell Nicked Foams?: Ap2 mas[J]. Mater. Trans, 2000 (41):1136-1138. plicationoftheMechanicsofCellularSolidsandPorousMa2 [6]张勇 ,舒光冀 ,何德坪 .用低压渗流法制备泡沫铝合金 terials[J]. Mater. Sci. Eng, 2000 (A289):276-288. [J ].材料科学进展 ,1993 (7):473 -478. [19]许庆彦 ,陈玉勇 ,李庆春 .加压渗流铸造多孔铝合金及[7 ]J. Banhart. Manufacture, characterization and application 其吸声性能 [J]1铸造 ,1998 (4):1 -4. ofcellularmetalsandmetalfoams[J]. ProgressinMateri2 [20 ]黄福祥 ,金吉琰 ,范嗣元等 .发泡金属的电磁屏蔽性能als Science, 2001 (46) : 559 -632. 研究 [J]1功能材料 , 1996 (27) : 52 -54. [8]F. Frei, V. Gergely, A. Mortensen, . Clyne. The [21]J. Kovacik, F. FoamModulusofE2 effectofpriordeformationon thefoamingbehaviorof“form2 lasticity and Electrical Conductivity According To Percola2 grip”precursormaterial[J ] 1Adv. Eng. Mater, 2002 (4): tionTheory[J]. Scr. Mater, 1998 (39):239-246. 749 -752. [责任编辑 朱联营 ] [9]F. S. Han, Z. G. Zhu , J. C. Gao. Compressive deformation On the Preparation and Properties of the PorousMetallicMaterials HAO Gang -ling1 , HAN Fu -sheng2 , LIWei-dong1, BAIShao-min1,YANGNeng-xun 1 (1. College of Physics and Electronic Information, Yanan University, Yanan, Shaanxi 716000 2. KeyLaboratoryofMaterialsPhysics, InstituteofSolidStatePhysics, Chinese Academy of Sciences, Hefei, Anhui 230031) Abstract: Porousmetallicmaterialswithuniqueexcellentstructuresandpropertiescanbeutilizedasnew function2 aland structuralmaterials, which indicatsthattheporousmetallicmaterialshaveawidelypromisingapplication in manyfields. Thevariouspopularmanufacturingmethodsandthemainpropertiesoftheporousmetallicmaterials, in the present paper, were summarized. Key words: porousmetallic materials; preparation; properties; ppplication

1. ,T.,. Direct Determination of the Island Size Distribution for Parallelogram—Shaped Islands.《Application of Surface Science》,1982,11~12,634~. ,T.—,,An Alternative Approach to the Quantitative Determination of Grain Size Distribution in X-Ray Diffraction.《Acta Crystallographica》,1982,A38⑹,800~. 赵立华,冯克安,伍乃娟。W(112)P(2 1)—O化学吸附系统有序—无序相变的重整化群理论分析。《物理学报》,1986,35⑴,104~. Zhao Lihua,Luo Enzhou,Wu Naijuan,Feng Kean. Quantitative Evaluation of Island Separation and Island Size Distribution in Chemisorption.《Chinese Physics Letters》,1987,4⑾,509~. 赵立华,冯克安,伍乃娟。表面化学吸附层的结构相变。《物理》,1988,17⑸,261~. ,,. Effects of Nearest and Next—Nearest Neighbour Interaction Parameters on Atomic Correlation Functions of Stepped Surfaces. 《Applied Physics A》,1990,50⑶,595~. Zhao Lihua,Wu Lijun,Huang Qizhong,Yang Qiaoqin. TEM Study of C—B4C—SiC Composites with Silicon Additive.《Journal of Materials Science Letters》,1996,15⑵,353~. ,,,. Direct Observation of Incommensurate Modulation in Phase—Separeted Cu—Rich .《Physical Review Letters》,1998,80⑿,2701~. ,,,,. In Situ Observation of the Ferroelectric—Paraelectric Phase Transition in a Triglycine Sulfate Crystal.《Physical Review B》,2000,61⑴,203~. Wu Lijun,Zhao Lihua,Hu Wangyu,Wang Lingling,Xiao Jueming. A TEM Study on the Crystallization of Amporphous Fe73Si3B24 Alloys.《Physica B》,1994,193⑴,116~. Wang Lingling,Zhao Lihua,Hu Wangyu,Wu Lijun,Zhang Bangwei. Effect of Composition on Physical Properties of Amorphous Fe-Si-B Alloys.《Trans. Nonferrous Met. Soc. China》,1997,7⑵,155~159. SCI、EI收录。12. Wang Lingling,Zhao Lihua,Zhang Bangwei,Liao Shuzhi,Ouyang Yifang,Hu Wangyu. On Structure and Crystallization of Amorphous Fe-Mo-W-B Alloys Obtained by Electroess Plating.《Z. Metallkd.》,1997,88⑿,945~948. SCI,EI收录。1998年湖南省自然科学优秀学术论文一等奖。13. Hu Wanagyu,Zhao Lihua,Yang Qiaoqin,Wang Lingling,Zhang Bangwei. Crystallization Behavior of Amorphous Alloys.《Trans. Nonferrous Met. Soc. China》,1998,8⑴,64~68. SCI、EI收录。14. Wang Lingling,Zhao Lihua,Hu Wangyu,Wu Lijun,Zhang Bangwei. Curie Temperature of Amorphous Fe-Si-B and Fe-W-Si-B Alloys.《RARE METALS》,1998,17⑵,81~87. EI收录。15. 王玲玲,赵立华,张邦维,胡望宇,舒小林,欧阳义芳,廖树帜。化学镀Fe-Mo-W-B非晶态合金的晶化。《稀有金属材料与工程》,1998,27⑸,282~285. SCI收录。16. Wang Lingling,Zhao Lihua,Zhang Bangwei,Ouyang Yifang,Liao Shuzhi,Hu Wangyu. Composition Dependence of Some Physical Properties of Fe-TM-B(TM=Mo,W,Mo-W) Alloys Obtained by Electroless Plating.《Plat. Surf. Fin.》,1998,85⑿,96~98. SCI收录。17. 王玲玲,赵立华,张邦维,胡望宇,舒小林,盛 霞。化学镀Fe-TM-B(TM=Sn,W,Mo-W)合金的磁性研究。《稀有金属材料与工程》,1999,28⑴,46~49. SCI收录。18. Wang Lingling,Zhao Lihua,Zhang Bangwei,Hu Wangyu,Shu Xiaolin,Sheng Xia. Magnetic Properties of Fe-TM-B(TM=Sn,W,Mo-W) Alloys Prepared by Electroless Plating.《Z. Metallkd.》,1999,90⑸,338~341. EI收录。19. Wang Lingling,Zhao Lihua,Zhang Bangwei,Hu Wangyu,Shu Xiaolin,Sheng Xia,Fang Zhiyuan. Crystallization study of electroless Fe-Sn-B amorphous alloy deposits.《J. Alloys Compd.》,1999,287,234~238. SCI、EI收录。20. 王玲玲,赵立华,胡望宇,张邦维,舒小林,袁晓俭,盛 霞,廖 蔚。化学镀Fe-Al-P初探。《湖南大学学报》,1999,26⑵,12~. 王玲玲,赵立华,张邦维,胡望宇,舒小林,盛 霞,温雪梅。非晶态Fe-Sn-B合金化学镀层的制备及耐蚀性研究。《功能材料》,1999,30⑶,285~. Wang Lingling,Zhao Lihua,Hu Wangyu,Shu Xiaolin,Yuan Xiaojian,Zhang Bangwei. Primary Study for the Technology of Electroless Plating Fe-Al-P Alloys.《Acta Metallurgica Sinica》(English Letters). 1999,12⑸,722~735. EI收录。23. Wang Lingling,Zhao Lihua,Zhang Bangwei,Liao Shuzhi,Ouyang Yifang,Hu Wangyu,Shu Xiaolin,Yuan Xiaojian. Annealing Temperature Dependence of A-C Magnetic Losses and Microhardness in Fe-TM-B(TM=Fe,Mo,W,Mo-W) Alloys Obtained by Electroless Plating.《Plat. Surf. Fin.》,1999,86⑿,84~87. SCI收录。24. Wang Lingling,Zhao Lihua,Huang Guifang,Yuan Xiaojian,Zhang Bangwei,Zhang Jianyong. Composition,structure and corrosion characteristics of Ni-Fe-P and Ni-Fe-P-B alloy deposits prepared by electroless plating.《Surf. Coat. Tech.》,2000,126⑶,272~278. SCI、EI收录。2002年湖南省自然科学优秀学术论文二等奖。25. Wang Lingling,Zhao Lihua,Ouyang Yifang,Liao Shuzhi,Zhang Bangwei. Electroless Deposition of Fe-Mo-W-B Amorphous Alloys.《Rare Metals》,2002,19⑷,265~268. SCI、EI收录。26. Wang Lingling,Zhao Lihua,Huang Guifang,Yuan Xiaojian,Zhang Bangwei. Crystallization of Ni-Fe-P Amorphous Films Prepared by Electroless Plating.《Procedings of SPIE》,2000,,473~476. ISTP收录。27. Wang Lingling,Zhao Lihua,Hu Wangyu,Shu Xiaolin,Zhang Bangwei. Corrosion,Microhardness and wettablity of electroless Fe-Sn-B Alloy Films.《Adv. Mat. Eng. Tech.》,2001,2(SPM1),635~640. SCI、EI收录。28. 王玲玲,赵立华,黄桂芳,袁晓俭,张邦维,张建勇。化学镀Ni-Fe-P及Ni-Fe-P-B合金膜的磁性。《材料导报》,2001,15⑶,65~. Wang Lingling,Zhao Lihua,Huang Guifang,Yuan Xiaojian,Hu Wangyu,Shu Xiaolin,Zhang Bangwei,Zhang Jianyong. The Structure & Microhardness of Ni-Fe-P & Ni-Fe-P-B Alloy Deposits Prepared by Electroless Plating.《Plat. Surf. Finsh.》,2001,88⑹,92~95. SCI收录。2002年湖南省自然科学优秀学术论文二等奖。30. Wang Lingling,Zhao Lihua,Huang Guifang,Yuan Xiaojian,Zhang Bangwei. The Structure and Crystallization of Amorphous Ni-Fe-P-B Alloys Prepared by Electroless Plating.《Z. Metallkd.》,2001,92⑷,391~395. SCI、EI收录。31. Wang Lingling,Zhao Lihua,Hu Wangyu,Zhang Bangwei,Shu Xiaolin,Sheng Xia. Chemical Iron-Tin-Boron Films.《Metal Finish.》,2001,99⑹,92~. 黄维清,王玲玲,邓辉球,胡望宇,赵立华。机械合金化法制备Al-Cu-Fe纳米非晶合金。《中国有色金属学报》,200 1,11⑷,646~. 王玲玲,赵立华,黄维清,黄桂芳,张建勇。化学沉积Ni-Fe-P-B合金膜的结构和显微硬度,《湖南大学学报》,2001,28⑹,42~. 邓辉球,胡望宇,舒小林,赵立华,张邦维,Monte Carlo simulation of the surface segregation of Pt-Pd and Pt-Ir alloys with an analytic embedded-atom method,Surface Science,517 (2002)177-185. SCI,EI收录.35. 邓辉球,胡望宇,舒小林,赵立华,张邦维,用分析型嵌入原子方法计算Pd-Au合金的热力学性质,计算物理,19⑸(2002). 邓辉球,胡望宇,舒小林,赵立华,张邦维,Pt-Rh二元合金系表面偏聚的分析型EAM模型计算,金属学报,37⑸(2001)467-471. SCI收录.37. 邓辉球,胡望宇,舒小林,赵立华,张邦维,Monte Carlo simulation of the surface segregation on PdPt alloy with an analytic EAM potential,Mechanics and Material Engineering for Science and Experiments,Editors: Yichun Zhou,Yuanxian Gu,Zheng Li,Science Press New York Ltd.,2001,p359-362. ISTP收录.38. 邓辉球,赵立华,黄维清,胡望宇,王玲玲,准晶薄膜与涂层的制备、性能与应用,功能材料,32⑵(2001). 邓辉球,胡望宇,舒小林,赵立华,张邦维,Cu-Ni二元合金系表面聚集的Monte Carlo模拟计算,材料科学与工艺,9 (2001) . 邓辉球,赵立华,掺氟提高YBaCuO高温超导体超导特性的机理研究,功能材料,32(2001)788 790

给你个网站:学科网你可以上那去找哦!!!!!!!!!!!!!

低温温度测量研究的论文

我可以把程序和电路图给你。全是本人亲自做的。

说到地球上的最低温度,我们都会想到在南北极,实际上南极要比北极更冷,因为南极圈内大部分都是陆地,属于极地高原气候,而北极圈内大部分都是北冰洋,又有北大西洋暖流注入,所以南极洲的最低温度平均要比北极地区低很多。 北极地区的最低温度一般在零下70 左右,如西伯利亚维尔霍杨斯克曾记录到零下70 C的低温,但位于南极的俄罗斯东方站曾经测到零下 的低温,这一温度也曾被长时间认为是地球已知的最低温度。 但在2013年时,气象学家们利用南极陆基气象站的数据校准了卫星地面温度的测量值,认为在东南极高原的最高点——冰穹阿尔戈斯(冰穹A,整个南极冰盖的最高点)与第二高点富士冰穹(冰穹F)之间大约有100个强冷空气穴,其最低温度可达零下93 ;挪威位于南极的气象站点,这表示测得过零下度的低温,在这样的温度下,玩泼热水成冰完全没有问题,水滴掉地上都成冰雹了,撒尿真得用棍子敲着了,钢板掉地上也会摔成八瓣,钢筋则像冰棒一样脆。 不过到了2019年时,又有美国气象学家通过分析气象卫星在南极拍摄的数据资料发现,南极洲的东南极高原一带的最低气温可下降到零下100 左右,之后该数据便被认为是地球自然界可达到的极端低温的温度,是地球表面温度所能达到的最低极限。 然而这一记录最近又被打破了,据外媒报道,有美国科学团队在《地球物理研究快报》上发表了新的研究论文,表示美国国家海洋和大气管理局(NOAA)的气象卫星在地球大气层中监测到了零下 的最低气温,这个新的低温记录并非产生在南极,也不是产生了北极,而是产生在西太平洋上,而且是在一个热带风暴中产生的。 该研究团队分析了美国国家海洋和大气管理局的VIIRS气象卫星(携带有可见光红外成像辐射仪)收集的2018年末在西太平洋形成的风暴数据,结果在一场热带风暴中发现了风暴云中的温度达到了零下 的低温,这一温度数据被认为是目前地球有记录以来的最低温度。 VIIRS气象卫星可收集地球陆地、大气、冰层和海洋在可见光和红外波段的辐射图像,可用来测量地球大气温度、大气中云量、空气气溶胶含量和特性、海洋和陆地表面温度等,因此可以得出地球表面温度的高低和分布特性等。 那么为什么热带风暴中会出现如此之低的温度呢?居然超过了南北极的极端低温,因为在在热带风暴的形成和运行过程中,来自海洋和陆地的暖湿气流会从周围随云团上升到高空,但是冷空气却会从中间的台风眼的位置由高空被吸到下面,这样一来,如果热带风暴比较强的话,那么来自地球大气层外围的极端冷空气也会被吸到大气层内部,甚至钻到台风眼的下面,因此即便在热带的大气层中,也会出现极端低温了。 不过一般情况下,非常寒冷的空气并不会到达地表,因为在到达地表之前就会被热空气中和了,但总体来说,台风热带风暴经过的地区温度都会大幅下降。 参考资料: 《环球网》3月31日文章《新研究发现2018年曾有一场热带风暴打破了地球最低温度纪录》

你好,我有你需要的设计!需要的联系回答者 目 录 一、引言 4 二、设计内容及性能指标 5 三、系统方案论证与比较 5 (一)、方案一 5 (二)、方案二 6 四、系统器件选择 7 (一)、 单片机的选择 7 1、 89S51 引脚功能介绍 8 (二)、温度传感器的选择 10 1、 DS18B20 简单介绍: 10 2、 DS18B20 使用中的注意事项 12 3、 DS18B20 内部结构 12 4、DS18B20测温原理 16 5、提高DS1820测温精度的途径 17 (三)、显示及报警模块器件选择 18 五、硬件设计电路 18 (一)、主控制器 19 (二)、显示电路 19 (三)、 温度检测电路 20 (四)、温度报警电路 25 六、 软件设计 26 (一)、 概述 26 (二)、主程序模块 26 (三)、各模块流程设计 27 1、 温度检测流程 28 2、报警模块流程 28 3、 中断设定流程 29 七、总结和体会 31 八、致谢 31 仪器简介 数字温度计是测温仪器类型的其中之一。根据所用测温物质的不同和测温范围的不同,有煤油温度计、酒精温度计、水银温度计、气体温度计、电阻温度计、温差电偶温度计、辐射温度计和光测温度计、双金属温度计等。编辑本段仪器参数和适用范围 数字温度计采用进口芯片组装精度高、高稳定性,误差≤, 内电源、微功耗、不锈钢外壳,防护坚固,美观精致。 数字温度计采用进口高精度、低温漂、超低功耗集成电路和宽温型液晶显示器,内置高能量电池连续工作≥5年无需敷设供电电缆,是一种精度高、稳定性好、适用性极强的新型现场温度显示仪。是传统现场指针双金属温度计的理想替代产品,广泛应用于各类工矿企业,大专院校,科研院所。 温度数我们日常生产和生活中实时在接触到的物理量,但是它是看不到的,仅凭感觉只能感觉到大概的温度值,传统的指针式的温度计虽然能指示温度,但是精度低,使用不够方便,显示不够直观,数字温度计的出现可以让人们直观的了解自己想知道的温度到底是多少度。 数字温度计采用温度敏感元件也就是温度传感器(如铂电阻,热电偶,半导体,热敏电阻等),将温度的变化转换成电信号的变化,如电压和电流的变化,温度变化和电信号的变化有一定的关系,如线性关系,一定的曲线关系等,这个电信号可以使用模数转换的电路即AD转换电路将模拟信号转换为数字信号,数字信号再送给处理单元,如单片机或者PC机等,处理单元经过内部的软件计算将这个数字信号和温度联系起来,成为可以显示出来的温度数值,如摄氏度,然后通过显示单元,如LED,LCD或者电脑屏幕等显示出来给人观察。这样就完成了数字温度计的基本测温功能。 数字温度计根据使用的传感器的不同,AD转换电路,及处理单元的不同,它的精度,稳定性,测温范围等都有区别,这就要根据实际情况选择符合规格的数字温度计。 数字温度计有手持式,盘装式,及医用的小体积的等等。仪器发展历史 最早的温度计是在1593年由意大利科学家伽利略(1564~1642)发明的。他的第一只温度计是一根一端敞口的玻璃管,另一端带有核桃大的玻璃泡。使用时先给玻璃泡加热,然后把玻璃管插入水中。随着温度的变化,玻璃管中的水面就会上下移动,根据移动的多少就可以判定温度的变化和温度的高低。温度计有热胀冷缩的作用所以这种温度计,受外界大气压强等环境因素的影响较大,所以测量误差大。 后来伽利略的学生和其他科学家,在这个基础上反复改进,如把玻璃管倒过来,把液体放在管内,把玻璃管封闭等。比较突出的是法国人布利奥在1659年制造的温度计,他把玻璃泡的体积缩小,并把测温物质改为水银,这样的温度计已具备了现在温度计的雏形。以后荷兰人华伦海特在1709年利用酒精,在1714年又利用水银作为测量物质,制造了更精确的温度计。他观察了水的沸腾温度、水和冰混合时的温度、盐水和冰混合时的温度;经过反复实验与核准,最后把一定浓度的盐水凝固时的温度定为0℉,把纯水凝固时的温度定为32℉,把标准大气压下水沸腾的温度定为212℉,用℉代表华氏温度,这就是华氏温度计。 在华氏温度计出现的同时,法国人列缪尔(1683~1757)也设计制造了一种温度计。他认为水银的膨胀系数太小,不宜做测温物质。他专心研究用酒精作为测温物质的优点。他反复实践发现,含有1/5水的酒精,在水的结冰温度和沸腾温度之间,其体积的膨胀是从1000个体积单位增大到1080个体积单位。因此他把冰点和沸点之间分成80份,定为自己温度计的温度分度,这就是列氏温度计。? 华氏温度计制成后又经过30多年,瑞典人摄尔修斯于1742年改进了华伦海特温度计的刻度,他把水的沸点定为0度,把水的冰点定为100度。后来他的同事施勒默尔把两个温度点的数值又倒过来,就成了现在的百分温度,即摄氏温度,用℃表示。华氏温度与摄氏温度的关系为 ℉=9/5℃+32,或℃=5/9(℉-32)。 现在英、美国家多用华氏温度,德国多用列氏温度,而世界科技界和工农业生产中,以及我国、法国等大多数国家则多用摄氏温度。数字温度测量仪表的精度等级和分度值 仪表名称 精度等级 分度值,℃(摄氏度) 双金属温度计 1,, 压力式温度计 1,, 玻璃液体温度计 热电阻 1~10 热电偶 5~20 光学高温计 1~ 5~20 辐射温度计(热电堆) 5~20 部分辐射温度计 1~ 1~20 比色温度计 1~

控制工程研究生学位论文

结合研究课题结果撰写论文。对于新产品设计与开发技术的成果,论文应该具有设计方案的比较、评估,设计计算书,完整的图纸;对于重大技术改造和革新的成果,应该具有对原设备与技术的评价,改造和革新方案的评述及结果的技术和经济效果分析;对于产品质量控制和试验的成果,必须有试验方案、完整的实验数据、数据处理分析方法、结果分析;对于生产设备管理成果,必须给出新的管理理论体系,对企业产量和质量作效果分析,并给出创新管理信息系统等。

1 序言部分要概括、总结和分析他人的工作,还要论述自己的观点.2 硕士论文要尽可能多地利用图形、表格、公式、数据表达意思,说明原理、方案等,有助于读者理解内容.3 论文在评论他人的研究工作时,一定要客观,避免引起纠纷.特别是谈论其不足和缺点时,一定要慎重,没有把握时,且不可凭感觉或印象随意发表评论.4 参考文献中列出的文献,应尽可能地标注在论文中.一方面尊重他人成果,另一方面可反映作者阅读的文献丰富,理论有根据.有的参考文献可能是间接引用,就不一定标注出来.注意参考文献尽量选用最新发表的文章和最新出版的著作.有的研究生不注意这个问题,选用的参考文献很多是几十年前的文章和著作.科学技术发展日新月异,应该随时掌握和了解最新的知识.不少科学家的习惯是,看论文时先看参考文献,如果参考文献太陈旧,说明作者掌握和参考的知识不是最新的,就可能怀疑论文研究内容是否新颖.所以,参考文献在一定程度上反映了作者知识水平的新旧程度,硕士论文要注意参考文献的写法.5 一般对硕士论文的创新性没有特别的要求,但特点总应该有的,即使利用现成的方法、原理、工艺解决了生产或研究中的某个问题,也算有实用的特点.作者应尽力将研究工作的特点或创新点传达给读者,有的研究生为了显示论文的重要性,也不管是不是特点和创新点,列出一大串的特点和创新点,而有的根本不是特点和创新点.实际上,作为硕士论文,只要选题有一定的意义和工作量,作者能够独立完成,没有错误,有特点,就符合基本要求,创新点或特点有2~3个就相当不错了.所以,作者不要刻意去寻找那么多的特点和创新点,真正的创新点哪怕有一个也是可以的,关键是作者一定要弄清楚真正的特点和创新点.6 硕士学位论文一般控制在3~5万字,不易过长或过短.正文写好后,还要写好以下六个方面:(1)论文摘要.要以十分简练的语言概括论文的精华,不要简单浓缩全文,更不可三言两语草草了事.摘要是论文的"窗口",一定要认真对待,字斟句酌.摘要最好是在全文完成以后再写,这样可以概括得更准确一些.外文摘要现在大都搞得比较马虎,这里有外文水平的问题,但主要是不认真.写外文摘要时最好不由中文摘要直接翻译,因为中、外文的写作习惯是不同的,直译往往效果较差,应当摆脱中文的束缚直接用外文写作.篇幅还可以稍长一些.(2)关键词.要精选能反映本文主要特点的单词或词组.词组应简明通用,约定俗成,不要生编乱造.词组不宜过多,一般以3~4个为宜.(3)引言.引言的内容是要提供该论文的研究背景,包括研究的意义、历史和现状,由此引出写作论文的目的.一般在一千字左右.(4)注释.注释要求准确、统一、标准化.引证一定要核对原文,特别是经典著作,有新版本的就不能引用老版本.格式要按照新闻出版署的规范要求进行统一.(5)参考文献.参考文献目录不规范也是个通病.要注意的是,只能列出自己读过的文献,不能列出自己没有读过的文献;只能列出和本文有关的文献,不能列出不相干的文献;文献目录编排一定要分类,分类的参考系可以自己酌情而定.参考文献目录也是判断一个学生论文质量的"窗口".(6)后记.这也是论文中必须有的内容.对自己论文的写作过程作些说明是必要的,对曾经支持和帮助过自己写作的人,特别是对自己的授课教师、论文的指导教师,表示感谢也是合乎情理的.但是一定要注意分寸,溢美之词太多是不必要的,如果把一些不大相干、无关紧要的东西也写了上去,是不合适的.7 论文的写作过程,一般要经过大纲、初稿、定稿几个阶段.即使是有写作经验的学生,往往也要精心修改, 数易其稿,才能写出一篇质量较高的论文.论文一定要由导师审定后方可打印.写作时要注意不能前松后紧,草率收兵.一篇合格的学位论文,一般地说,在内容上要具有三"感",即理论感、现实感、历史感.就是说,一定要有理论的深度,要有历史的根底,要回答现实提出的问题.在逻辑上,要具有整体性、规范性、朴实性.就是说,体系要严密,表述要规范,包括印制成册过程中的校对,都要一丝不苟;文章要朴素无华,不要哗众取宠,更不要弄些故意让人读不懂的东西.(学术堂提供更多论文知识)

控制工程专业硕士研究生实践能力的培养论文

摘要 实践能力是专业硕士研究生培养的重要要求,针对控制工程专业硕士研究生培养过程中存在的实践能力不足的问题,提出控制工程专业硕士研究生实践能力培养体系的构建,包含三方面内容:构建科学合理的培养方案,扩大导师的选择面,校内、外实践教学平台的建设。这三个环节紧密关联,相辅相成,以期通过这三个环节的作用促进控制工程专业研究生实践能力的提升。

关键词 控制工程专业硕士实践能力

2009年,教育部提出要加大应用型人才的培养力度,同年,各高校开始招收全日制专业硕士学位研究生。专业学位研究生的定位要求学生更加具备实践能力,控制工程专业硕士研究生培养是研究生培养的重要组成部分,其培养人才的核心就在于要提高学生的动手实践能力,但目前,很多高校在实际的培养过程还存在一些问题。本文针对控制工程专业硕士研究生实践能力培养问题,在分析相关情况的基础上,提出控制工程专业硕士研究生实践能力培养体系的构建。

1控制工程专业硕士研究生实践能力培养情况分析

《控制工程领域专业学位标准》中将该领域专业研究生培养目标定位在四方面:知识、技能、能力、素质。[1](1)知识方面要求学生应掌握控制工程领域的基础知识及针对具体应用层面的相关知识;(2)技能方面强调了学生应该具备使用相关研发工具、熟练使用外语、获取相关国内外文献资料等方面的技能;(3)能力方面要求学生具备使用本领域先进技术方法和现代技术手段的能力;(4)素质方面要求学生要注重该领域工程研究、开发、应用的问题,能具备较强的实践能力。也即是说在控制工程专业研究生培养目标的设定上就必须强调在掌握基本知识的基础上加强工程实践的锻炼,要充分面向行业领域进行高质量的专业实践,以提升专业研究生的就业能力。

目前,我国很多高校控制工程专业虽然已经招收了专业硕士研究生,但在真正的培养过程中学生的实践能力还是差强人意,这里面的问题主要有以下几点:[2-5](1)受长期以来学术硕士研究生培养模式的影响,很多高校在课程设置上还是沿用其课程体系,对于实践环节的重视不够;(2)有些高校对“实践”的概念认识并不到位,这就使得虽然在课程体系中设置了“实践”课程,但内容的设置相对匮乏,形式化,从而造成实践的效果并不理想;(3)一些高校建立了实践中心,但是缺乏具有职业背景和实践经验丰富的导师队伍,从而导致实践环节的设置与社会应用的真正需求相脱节,学生的实践能力不能进一步提高;(4)虽然有些高校同企业建立了协同实践教学平台,让学生到企业参加到一些实践工作,但很多从事的都是一些低等的或者辅助性的工作,真正能够培养起动手实践能力的并不多。

2控制工程专业硕士研究生实践能力培养体系构建

专业硕士研究生实践能力的培养是一个系统工程,针对控制工程专业硕士研究生培养中存在的问题,笔者认为其培养体系的构建应包含:构建科学合理的培养方案、扩大导师的选择面,校内、外实践教学平台的建设。

构建科学合理的培养方案

首先,在构建课程体系的时候就必须定位明确。学校要能实时、准确地分析就业市场需求,从行业对对控制工程人才的实际需求出发,以培养实践能力突出的行业高级应用型人才为目标。在理论课程的设置上,要紧密结合学校的特色和行业背景,除了最基础的专业理论课程之外,还需要开设与学校特色和行业背景相关的一些理论课程。对于控制工程的专业硕士研究生来讲,毕业生不但要掌握基本的控制理论,熟练的编程语言,还要对其行业内的一些自动化、电力相关领域的工程问题有较深入的了解。

然后,要结合行业应用背景,对实践课程进行精心的设计和规划。要能够切实考虑实践的难易程度,以循序渐进的方式,在不同的阶段开展不同的实践课程,比如在课程学习的初期开设基础的实验课程,让学生能迅速的掌握课程相关知识点;到相关课程知识点都学过之后,可以再开设一些专业性的实验课程,让学生能将不同课程的相关知识点融会贯通,培养分析问题、解决问题的能力;校企合作的实践课程,进一步让学生学以致用,能在实际生产活动中分析问题、解决问题。要在培养方案中将专业硕士研究生参加实践课程的要求、内容纳入到研究生培养的整体教学计划中,将实践课程设定为必修课,严格规定课程的学时、学分,确保实践课程能得以有目的、有计划、有针对性的.开展。实践课程的开设要强调学生动手能力,以及独立思考问题、解决问题能力的培养。

扩大导师的选择面

很多导师是搞学术研究出身的,大多缺乏行业背景和工程实践能力,这就导致在进行实践教学时可能会力不从心,并不能真正达到实践教学的目标。而控制工程专业硕士是一个对实践动手能力要求很高的专业,要有动手能力强的导师来指导研究生进行实践。所以在导师选择的问题上,除了校内的专业导师之外,还必须增加具有行业背景的企业导师。

对于校内导师来说,需要加强对导师的培训,要创造机会让导师特别是青年导师到企业去锻炼,能让他们在真实的生产环境中将理论与实际联系起来,加强他们的行业背景和实践能力,从而在校内实验、实践课程中指导研究生的时候能够更贴近生产实际,能以一些真实案例来丰富自己的教学。

同时,高校要聘请行业内部的一些高级工程人才来担任学生的企业导师。企业导师主要在学生进入到企业实践时给予研究生指导,在培养方案制定的过程中也应提供有用实践培养建议,并努力为研究生提供企业实践的机会,以期让研究生达到理论与实际操作的紧密结合,从而真正学以致用,并提高动手能力。

校内、外实践教学平台的建设

实践平台的建设可以说是锻炼学生实践能力最好的途径之一。通常来说,实践教学平台又可以分为校内实践教学平台和校企合作实践教学平台两类。

校内实践教学平台是指位于学校的,模拟真实生产环境的、能够为专业学位硕士研究生实践能力培养提供一定帮助的场所,是联系课内知识和企业实践的重要环节。校内实践教学平台建设分为硬件和软件两部分,硬件部分即是指研究生实验资源的建设,它会影响校内实验创新活动开展的效果;软件部分即是指基于硬件部分开展的研究生创新课题及各类研究生创新活动,它会影响校内实践教学平台的发展壮大。对于控制工程专业来说,校内实践教学平台可以包含计算机网络、控制工程、自动化等多个方向,从而有利于培养研究生综合运用多个学科的知识点来分析问题、解决问题的能力。

校企合作实践教学平台是指由学校和企业合作建设在校外的实践场所,也可能就是在企业之中或者真实的生产环境中。要能够创造机会让研究生真正参与到某些项目的研发、生产过程中,那研究生就可以深入到工程一线,自己动手去完成一些实际的工作,在此过程中,将自己的理论知识和校内实践经验运用到真实环境中,再通过富有实践经验的行业导师给予指导,还能与有实际操作经验的工作人员交流,学习,能较快地培养起自己的动手实践能力。

参考文献

[1] 李茂国,朱正伟.面向工程过程的课程体系研究[J].高等工程教育研究,2014(9):1-5.

[2] 李娟,穆晓星.全日制工程硕士研究生实践能力培养管理机制探究[J].黑龙江高教研究,2013(12):112-116.

[3] 曾令全,李鑫.研究生实践能力培养途径的研究[J].东北电力大学学报,(5):68-70.

[4] 张瑞成,陈波,陈至坤.控制工程全日制专业学位型硕士研究生培养模式的构建与实践[J].教育教学论坛,2014(10):175-177.

[5] 兰海,肖模昕,于立君.控制工程领域全日制专业学位研究生实践教学课程体系建设研究[J].科教导刊,2016(4):43-44.

流体机械及工程研究生论文

近日,西华大学能源与动力工程学院流体机械及工程团队成员闫盛楠博士在Energy Conversion and Management(一区,IF2020=)上发表题为“Energy storage enhancement of paraffin with a solar-absorptive rGO@Ni film in a controllable magnetic field”的研究论文。 基于环境友好性及易获取性等主要特征,太阳能是化石燃料的最佳替代品之一。太阳能高效转换技术主要包括光电和光热利用,其中,光热储能是光热转换的重要应用,提高所用材料的太阳能吸收能力和储热能力至关重要。太阳能光热转换和储存已被证明是有效的太阳能利用途径。在相变过程中,相变材料可以储存和释放大量能量;因此,它们被认为是优良的太阳能存储介质。然而,相变材料的导热系数一般较低,导致传热过程缓慢,限制了相变材料的光热转换效率。为了解决上述问题,研究人员尝试将纳米颗粒掺入相变材料之中,并取得了优良的效果。但是,该种方法存在一定缺点,例如需要大量的纳米颗粒,造成成本较高;此外,一些纳米颗粒容易氧化或团聚,单位质量相变材料的光热吸收能力较低,而且纳米颗粒不易从相变材料中分离出来,会污染相变材料。 为改善上述缺点,团队成员将纳米颗粒(石墨烯)涂覆在导磁材料(泡沫镍)之上。泡沫镍是一种耐腐蚀的磁性材料,通常作为基底;石墨烯具有优异的力学、光学和热性能,广泛用于与太阳能转换和存储相关领域,包括太阳能收集和光热催化等。在制备实验过程中,将泡沫镍作为基底,并将还原氧化石墨烯通过电化学还原方式涂覆在泡沫镍之上,制成复合膜;该复合膜具有耐腐蚀和抗氧化性,并可重复使用。在光热转换实验过程中,将该复合膜置于固态石蜡之上,并引入外部磁场,通过调控磁场强度,使复合膜伴随相变过程而紧贴固液相界面,改善石蜡光热转换特性。该方法结合了磁控调节与纳米颗粒强化光热吸收的优点。磁场调控下的表面式吸收方法可以在不污染相变材料的情况下调节相变过程,提升相变材料的光热存储能力。 结果表明,在泡沫镍上涂覆还原氧化石墨烯能够有效增强泡沫镍的光热吸收能力;通过调节磁场强度可以动态调整rGO@Ni复合膜的位置,使其紧贴固液相界面,且该复合膜易取出,不会污染石蜡;增大磁场强度提升了准稳态温度、储热能力和储热效率,并提高了单位质量石蜡的光热吸收能力以及相界面的移动速度。综上,该方法为太阳能转换和利用提供了一种有效解决方案。 据了解,闫盛楠,博士,讲师,研究方向为多相流动及热质传递,曾参与国家自然科学基金重大研究计划培育项目、优秀青年科学基金项目,发表SCI收录论文7篇,EI收录论文1篇,现任西华大学能源与动力工程学院教师。(通讯员:西华大学翟元平)

不同学科分类也不同。

A类刊物-TOP20学科/领域 刊物名称 SCI IF数学 COMMUN PUR APPL MATH 物理 PHYS REV LETT J FLUID MECH 化学 J AM CHEM SOC ANGEW CHEM INT EDIT CHEM COMMUN 生物 P NATL ACAD SCI USA 医学 J MED CHEM 环境科学 CRIT REV ENV SCI TEC 材料学 ADV MATER 工程技术-化工 AIChE J CHEM ENG SCI IND ENG CHEM RES 工程技术-生工 BIOTECHNOL BIOENG METAB ENG BMC BIOTECHNOL 工程技术-材料 NANO LETT 工程技术-控制 AUTOMATICA 工程技术-机械 INT J PLASTICITY 工程技术-计算机 IEEE T SOFTWARE ENG

热能与动力工程是以工程热物理学科为主要理论基础,以内燃机和正在发展中的其它新型动力机械及系统为研究对象,运用工程力学、机械工程学、自动控制、计算机、环境科学、微电子技术等学科的知识和内容,研究如何把燃料的化学能和液体的动能安全、高效、低(或无)污染地转换成动力的基本规律和过程,研究转换过程中的系统和设备的自动控制技术。随着常规能源的日渐短缺,人类环境保护意识的不断增强,节能、高效、降低或消除污染排放物、发展新能源及其它可再生能源成为本学科的重要任务,在能源、交通运输、汽车、船舶、电力、航空宇航工程、农业工程和环境科学等诸多领域获得越来越广泛的应用,在国民经济各部门发挥着越来越重要的作用。 这方面人才在加强学生基础理论和综合素质教育的同时,加强计算机及自动控制技术的应用,强化专业实践教学,注重全能训练,全面提高自己的实践动手能力和科学研究潜力.我国能源动力类专业形成于20世纪50年代。以交通大学为例,1952年院系调整时,当时设在机械系中的动力组就单独成立了动力机械系。由于受当时苏联教育体制的影响,在该学科的发展过程中,专业面曾一度越分越细。50年代初期只有锅炉、气轮机、内燃机等专业,以后又先后办起制冷专业与风机专业,制冷专业又细分出压缩机,制冷及低温专业。在50年代末又创办了核能专业,在60~70年代有些学校先后设立了工程热物理专业。这样能源动力学科中的专业就先后包括有锅炉、涡轮机、电厂热能、风机、压缩机、制冷、低温、内燃机、工程热物理,水力机械以及核能工程等11个专业,形成了明显的以产品带教学的基本格局。热能与动力工程专业中包含的水利水电动力工程专业的前身为水电站动力装置专业。该专业形成于20世纪50年代。新中国成立以后,随着国家对水患的治理和经济建设的发展,国家设立了华东水利学院、武汉水利水电学院、华北水利水电学院等一些专门的水利院校,1958年起在这些院校和西安交通大学水利系(西安理工大学水电学院的前身)设立了水电站动力装置专业,以满足国家对水电建设人才的迫切需求。1977年恢复高考招生后,该专业更名为水电站动力设备专业。1984年该专业更名为水利水电动力工程专业,涵盖了原水能动力工程、水电站动力装置、水电站动力设备、水能动力及其自动化、机电排灌工程、水能动力与提水工程等专业,昆明工业学院、成都科技大学等一些院校都设置了该专业。1998年,按照国家教育部颁布的新的专业目录,水利水电动力工程专业并入热能与动力工程专业,新的热能与动力工程专业包含了原来的热力发动机、流体机械及流体工程、热能工程与动力机械、热能工程、制冷与低温技术、能源工程、工程热物理、水利水电动力、工程冷冻冷藏工程等9个专业。客观上说,这种专业划分与当时我国计划经济的体制以及工业发展的实际情况,在一定程度上是相适应的。过窄的专业面,但却培养了专业工作能力较强的学生。因此,在当时对我国经济的发展和工业体系的重建,曾经起到过积极的作用。但随着社会经济向现代化方向的发展和高新科学技术的进步,特别是我国改革开放以后,国外先进科技、管理体系的大量引进,学科的交叉融合不断产生新的经济增长点,当时实际存在的过细过窄的工科专业设置,总体上已不能适应新的形势和发展对人才的需要,必须进行专业调整。因此,在1993年原国家教委进行的专业目录调整中,将能源动力学科的上述前10个专业压缩为4个专业,即热能工程,热力发动机,制冷与低温工程,流体机械与流体工程,核工程与核技术保留。1998年,教育部颁布了新的专业目录,将上述前4个专业进一步合并为热能与动力工程专业,核工程与核技术专业单独设立,而在引导性的专业目录中,则建议将热能工程与核能工程合并。但当时我国大多数学校还是采用了热能工程与核能工程单独设专业的方案。因此,在2000年教育部设立的新一轮教学指导委员中,在能源动力学科教学指导委员会下分设了三个委员会:热能动力工程,核工程与核技术以及热工基础课程教学指导分委员会。能源动力工业是我国国民经济与国防建设的重要基础和支柱型产业,同时也是涉及多个领域高新技术的集成产业,在国家经济建设与社会发展中一直起着极其重要的作用。近年来,随着我国各个方面改革的深化发展,包括市场经济的逐步建立,国有大中型企业机制的转换,加入WTO后面临的挑战,以及能源动力领域技术的发展,并考虑到我国核科技工业“十一五”以及到2020年发展所面临的形势与任务,我国能源动力类以及核相关专业人才的培养面临着严峻的挑战。能源动力及环境是目前世界各国所面临的头等重大的社会问题,我国能源工业面临着经济增长、环境保护和社会发展的重大压力。我国是世界上最大的煤炭生产和消费国,煤炭占商品能源消费的76%,已成为我国大气污染的主要来源。已经探明的常规能源剩余储量(煤炭、石油、天然气等)及可开采年限十分有限,2000年的统计资料表明,我国化石能源剩余可储采比煤炭为92年,石油年,仅为世界储采比的一半;天然气为63年,优质能源十分匮乏。我国已成为世界第二大石油进口国,对国际石油市场的依赖度逐年提高,能源安全面临挑战,存在着十分危险的潜在危机,比世界总的能源形势更加严峻。现在,能源资源的国际间竞争愈演愈烈,从伊拉克战争及战后重建,到中日双方在俄罗斯输油管线走向上的角逐等一系列国际问题,无不是国家间能源战略利益冲突、斗争的具体反映。因此开发利用可再生能源、实现能源工业的可持续发展具有应该说更加迫切、更具重大意义。我们应该清楚地认识到:我国的能源资源是有限的,我国现有能源开发利用程度与效率很低,在清洁能源开发、能源综合高效利用和环境保护领域内,与发达国家存在着较大的差距:我国水能资源理论蕴藏量(未包括台湾省)为亿KW,可开发容量亿KW,相应年发电量19200亿KWh,均居世界第一;至2003年底水电装机容量达到9139万KW,年电量2710亿KWh,开发率按电量算只有14%,按装机容量算只有%,远远落后于美国、加拿大、西欧等发达国家,也落后于巴西、埃及、印度等发展中国家。高耗能产品能源单耗比发达国家平均水平高40%左右,单位产值能耗是世界平均水平的倍。同时,实施可持续发展战略对能源发展提出了更高的要求。长期以来,粗放型的增长方式使能源发展与保护环境、资源之间的矛盾日益尖锐。未来能源发展中,如何充分利用天然气、水电、核电等清洁能源,加快新能源与可再生能源开发,推广应用洁净煤技术,逐步降低用于终端消费煤炭的比重,实现能源、经济、环境的可持续发展将是"十五"以及中长期能源发展面临的重要选择。特别地,我国核科技工业是国家的战略行业。完善的核科技工业体系是确立一个国家核大国地位的基本条件。它既是国家战略威慑力量和国防科技工业的重要组成部分,是国家政治、国防安全的重要保障和外交利益所在,同时又是国民经济的重要产业。核军工、核能、核燃料和核应用技术产业,是我国核科技工业的主要组成部分。与此相适应,如何培养适应上述21世纪社会需要的能源动力类以及核相关专业人才,是每个大学相关专业以及每位从事能源动力类专业教育的工作者需要解决的重要问题。常规化石能源的使用是能源动力学科专业教学的主要内容之一,而常规化石能源的使用与环境问题密切相关。目前,煤炭、石油、天然气等化石能源仍在整个能源构成中占据主导地位,而且估计在今后几十年地时间内这一局面还不会改变。这些常规化石能源主要直接应用于火力发电,这会带来一系列严重的环境问题,比如硫氧化物、氮氧化物等的大气污染、固体废物、水污染和热污染等。据最近的报载,当前我国每年火力发电的煤炭耗量超过8亿吨,电厂的烟尘排放量约为350万吨,占全国烟尘排放量的35%。其中微细粒子(小于10微米)排放量超过250万吨,是影响大城市大气质量和能见度的主要因数,并严重危害人体健康。因此,对能源动力生产过程中的这些环境问题必须进行妥善处理和控制,实现其环境友好化,才能保证人类的生存和社会经济的可持续发展。环境问题已经成为能源动力技术研究中的重要组成部分,也必须在专业课程的教学中有相应的体现。也正是基于这一原因,浙江大学已经将原来的热能与动力工程专业改名为能源与环境系统工程专业。核能发电虽然没有上述火力发电那样的问题,但有其独特的问题,如辐射防护与保健、核废料的处置与处理等均与环境保护有关。迫于环境方面对能源开发与利用的巨大压力,作为常规能源的水能由于具有清洁与可再生的特点,其开发与利用越来越得到重视,在我国能源发展战略占有十分重要的地位。

  • 索引序列
  • 制冷及低温工程研究生论文
  • 低温机械合金化制备研究论文
  • 低温温度测量研究的论文
  • 控制工程研究生学位论文
  • 流体机械及工程研究生论文
  • 返回顶部