首页 > 期刊论文知识库 > 火星研究论文

火星研究论文

发布时间:

火星研究论文

题名应简明、具体、确切,能概括论文的大概内容,有助于选定关键词,符合编制题录、索引和检索的有关原则。简明扼要,提纲挈领。 命题讲究理论性和现实性,从一般性说特殊性。理论性是指基于某个理论。(1.摘要的规范摘要是对论文的内容不加注释和评论的简短陈述,要求扼要地说明研究工作的目的、研究方法和最终结论等,重点是结论,是一篇具有独立性和完整性的短文,可以引用、推广、扩展。2.撰写摘要注意事项①不得简单重复题名中已有的信息,忌讳把引言中出现的内容写入摘要,不要照搬论文正文中的小标题(目录)或论文结论部分的文字,也不要诠释论文内容。②尽量采用文字叙述,不要将文中的数据罗列在摘要中;文字要简洁,应排除本学科领域已成为常识的内容,应删除无意义的或不必要的字眼;内容不宜展开论证说明,不要列举例证,不介绍研究过程;③摘要的内容必须完整,不能把论文中所阐述的主要内容(或观点)遗漏,应写成一篇可以独立使用的短文。④摘要一般不分段,切忌以条列式书写法。陈述要客观,对研究过程、方法和成果等不宜作主观评价,也不宜与别人的研究作对比说明。)(1.关键词规范关键词是反映论文主题概念的词或词组,通常以与正文不同的字体字号编排在摘要下方。一般每篇可选3~8个,多个关键词之间用分号分隔,按词条的外延(概念范围)层次从大到小排列。关键词一般是名词性的词或词组,个别情况下也有动词性的词或词组。应标注与中文关键词对应的英文关键词。编排上中文在前,外文在后。中文关键词前以“关键词:”或“[关键词]”作为标识;英文关键词前以“Key words”作为标识。关键词应尽量从国家标准《汉语主题词表》中选用;未被词表收录的新学科、新技术中的重要术语和地区、人物、文献等名称,也可作为关键词标注。关键词应采用能覆盖论文主要内容的通用技术词条。2.选择关键词的方法关键词的一般选择方法是:由作者在完成论文写作后,从其题名、层次标题和正文(出现频率较高且比较关键的词)中选出来。)还有:(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:a.提出问题-论点;b.分析问题-论据和论证;c.解决问题-论证方法与步骤;d.结论。

在目前看来,火星表面已经有水的痕迹,但并没有生命的迹象.但科学家估计,在火星表面之下,也有可能出现生命.目前,这个问题还是一个谜. 科学家们的报告声称: 另外一些自养生物被发现于海底3000米处,那里惟一的热源是岩石的热量......在113摄氏度的高温中能够发现这些生物......在酸流中也能发现这些生物;在苯和环乙酮等物质的有害环境中,在马里亚纳海沟11000米的深海里,都能够发现这些生物. 可以相见,火星上有可能存活着这类生物,它们也许被封闭在了10米厚的永久冻土层当中。人们认为,火星地表下面存在着这种永久冻土层,它们也许已以火星悬浮的大气里存在了无比漫长的时期。 在地球上,休眠的微生物被琥珀包裹了数千年而保存下来。1995年,美国加利福尼亚州的科学家曾经成功地使有繁殖能力的微生物有机体,已经从水晶盐当中被分离出来,它们的年龄超过了两亿年。 在实验室中,“细菌菌子被加热到沸点,然后被冷冻到-270摄氏度这个温度范围正是星际太空间的温度变化范围。等温度条件一好转,这些细菌菌子立即恢复了生命。” 同样,有些病毒即使在此类生物组织外面没有活力,也能够在细胞中被激活。在其休眠状态下,这些可怕的小生物(其身体比可见光的波长还短)可以说几乎是永远不死的。经过仔细检查,科学家发现它们都极为复杂,并具有由1.5X10的4次方个核苷组成的基因组。 随着美国宇航局对火星的继续探索,科学家们相信,火星和地球之间存在交叉感染的情况是极为可能的。的确,早在人类开始太空飞行的时代以前很久,可能已经发生过这种交叉感染的情况了。来自火星表面的陨石落在地球上,同样,有人认为因小行星的撞击而从地球飞溅出去的岩石有时也必定会到达火星。 可以想象,地球上的生命本身就有可能是由火星陨石携带过来的---反之也是如此,生命体也可能被从地球上带到火星。阿德莱德大学的保罗.戴维斯教授指出: 对地球上的生命来说,火星并不是一个特别有利于生存的地方......然而,地球上发现的一些细菌物种依然能够在火星上生存下来......如果生命在以往遥远的年代里曾在火星上牢牢地扎根和发展,那么,当其生存条件逐步恶化的时候,生命也就有可能逐步地适应其更为严酷的环境。 火星上到底有没有生命?也许,直到人类的脚印踏上火星之前,它永远不会有一个明确的答案。

关于火星的研究论文

未来会发生人类大力研究火星生命与地球生命的相同点以及结构差异,然后讨论火星为何演变成一颗冷寂的行星,以指导地球人不要犯相同的错误。如果火星曾经存在过高级生命的话。如果没有存在过,而仅仅是低级的生命,地球人会很自豪和幸运地对火星生命说:“来吧,你就是我们的阿凡达”

火星,因其荧荧如火,亮度经常变化,位置也不固定,我国古人将火星取名为“荧惑”;古巴比伦人称“尼嘎”(刚烈英雄);古埃及人称“哈·底契” (红色亮星)。在古希腊和古罗马的神话中,火星是宙斯和赫拉的儿子,他司职战争,形象英俊,勇猛顽强,喜欢打仗,是力量与权力的象徵,是好斗与屠杀的战神。古希腊人称火星为“阿瑞斯”(战神)。 火星有两个平均直径十几千米的小卫星,就是以阿瑞斯的两个儿子——福波斯和德瑞斯命名的;古罗马人称火星为“玛尔斯”,是身披盔甲浑身是血的战神,火星的符号是♂。Mars之名和火星符号被国际沿用至今。 1609年,意大利科学家伽利略第一次用望远镜观察火星,开创了人类用科学仪器观测火星之先河。1666年,G.卡西尼 通过望远镜观察火星并确定了其转动周期,计算火星的日长是24小时40分钟。1672年,惠更斯第一次发现在火星的南极有一个白点,可能是极冠,并第一次提出了可能存在地外生命的猜想。1777-1783年,英国天文学家W.赫歇尔用自己发明的望远镜研究了火星,并错误地认为火星上黑暗的地方是海洋,明亮的地方是陆地,还认为所有的星球都居住有生命。他还预言,也许火星居民也享受着与我们类似的环境。 1877年米兰天文台台长亚帕雷利斯基观测火星之后,宣布他看到了火星上的“cannali”,原意是道路却被错译为“运河”,后来演绎出火星上有运河就有开凿和利用运河的火星人和兴盛的农业。19世纪末,开始了火星运河的狂热研究,大量有关 “火星人”、“火星人袭击地球”、“大战火星人”等小说和电影应运而生。1905年,美国的厄尔火星观察台,拍摄到火星38条“运河”的照片。 已知的火星 太阳系的八大行星,按照距离太阳由近及远的次序依次是:水星、金星、地球和火星,由于它们体积较小,密度较大,具有固体的岩石表面,被称为类地行星或内行星;火星之外是木星、土星、天王星和海王星四个巨行星,也叫类木行星。 火星的平均赤道半径为3393千米,仅为地球的53%;火星的质量是地球质量的;火星绕太阳的公转的运行轨道呈椭圆形,周期为687天,即个地球年;火星的自转情况跟地球相似,自转方向跟地球相同,自转周期也就是火星一天的时间为小时;火星的自转轴是倾斜的,倾角为。,因此火星上也有四季变化,但每个季节大约比地球季节要长一倍。 火星与太阳的距离比地球远,平均距离约为 亿千米(地球约亿千米),火星表面的年平均温度为-57。C,表面昼夜温度变化于20℃到一139℃之间,火星比地球寒冷,昼夜温差比地球大。 火星表面的重力加速度是米/秒2,逃逸速度米/秒,而地球分别是米/秒2和米/秒;因此火星的引力场较弱,大气比较稀疏容易逃逸,平均表面气压仅700帕,不到地球海平面气压的1%。火星大气的主要成分是CO2(占),其次是N2(占)。火星由于大气稀薄,风速很大,风在火星表面肆虐,形成了广泛分布的活动沙丘和沙漠。火星上经常发生台风和龙卷风。当风速达到50~100米/秒时,100微米的尘沙被吹到大气中,形成区域性尘暴。每个火星年约发生上百次区域性尘暴,几个区域性尘暴偶然联合起来,把大量尘沙卷到30千米的高空,发展成全球性大尘暴,可持续几个星期。 火星的地形明显地不对称,南半球的地势比北半球高。火星表面的2/3都是古老的、撞击坑非常密集的地形。南半球分布有无数网络状的河谷系统,它们看上去象是被流水切割形成的,太阳系最长、最大的水手大峡谷,长3000多千米,宽600千米、深约8千米;而地球上美国亚利桑那州的“大峡谷”,其长度仅 800千米、宽30千米、深千米。火星给人印象最深刻的面貌是巨大的盾状火山,例如奥林匹克火山就是一个庞然大物,直径达550千米,山峰高千米,是太阳系最高的山峰。火星的北半球似乎曾经是辽阔的大洋盆地,是“河流”汇集的“海洋”。火星是一个寒冷的、干燥的荒漠世界。 寻找生命迹象 自1961年以来,美国和前苏联在火星探测上展开了一场激烈的竞争。 2003年,欧空局开始发射“火星快车”探测火星,迄今为止对火星实施了42次探测,探测方式实现了对火星的飞越、环绕、软着陆、火星车巡视和现场分析样品,突破了一系列关键技术,大大提高了人类对太阳系探测的能力,获得了对火星深入系统的科学认识。火星探测的科学问题主要集中在探测火星生命活动的信息,探测与研究火星的演化,以及与类地行星的比较研究和探讨火星的长期改造与今后大量移民建立人类第二个栖息地的前景,为人类社会的持续发展服务。 火星探测的首要任务是探测火星生命活动的信息。通过大量火星轨道环绕探测器的探测,特别是美国在1975年发射的海盗1号和海盗2号着陆器和2007年发射的凤凰号着陆器,在火星表面开展了一系列生命活动信息的探测与生命科学实验,证明当今火星表面没有任何生命活动的迹象。 正当人们对火星生命的探测怀着绝望之际,却在火星大气层中发现了含有微量的水蒸气和甲烷,又重新点燃了探测火星生命的希望。凡有生命的活动必定会释放甲烷,大气层中的甲烷可能表证火星有最低等生命的活动。地球上广泛分布的天然气藏(主要成分是甲烷),绝大部分也是生物成因;但是,在大庆等地也发现一些天然气藏是由非生物过程形成的。因此,关键问题是要科学判别火星大气中的甲烷是生物成因,还是非生物成因?由于火星大气中甲烷的含量仅有30ppt(1ppt是1万亿分之一),当今火星探测卫星的同位素质谱仪还不具备测定甲烷等化合物碳同位素的技术能力,只能在技术取得突破后才有可能予以回答。 1984年在南极阿连山地区找到了一块火星陨石ALH84001。美国的科学家将陨石切片在电子显微镜下观察,发现陨石中有大量密密麻麻分布的微体生物 “化石”——细菌。微体生物的截面大约只有1%头发丝大小。经测定,ALH 84001的形成年龄为36亿年,表明36亿年前,火星曾繁衍过最低等的生命——细菌。当时,地球发育的生物水平也是最低等的微体生物——细菌。问题引发了更大范围的科学争论:既然火星的生物“化石”现在可以带到地球上来,在更远古的时代,火星的生命物质也可以随陨石带到地球上来,说不定地球的生命是火星生命的后代。当然也完全可以相反,地球的生命物质也可以随地球陨石带到火星上去,火星的生命却是地球生命的后代。也许地球和火星都曾各自发育过生命。由于火星环境恶劣,生命被夭折了,而地球的生命得以演化繁衍。ALH84001经过全世界科学家的精细研究,有一派科学家列举大量事实证明,这些“化石”并不是生命物质的化石,而是自然过程形成的特殊结构,是典型的非生物成因。火星是否曾经有过生命仍然是一个谜。 希望依然存在 火星现在没有任何生命活动的信息。火星过去可能发育过生命,火星的演化历史的确存在过气候适宜于生命产生与生存的环境。大量的探测成果表明,火星表面存在大量的古河道体系和水流动痕迹。生命产生与演化的必要条件之一是必须有水的存在,而火星上曾经有过大量的水体活动,无疑给火星上曾经有过生命物质的观点提供了有利的证据。要确证火星曾经存在过生命,必须找到火星表面的沉积岩并在沉积岩中发现火星的生物化石。 火星现在是不是具备生命存在与繁衍的条件与环境? 根据海底黑烟囱、极地冰盖下、盐湖淤泥和炎热沙漠等极端环境下各种生命形态的发现与研究,表明火星表面的环境依然具备生命繁衍的条件。由于火星表面是干枯的,没有水体的活动,而大量的事实证明火星的水体埋藏在地下。探测火星地下水的埋藏位置,有可能发现火星的低等生命形态。 火星生命的探测依然是任重而道远!

题名应简明、具体、确切,能概括论文的大概内容,有助于选定关键词,符合编制题录、索引和检索的有关原则。简明扼要,提纲挈领。 命题讲究理论性和现实性,从一般性说特殊性。理论性是指基于某个理论。(1.摘要的规范摘要是对论文的内容不加注释和评论的简短陈述,要求扼要地说明研究工作的目的、研究方法和最终结论等,重点是结论,是一篇具有独立性和完整性的短文,可以引用、推广、扩展。2.撰写摘要注意事项①不得简单重复题名中已有的信息,忌讳把引言中出现的内容写入摘要,不要照搬论文正文中的小标题(目录)或论文结论部分的文字,也不要诠释论文内容。②尽量采用文字叙述,不要将文中的数据罗列在摘要中;文字要简洁,应排除本学科领域已成为常识的内容,应删除无意义的或不必要的字眼;内容不宜展开论证说明,不要列举例证,不介绍研究过程;③摘要的内容必须完整,不能把论文中所阐述的主要内容(或观点)遗漏,应写成一篇可以独立使用的短文。④摘要一般不分段,切忌以条列式书写法。陈述要客观,对研究过程、方法和成果等不宜作主观评价,也不宜与别人的研究作对比说明。)(1.关键词规范关键词是反映论文主题概念的词或词组,通常以与正文不同的字体字号编排在摘要下方。一般每篇可选3~8个,多个关键词之间用分号分隔,按词条的外延(概念范围)层次从大到小排列。关键词一般是名词性的词或词组,个别情况下也有动词性的词或词组。应标注与中文关键词对应的英文关键词。编排上中文在前,外文在后。中文关键词前以“关键词:”或“[关键词]”作为标识;英文关键词前以“Key words”作为标识。关键词应尽量从国家标准《汉语主题词表》中选用;未被词表收录的新学科、新技术中的重要术语和地区、人物、文献等名称,也可作为关键词标注。关键词应采用能覆盖论文主要内容的通用技术词条。2.选择关键词的方法关键词的一般选择方法是:由作者在完成论文写作后,从其题名、层次标题和正文(出现频率较高且比较关键的词)中选出来。)还有:(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:a.提出问题-论点;b.分析问题-论据和论证;c.解决问题-论证方法与步骤;d.结论。

火星生命的形成和消失 来源:《飞碟探索》 现在的火星表面受到致命的紫外线辐射, 而且可能覆盖着一层过氧化物和超氧化物。如果类地球生物散落到火星表面,几分钟之内便会化为灰烬。 从美国发射的两艘“海盗”号登陆舱发回的数据表明:火星表面不存在有机物。 但是分析一块最新形成的陨石发现,大约亿年以前至少在火星地表下面存在有机物。在最近200万年的时间里,火星表面的状况可能未发生过改变。 我们对地球生命的起因尚未弄清,更不用说火星上的生命了。尽管如此,假设火星上的确曾有过生命存在,我们就可以对其命运做若干推测,这将有助于将来探寻火星上已灭绝或尚存的生命。地球微生物已经占据了地球上的每一寸土地, 从最冷最干的南极岩石表面到温泉和热液出口(此处微生物能在113℃高温下生存)。 因此,如果火星上出现过生命,则应有大量供此类生命生存的栖息地。 生命迁移 我们还不清楚火星上的生命是怎么形成的, 但它可能出现在诸如热液出口或火星上的海洋这样有稳定水源并能提供某种形式能量的地方。在火星的历史进程中,热液中心的成分可能通过断层和断面的交汇处相互联系。例如,其体积相当于覆盖整个火星10米深的一层水可以最深下渗达千米, 而一层100米的水则可以形成近43千米的含水层。 含水层内物质可以通过热液传递产生运动。含水层本身受热时,水产生密度反差,浮力驱使水流动,于是便形成上述运动。现在地球上主要有两种地方存在热液对流,第一种与岩浆活动和喷发有关,主要位于各板块边缘。第二种则在深海海底, 此处海洋地壳中保存的热量驱使大量海水以相当低的温度环流。 早期火星可能缺少构造板块和海洋板块,所以除地壳中的低温水对流之外,由喷发和碰撞生热引起的岩浆活动可能是热液对流的源动力。岩浆侵入1000立方千米范围引起的环流可持续10万年之久。由于热液循环水的不断渗入,下渗的含水层因此能长期得到补充。 随着热液活动的减少,大气冷却,范围不大的河流运动日渐消失。火星上某些群山很年轻,只有10万年。因此任何火星海洋里或者火星地表之下有流水的地方,都可能有生命赖以生存的物质。 最古老的赫斯伯瑞尔·普朗尼平原位于赤道以南约20°, 可能是最后冻结的地方之一,因此可能留有火星上最高级的有机物的遗迹。 当假设存在的河流汇入海洋时,如果水流丰富而且平稳,生命移居到地表之上就比较容易,于是微生物就可能发展到陆地上。如果水流量不大, 地表下的生命仍有可能发展到地表上。假设能证明陆栖生命的确存在, 则有机物可以选择在盐湖或冰层覆盖的湖泊里生长,这些湖泊便可能成为火星生命的栖息地。 地球上的原始细菌成功地移居含盐量很高的水中, 甚至盐分已饱和的半干海洋中。它们是至今仍生活在死海和大盐湖的仅存有机物。检查火星风化层内的硫和氯以及是否有硬壳时发现,火星上的盐湖曾出现过集中的盐溶解现象,但现在没有了。 环境恶化影响生命 随着火星大气压力下降,火星环境对所有地表生命更加不利。 研究人员伊姆雷·弗里德曼、克里斯·麦基和大卫·韦恩威廉斯概述了火星上的水的四个时代。 其中三个时代已经在今天的南极发现了类似的栖息地。 在英国星际协会探寻火星上生命的专题座谈会报告集中,韦恩威廉斯有一篇论文概述的这四个时代是: 第一时代:有大量的水。无论是在四面临海的陆地,还是在温泉或深层地表下都有大量的水,这可能是生命起源的必备条件。 火星上可能出现的流水泛滥是南极的季节性解冻河流,这些河流很适合光合藻青菌的生长。 第二时代:水的存在仅限于冰下湖泊。在南极干谷可以发现冰下湖泊,湖泊上覆盖的冰常年不化,但冰层下的流水中生长着细菌群。这种湖泊的温度对生命起源而言可能太冷,因此需要热起来。所以生命需要迁出这种环境,要么一旦环境恶化将被扼杀。 第三时代:水只限于南极干谷等地多孔岩石中的水分。在这种环境下,微生物濒临灭绝边缘。这些有机物已经尽可能忍受干燥。在热力定律起作用之前, 生物的进化和适应只能到此为止。 第四时代:沙漠化的火星表面。火星表面完全不适合生命存在。 当火星地表水越来越少时, 可能有能忍受低温和潮湿的地表有机物经过自然淘汰生存下来。当近地表变得不适合居住时, 只有地下深层的有机物可能在化学合成的自给自足的系统里生存着。温度低于0℃时热液在火星表面各处渗透, 但这种渗透并不一定均匀。因此,火星上某些地方可能先冻结,然后再是其他地方。 冰层可能有效地阻碍了地表上与地表下有机物之间垂直和水平的移动。火星上可能缺少板块结构,因此可能形成两个互不相干的水域。 不同水源与假定的生命形式之间可能在空间和时间上分布均不相同, 这种可能性令人兴奋。火星上各地冻结时间不同,估计是从两极逐渐发展到赤道,这就保护了处于不同发展阶段,从原细胞到单细胞生命的有机物。 从现在的火星上可以找到这种迹象。 找寻火星上的微体化石和多分子化石 火星上的生命是否能在热液系统中延续至今只能由直接取样来确定。但是, 生命延续时间越长, 越有希望在广袤的外空间找到留有生命栖息遗迹的化石或生物化学标记。我们该去哪里找这些分子呢?迈克·罗素和他在格拉斯哥大学的同事指出:生命可能产生于一个极不均衡,与热液对流有关并受之驱动的化学系统中。 即使地球大气中的氧足够供给更多物种生存, 很多适温细菌仍被迫生活在热泉和潜流中。联系到这一点,就能帮助我们寻找火星上的生物化石。例如,迈克·罗素指出,从断层中可望找到亚硫酸盐镁磷钙铝石,其长1千米左右,宽约10米, 形成于古热泉或潜流中。火星上峡谷、河床和冰水扇形地貌的存在就是曾有过水流的最好的迹象。而且很可能在火星历史上的第一个百万年内,河床底的碎石间仍有水流过。在早期大气中,水被二氧化碳炭化,或从深层岩浆中直接析出。当水渗入或自流到内陆海或湖时,可能与镁铁质岩屑发生化学反应。 一些科学家推测,火星上现存的有机化合物遗迹可能为我们提供线索,看看哪些化合物组合能形成生命,哪些不能。 同在美国国家航空航天局阿莫斯实验室工作的特萨·卡纳瓦雷蒂和罗可·曼西内利提出: 如果火星上许多年以前存在氨基酸之类的有机物,那么表面氧化层下面的有机物遗迹就仍能保留到今天。 只有当氨基酸在含水或冻结的表面沉积层中时才能保留外消旋作用。所有陆栖生命的新陈代谢都采用一种氨基酸异构体。如果没有这种异构体, 就很难确定这种氨基酸是非生物源还是生物源。 此外,根据对火星上氨基酸外消旋的推测,杰弗里·巴德指出: 火星上的核酸也可能在与氨基酸类似的条件下保存下来。但是,实际数据显示,作为核酸支柱的核糖寿命极短,在4℃条件下只能存活44年。因此,在发现氨基酸的地方有望发现以核糖为基础的遗传信息,甚至它们原来就是共同存在的,当然可能性极小。 NASA阿莫斯实验室的克里斯·麦基和旺达·戴维斯推测,某些冰下湖泊在恶劣气候下仍保存下来,这里更可能有氨基酸保留到今天。 结 论 我们认为早期火星的气候与早期地球的气候有某些相似之处, 因此我们更加关注火星上也可能曾有过生命这一设想。曾有过很多理论解释地球上生命的起源, 但没有一条理论得到证实。火星的地质为我们提供了难得的研究取证机会。如果火星上出现生命是源于热液作用,那么火星上更可能有多个生命发源中心。而且由于水覆盖面积不大,这些中心在空间上可能互相隔离,因此会出现不同种系的生命

基于火星的研究论文

本文由北京宇航系统工程研究所的李平岐 陈海鹏 洪刚 朱永泉 王建明等共同编撰,发表于《国际太空2017年09期》,以下为文章内容:

对于载人登火任务,若采用常规的化学推进技术,地球出发规模达到1400t,而采用核热推进技术后,地球出发规模可降低至800t。核热推进技术以其高比冲、大推力的独特性能,具有化学推进火箭无法比拟的深空探测优势。

前期火星探测任务表明,火星上具备生命存在的某些必备条件,尤其是水的发现,极大地激发了人类在火星上寻找生命的热情,成为近年来国际深空探测的热点。核热推进技术以其高比冲、大推力的独特性能,具有化学推进技术无法比拟的深空探测优势。而且随着核动力技术的逐步发展,核能源安全问题可以得到可靠解决。为了确保我国在未来深空探测领域能够发挥更大作用,发展核热推进技术具有重大意义。

本文以载人登火任务为背景,对核热推进运载器的总体方案进行了初步研究,对核热推进运载器的总体性能、设计特点以及关键技术进行了初步分析和梳理。

随着人类对火星的了解越来越多,美国国家航空航天局、俄罗斯联邦航天局、欧洲航天局都已开始进行移民火星的科学研究,有望在21世纪30年代中期实现人类登陆火星的梦想。其中,美国国家航空航天局早在1988年就已经开始了载人火星探测的方案研究,并形成了载人登陆火星的“火星参考任务”(DRM)系列方案。

美国《载人火星 探索 设计参考体系》(Mars ),基本确立了“重型运载火箭+核动力末级”的总体方案,其基本方案为采用7发重型火箭将核热推进级、载人/货运有效载荷送至近地轨道,之后在近地轨道分别对接成2发货运火箭和1发载人火箭,由核热推进运送至火星并返回地球。早期,美国载人火星探测方案曾提到过利用传统化学推进系统进行载人登火,地球出发规模高达1400t。核热推进系统的结构与化学火箭发动机类似,推力也大致相当,但比冲提高到900 950s左右,地球出发规模得以降低到800t。Mars 方案总体上采取“人货分运、物先人后”的原则。

美国Mars 载人登火方案

参考美国Mars 方案,我国也开展了初步的载人登火任务规划,按照地球出发规模700 800t考虑,共进行7 8次发射,在近地轨道进行5次对接。

1)由重型运载火箭1将核热推进奔火变轨级1送入近地轨道;

2)由重型运载火箭2将核热推进奔火变轨级2送入近地轨道;

3)由重型运载火箭3将轨道舱1(火星着陆下降器和上升器)送入近地轨道;

4)由重型运载火箭4将轨道舱2(火星表面生活舱和火星车)送入近地轨道;

5)由重型运载火箭5将核热推进奔火变轨级3送入近地轨道;

6)由重型运载火箭6将液氢贮箱送入近地轨道;

7)由重型运载火箭7将载人摆渡航天器(含飞船2)送入近地轨道;

8)由载人火箭将载人飞船1送入近地轨道。

将核热推进奔火变轨级1和轨道舱1在近地轨道对接,由核热推进奔火变轨级1将轨道舱1送入奔火轨道,轨道舱1与奔火变轨级1分离,之后由轨道舱1制动、气动减速将下降器和上升器送入环火轨道,下降器和上升器着陆火星表面;将核热推进奔火变轨级2和轨道舱2在近地轨道对接,由核热推进奔火变轨级2将轨道舱2送入奔火轨道,轨道舱2与奔火变轨级2分离,之后由轨道舱2制动、气动减速将火星表面生活舱和火星车送入环火轨道,等待后续入轨的载人飞船;将热推进奔火变轨级3、液氢贮箱、载人摆渡航天器和载人飞船1依次在近地轨道对接,航天员由载人飞船进入摆渡飞行器,由核热奔火变轨级3(和液氢贮箱)将载人摆渡航天器和载人飞船送入奔火轨道、环火轨道。载人摆渡飞行器和先入轨的火星表面生活舱在环火轨道对接,生活舱与摆渡飞行器其他部分分离,之后生活舱和飞船2降落在火星表面。

完成使命后,航天员通过火星上升级和飞船2进入火星轨道,并与载人摆渡航天器其他部分和载人飞船1进行交会对接。返回地球之前,航天员进入载人飞船1,与摆渡航天器分离,直接再入地球。

核热推进动力系统主要包括核热发动机和增压输送系统两部分组成。目前,国内核热发动机还处于概念设计阶段,核热发动机在原理上与以液氢为工质的膨胀循环发动机类似,不同的是将氢氧燃烧室替换成核反应堆。液氢推进剂从贮箱出来经泵增压后首先进入发动机冷却夹套冷却推力室后气化,之后分为两路:一路直接进入推力室,另一路吹动涡轮后进入推力室。进入推力室的氢气经核反应堆加热之后,变成高温高压气体经喷管高速喷出,形成推力。

核热发动机概念原理图

(1)核热发动机比冲

发动机比冲正比于推进介质温度的开方,反比于分子量的开方。由于材料及传热的限制,燃烧室温度一般不会超过3000 4000K,因此降低分子量是提高比冲的有效途径。

化学燃烧产物的分子量一般都超过10,而核热发动机可以直接将低分子量介质加热至高温,从而产生高比冲。目前而言,核热发动机最好的工作介质是液氢,既有良好的冷却和膨胀做功能力,又是分子量最小的单质。为最大化提高介质温度,核燃料棒技术水平对比冲性能起着决定性作用,是核热发动机最为核心的关键技术,也是我国在核热发动机领域与国外差距较大的技术。

目前,俄罗斯在该领域处于最高水平,其三元碳化物技术可将氢加热到2800K以上,从而实现发动机比冲超过900s。在发动机面积比为300和喷管效率为的情况下,随着氢加热温度的提高,比冲相应发生变化。

(2)核热发动机推质比

核热发动机由于有核反应堆及相关屏蔽层的存在,推质比低于常规的液体火箭发动机,但远大于电推进发动机,美国核热发动机推质比设计值最高达到,一般取在3 4之间。核热发动机推质比取决于与核相关的组件,如反应堆、反射层、屏蔽层、控制机构等,与常规低温发动机相关组件,如推力室、喷管、涡轮泵等质量仅占10%左右。

对于核热发动机的反应堆,构成部分主要由堆芯(含燃料和慢化剂等)、反射层、反应性控制系统、屏蔽以及其他堆内构件组成。

以美国载人登陆火星用的核热发动机反应堆为例,经估算,核反应堆的总质量约3422kg,而发动机推力约,推质比为。再综合考虑发动机喷管、涡轮泵以及推进剂输送管等,实际工程应用中核热发动机推质比在3左右。

(3)核热发动机起动、关机性能

常规火箭发动机的能量来源于推进剂的化学反应,其加速累积和减速释放的过程与推进剂的供应量直接关联,因此可以实现比较快速的起动和关机。

而核热发动机采用核反应堆作为能量来源,其起动关机过程很大程度上取决于反应堆的工作需求和特性,特别是核反应堆在停堆过程中,部分产物的辐射效应还会持续较长时间,需要持续予以冷却。

通过分析美国的核热发动机研制经验,核热火箭发动机的起动关机过程与常规火箭发动机有一定的差异,尤其是在发动机关机后还要维持一个较长时间的冷停堆过程。

对34吨级月球摆渡用核热发动机的起动和关机特性进行了初步分析,该发动机以美国“运载火箭用核发动机”(NERVA)计划研制发展的NRX系列发动机为原型,设计总温2361K,设计室压,真空比冲822s,设计推力下流量为。

1)起动过程。核热火箭发动机的起动过程与常规低温火箭发动机有点类似,但时间要长得多。

起动第一阶段,液氢在贮箱压力作用下流经涡轮泵、推力室、反应堆等,反应堆处于较低功率,该过程大约需要25s,主要作用是将发动机充分预冷,并将反应堆预热。

第二阶段发动机开始加速起动,温度达到额定工况,推力达到额定推力的60%,历时约;

第三阶段是在总温保持不变的情况下,室压增大至额定工况,推力达到100%,历时约。总体来看,核热发动机起动过程历时约52s,扣除发动机预冷时间,也需要约27s,起动过程的平均比冲大约只有600s。

2)关机过程。核热发动机的关机过程基本是起动过程的逆过程,但耗时要更长一些。首先,发动机要先降功率至60%工况。这一过程发动机总温保持不变,室压降低,历时约,此过程发动机比冲不变;而后,发动机在这一状态维持1 3min,主要目的是降低后续冷停堆过程中废热的产生量,以节省推进剂消耗;然后,发动机总温、推力再继续下降到发动机关机,还需要维持一个长时间小流量冷却的废热排放阶段。该34吨级核热发动机的整个关机过程历时约350s。整个关机过程中,发动机平均比冲约为600s。

核热发动机与常规发动机最大的不同就在于发动机关机后还存在一个废热排放的阶段,这主要是由于反应堆停堆后,一些反应产物仍然具有很强的放射性,会释放出废热。以34吨级月球摆渡用核热发动机为例,该过程持续约64h,推力约为134N,比冲约400s,由于持续时间较长,这一过程中液氢消耗需要考虑,同时,这一过程的冷却氢可设计用于发电,为整个飞行器提供一定的电力来源。

核反应堆在运行时将放出γ射线和大量的中子,这些射线和中子将对航天器上的电子元器件和航天员产生危害,因此需要加以屏蔽,将其辐射水平降到许可值以下。对于空间应用的反应堆,由于体积质量的限制较严格,其电子元器件和航天员处于相对集中的位置,可采用阴影屏蔽的方式,将辐射水平保持在较低水平。

对于使用核动力的航天器,一般设计成细长形结构,即仪表舱、人员舱位于一端,核反应堆位于另一端,两端之间为液氢贮箱。

由于中子及γ射线的直线运动特定,且需屏蔽的位置相对集中,需要将屏蔽的区域放在屏蔽块的阴影区。

辐射屏蔽布置示意图

参考大亚湾和秦山核电站大修制定的防护指标,集体剂量不超过600(人·mSv),个人最大剂量不超过15mSv,考虑到核热推进末级受体积质量的限制,其辐射水平可能会略高,假设核热推进系统辐射安全区的允许泄露值小于每天20mSv,此数值已大大超出大亚湾和秦山核电站大修时制订的辐射防护指标要求。

按照火星探测任务周期为3年考虑,并假设上述辐射被火箭电气产品全部吸收,则整个任务周期累计吸收剂量为,在目前的产品水平下,非抗辐射半导体元器件可以承受不小于100J/kg的电离辐射剂量。

可见,火箭电气产品受到的辐射剂量要小于元器件的承受能力,核热推进对电气系统方案并不产生本质影响,但是核热发动机必须具备基本的辐射屏蔽能力,将对外辐射控制到一个可接受的范围内。

对于深空探测任务,复杂的深空辐射环境是航天器面临的主要环境,暴露在地磁层之外的深空环境中充满了高能量的混合空间辐射。

采用核热推进的航天器布置图

根据航天器在深空的飞行阶段可将深空环境分为三部分:

一是从地球飞往其他星球旅途中的空间辐射环境,其主要辐射源是太阳粒子事件和银河宇宙射线;

二是航天器降落星体过程中的空间辐射环境,其主要辐射源为星体磁场俘获的太阳宇宙射线和银河宇宙射线粒子;

三是航天器所降落的星体表面的辐射环境,主要是星体吸收宇宙辐射后所发生的二次辐射。

深空辐射环境引起的危害主要是辐射损伤和单粒子事件,深空辐射环境中充满的高能电子、质子和少量的重离子与航天器材料作用,将引起航天器材料的性能损伤与破坏,其中高能电子对航天器材料产生电离作用、高能质子和重离子对航天器材料产生电离作用和位移作用。

在进行深空探测航天器电气系统设计时,要考虑光热辐射引起的单粒子事件造成计算错误,或改变存储器中的数值等风险,软件设计时需考虑这种情况,采用计算冗余、错误校验等方法进行检测判别,确保箭机计算的正确性。

核热推进上面级的工作环境在大气层以外,不会受到气动载荷的作用,因此其结构方案设计可以不受气动外形限制。以俄罗斯发布的核热动力运载器的概念图为例,运载器的主体承载结构以杆系为主,以此来提高运载器结构效率。而且由于没有整流罩空间的限制,有效载荷结构形式的灵活性更大、空间分布方案更多。

核热推进系统只需要液氢一种工质,因此只需要液氢一种贮箱,不需要另外设置氧化剂贮箱,在结构设计上的约束更少,可以更好地进行结构方案的优化。

但是采用核热发动机后,相比常规发动机将承受更恶劣的高温环境条件,这就需要在结构设计过程中全面考虑发动机附近结构、仪器和电缆等的热防护需求,保证各系统、单机的正常工作。

而且与常规发动机相比,核热发动机结构更加笨重,这就需要增大发动机部分,尤其是反应堆周围的结构强度,同时保证发动机各部件的密封性。

俄罗斯核热动力运载器概念图

参考美国Mars 方案,提出了与美国类似的载人登火初步方案,地球总出发规模约700 ~ 800t,分三次完成地火转移,单次地球出发规模约300吨级。通过分析从停泊轨道分别加速至地球出发能量C3e为8或20km2/s'时的发射效率、工作时间、引力损失以及入轨质量,给出核热推进末级的推力规模以及核热发动机的总体参数建议。

假设停泊轨道为高度200km的近地圆轨道,核.热发动机推质比取3、比冲取905s,考虑引力损失影响,不同推力规模情况下,对核热推进运载器的发射效率情况进行分析,其中,发射效率指扣除核热发动机干重的入轨质量(进入地火转移轨道)与停泊轨道出发质量的比。可以看出,当过载在之间时,其发射效率最高。

在发射效率已经考虑了不同过载的情况下,变轨时间不同带来引力损失影响,具体影响为过载越小,工作时间越长,引力损失越大,但发动机干重较小。按照单次地火转移的出发规模300t考虑,核热推进剂运载器的推力应该在45t左右最佳,结合美国、俄罗斯核热发动机研究情况,建议核热发动机推力按照15t考虑,核热推进运载器按照3机并联。

地球转移发射效率随过载变化情况

核热推进技术以其大推力、高比冲等特点在未来深空探测任务中具有无可比拟的优势,但也应看到,目前距离核热技术的工程应用还有很长的路要走,还需要攻克很多的技术难题。根据目前的基于核热推进的载人登火任务分析,核热推进运载器从地球出发到达火星需要约180天,在火星停留- -段时间后(一个星期至一年半时间不等),核热发动机再点火返回地球,因此推进剂长期贮存时间应至少为半年时间,这对现有液氢长期储存技术的挑战极大。

另外,核热发动机推力高温气氢比热(总温2500K时约为20000kJ/kg K)要远高于传统氢氧发动机的高温燃气比热( 燃气总温3400K,燃气比热3000kJ/kg K左右),导致壁面热流密度高于传统发动机,从而给冷却带来极大困难。

因此,要实现核热推进在载人登火任务中的应用,需重点解决核热反应堆小型化、核热发动机推力室冷却、推进剂长期贮存等重大技术难题。

火星,因其荧荧如火,亮度经常变化,位置也不固定,我国古人将火星取名为“荧惑”;古巴比伦人称“尼嘎”(刚烈英雄);古埃及人称“哈·底契” (红色亮星)。在古希腊和古罗马的神话中,火星是宙斯和赫拉的儿子,他司职战争,形象英俊,勇猛顽强,喜欢打仗,是力量与权力的象徵,是好斗与屠杀的战神。古希腊人称火星为“阿瑞斯”(战神)。 火星有两个平均直径十几千米的小卫星,就是以阿瑞斯的两个儿子——福波斯和德瑞斯命名的;古罗马人称火星为“玛尔斯”,是身披盔甲浑身是血的战神,火星的符号是♂。Mars之名和火星符号被国际沿用至今。 1609年,意大利科学家伽利略第一次用望远镜观察火星,开创了人类用科学仪器观测火星之先河。1666年,G.卡西尼 通过望远镜观察火星并确定了其转动周期,计算火星的日长是24小时40分钟。1672年,惠更斯第一次发现在火星的南极有一个白点,可能是极冠,并第一次提出了可能存在地外生命的猜想。1777-1783年,英国天文学家W.赫歇尔用自己发明的望远镜研究了火星,并错误地认为火星上黑暗的地方是海洋,明亮的地方是陆地,还认为所有的星球都居住有生命。他还预言,也许火星居民也享受着与我们类似的环境。 1877年米兰天文台台长亚帕雷利斯基观测火星之后,宣布他看到了火星上的“cannali”,原意是道路却被错译为“运河”,后来演绎出火星上有运河就有开凿和利用运河的火星人和兴盛的农业。19世纪末,开始了火星运河的狂热研究,大量有关 “火星人”、“火星人袭击地球”、“大战火星人”等小说和电影应运而生。1905年,美国的厄尔火星观察台,拍摄到火星38条“运河”的照片。 已知的火星 太阳系的八大行星,按照距离太阳由近及远的次序依次是:水星、金星、地球和火星,由于它们体积较小,密度较大,具有固体的岩石表面,被称为类地行星或内行星;火星之外是木星、土星、天王星和海王星四个巨行星,也叫类木行星。 火星的平均赤道半径为3393千米,仅为地球的53%;火星的质量是地球质量的;火星绕太阳的公转的运行轨道呈椭圆形,周期为687天,即个地球年;火星的自转情况跟地球相似,自转方向跟地球相同,自转周期也就是火星一天的时间为小时;火星的自转轴是倾斜的,倾角为。,因此火星上也有四季变化,但每个季节大约比地球季节要长一倍。 火星与太阳的距离比地球远,平均距离约为 亿千米(地球约亿千米),火星表面的年平均温度为-57。C,表面昼夜温度变化于20℃到一139℃之间,火星比地球寒冷,昼夜温差比地球大。 火星表面的重力加速度是米/秒2,逃逸速度米/秒,而地球分别是米/秒2和米/秒;因此火星的引力场较弱,大气比较稀疏容易逃逸,平均表面气压仅700帕,不到地球海平面气压的1%。火星大气的主要成分是CO2(占),其次是N2(占)。火星由于大气稀薄,风速很大,风在火星表面肆虐,形成了广泛分布的活动沙丘和沙漠。火星上经常发生台风和龙卷风。当风速达到50~100米/秒时,100微米的尘沙被吹到大气中,形成区域性尘暴。每个火星年约发生上百次区域性尘暴,几个区域性尘暴偶然联合起来,把大量尘沙卷到30千米的高空,发展成全球性大尘暴,可持续几个星期。 火星的地形明显地不对称,南半球的地势比北半球高。火星表面的2/3都是古老的、撞击坑非常密集的地形。南半球分布有无数网络状的河谷系统,它们看上去象是被流水切割形成的,太阳系最长、最大的水手大峡谷,长3000多千米,宽600千米、深约8千米;而地球上美国亚利桑那州的“大峡谷”,其长度仅 800千米、宽30千米、深千米。火星给人印象最深刻的面貌是巨大的盾状火山,例如奥林匹克火山就是一个庞然大物,直径达550千米,山峰高千米,是太阳系最高的山峰。火星的北半球似乎曾经是辽阔的大洋盆地,是“河流”汇集的“海洋”。火星是一个寒冷的、干燥的荒漠世界。 寻找生命迹象 自1961年以来,美国和前苏联在火星探测上展开了一场激烈的竞争。 2003年,欧空局开始发射“火星快车”探测火星,迄今为止对火星实施了42次探测,探测方式实现了对火星的飞越、环绕、软着陆、火星车巡视和现场分析样品,突破了一系列关键技术,大大提高了人类对太阳系探测的能力,获得了对火星深入系统的科学认识。火星探测的科学问题主要集中在探测火星生命活动的信息,探测与研究火星的演化,以及与类地行星的比较研究和探讨火星的长期改造与今后大量移民建立人类第二个栖息地的前景,为人类社会的持续发展服务。 火星探测的首要任务是探测火星生命活动的信息。通过大量火星轨道环绕探测器的探测,特别是美国在1975年发射的海盗1号和海盗2号着陆器和2007年发射的凤凰号着陆器,在火星表面开展了一系列生命活动信息的探测与生命科学实验,证明当今火星表面没有任何生命活动的迹象。 正当人们对火星生命的探测怀着绝望之际,却在火星大气层中发现了含有微量的水蒸气和甲烷,又重新点燃了探测火星生命的希望。凡有生命的活动必定会释放甲烷,大气层中的甲烷可能表证火星有最低等生命的活动。地球上广泛分布的天然气藏(主要成分是甲烷),绝大部分也是生物成因;但是,在大庆等地也发现一些天然气藏是由非生物过程形成的。因此,关键问题是要科学判别火星大气中的甲烷是生物成因,还是非生物成因?由于火星大气中甲烷的含量仅有30ppt(1ppt是1万亿分之一),当今火星探测卫星的同位素质谱仪还不具备测定甲烷等化合物碳同位素的技术能力,只能在技术取得突破后才有可能予以回答。 1984年在南极阿连山地区找到了一块火星陨石ALH84001。美国的科学家将陨石切片在电子显微镜下观察,发现陨石中有大量密密麻麻分布的微体生物 “化石”——细菌。微体生物的截面大约只有1%头发丝大小。经测定,ALH 84001的形成年龄为36亿年,表明36亿年前,火星曾繁衍过最低等的生命——细菌。当时,地球发育的生物水平也是最低等的微体生物——细菌。问题引发了更大范围的科学争论:既然火星的生物“化石”现在可以带到地球上来,在更远古的时代,火星的生命物质也可以随陨石带到地球上来,说不定地球的生命是火星生命的后代。当然也完全可以相反,地球的生命物质也可以随地球陨石带到火星上去,火星的生命却是地球生命的后代。也许地球和火星都曾各自发育过生命。由于火星环境恶劣,生命被夭折了,而地球的生命得以演化繁衍。ALH84001经过全世界科学家的精细研究,有一派科学家列举大量事实证明,这些“化石”并不是生命物质的化石,而是自然过程形成的特殊结构,是典型的非生物成因。火星是否曾经有过生命仍然是一个谜。 希望依然存在 火星现在没有任何生命活动的信息。火星过去可能发育过生命,火星的演化历史的确存在过气候适宜于生命产生与生存的环境。大量的探测成果表明,火星表面存在大量的古河道体系和水流动痕迹。生命产生与演化的必要条件之一是必须有水的存在,而火星上曾经有过大量的水体活动,无疑给火星上曾经有过生命物质的观点提供了有利的证据。要确证火星曾经存在过生命,必须找到火星表面的沉积岩并在沉积岩中发现火星的生物化石。 火星现在是不是具备生命存在与繁衍的条件与环境? 根据海底黑烟囱、极地冰盖下、盐湖淤泥和炎热沙漠等极端环境下各种生命形态的发现与研究,表明火星表面的环境依然具备生命繁衍的条件。由于火星表面是干枯的,没有水体的活动,而大量的事实证明火星的水体埋藏在地下。探测火星地下水的埋藏位置,有可能发现火星的低等生命形态。 火星生命的探测依然是任重而道远!

题名应简明、具体、确切,能概括论文的大概内容,有助于选定关键词,符合编制题录、索引和检索的有关原则。简明扼要,提纲挈领。 命题讲究理论性和现实性,从一般性说特殊性。理论性是指基于某个理论。(1.摘要的规范摘要是对论文的内容不加注释和评论的简短陈述,要求扼要地说明研究工作的目的、研究方法和最终结论等,重点是结论,是一篇具有独立性和完整性的短文,可以引用、推广、扩展。2.撰写摘要注意事项①不得简单重复题名中已有的信息,忌讳把引言中出现的内容写入摘要,不要照搬论文正文中的小标题(目录)或论文结论部分的文字,也不要诠释论文内容。②尽量采用文字叙述,不要将文中的数据罗列在摘要中;文字要简洁,应排除本学科领域已成为常识的内容,应删除无意义的或不必要的字眼;内容不宜展开论证说明,不要列举例证,不介绍研究过程;③摘要的内容必须完整,不能把论文中所阐述的主要内容(或观点)遗漏,应写成一篇可以独立使用的短文。④摘要一般不分段,切忌以条列式书写法。陈述要客观,对研究过程、方法和成果等不宜作主观评价,也不宜与别人的研究作对比说明。)(1.关键词规范关键词是反映论文主题概念的词或词组,通常以与正文不同的字体字号编排在摘要下方。一般每篇可选3~8个,多个关键词之间用分号分隔,按词条的外延(概念范围)层次从大到小排列。关键词一般是名词性的词或词组,个别情况下也有动词性的词或词组。应标注与中文关键词对应的英文关键词。编排上中文在前,外文在后。中文关键词前以“关键词:”或“[关键词]”作为标识;英文关键词前以“Key words”作为标识。关键词应尽量从国家标准《汉语主题词表》中选用;未被词表收录的新学科、新技术中的重要术语和地区、人物、文献等名称,也可作为关键词标注。关键词应采用能覆盖论文主要内容的通用技术词条。2.选择关键词的方法关键词的一般选择方法是:由作者在完成论文写作后,从其题名、层次标题和正文(出现频率较高且比较关键的词)中选出来。)还有:(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:a.提出问题-论点;b.分析问题-论据和论证;c.解决问题-论证方法与步骤;d.结论。

关于火星的研究现状论文

火星,因其荧荧如火,亮度经常变化,位置也不固定,我国古人将火星取名为“荧惑”;古巴比伦人称“尼嘎”(刚烈英雄);古埃及人称“哈·底契” (红色亮星)。在古希腊和古罗马的神话中,火星是宙斯和赫拉的儿子,他司职战争,形象英俊,勇猛顽强,喜欢打仗,是力量与权力的象徵,是好斗与屠杀的战神。古希腊人称火星为“阿瑞斯”(战神)。 火星有两个平均直径十几千米的小卫星,就是以阿瑞斯的两个儿子——福波斯和德瑞斯命名的;古罗马人称火星为“玛尔斯”,是身披盔甲浑身是血的战神,火星的符号是♂。Mars之名和火星符号被国际沿用至今。 1609年,意大利科学家伽利略第一次用望远镜观察火星,开创了人类用科学仪器观测火星之先河。1666年,G.卡西尼 通过望远镜观察火星并确定了其转动周期,计算火星的日长是24小时40分钟。1672年,惠更斯第一次发现在火星的南极有一个白点,可能是极冠,并第一次提出了可能存在地外生命的猜想。1777-1783年,英国天文学家W.赫歇尔用自己发明的望远镜研究了火星,并错误地认为火星上黑暗的地方是海洋,明亮的地方是陆地,还认为所有的星球都居住有生命。他还预言,也许火星居民也享受着与我们类似的环境。 1877年米兰天文台台长亚帕雷利斯基观测火星之后,宣布他看到了火星上的“cannali”,原意是道路却被错译为“运河”,后来演绎出火星上有运河就有开凿和利用运河的火星人和兴盛的农业。19世纪末,开始了火星运河的狂热研究,大量有关 “火星人”、“火星人袭击地球”、“大战火星人”等小说和电影应运而生。1905年,美国的厄尔火星观察台,拍摄到火星38条“运河”的照片。 已知的火星 太阳系的八大行星,按照距离太阳由近及远的次序依次是:水星、金星、地球和火星,由于它们体积较小,密度较大,具有固体的岩石表面,被称为类地行星或内行星;火星之外是木星、土星、天王星和海王星四个巨行星,也叫类木行星。 火星的平均赤道半径为3393千米,仅为地球的53%;火星的质量是地球质量的;火星绕太阳的公转的运行轨道呈椭圆形,周期为687天,即个地球年;火星的自转情况跟地球相似,自转方向跟地球相同,自转周期也就是火星一天的时间为小时;火星的自转轴是倾斜的,倾角为。,因此火星上也有四季变化,但每个季节大约比地球季节要长一倍。 火星与太阳的距离比地球远,平均距离约为 亿千米(地球约亿千米),火星表面的年平均温度为-57。C,表面昼夜温度变化于20℃到一139℃之间,火星比地球寒冷,昼夜温差比地球大。 火星表面的重力加速度是米/秒2,逃逸速度米/秒,而地球分别是米/秒2和米/秒;因此火星的引力场较弱,大气比较稀疏容易逃逸,平均表面气压仅700帕,不到地球海平面气压的1%。火星大气的主要成分是CO2(占),其次是N2(占)。火星由于大气稀薄,风速很大,风在火星表面肆虐,形成了广泛分布的活动沙丘和沙漠。火星上经常发生台风和龙卷风。当风速达到50~100米/秒时,100微米的尘沙被吹到大气中,形成区域性尘暴。每个火星年约发生上百次区域性尘暴,几个区域性尘暴偶然联合起来,把大量尘沙卷到30千米的高空,发展成全球性大尘暴,可持续几个星期。 火星的地形明显地不对称,南半球的地势比北半球高。火星表面的2/3都是古老的、撞击坑非常密集的地形。南半球分布有无数网络状的河谷系统,它们看上去象是被流水切割形成的,太阳系最长、最大的水手大峡谷,长3000多千米,宽600千米、深约8千米;而地球上美国亚利桑那州的“大峡谷”,其长度仅 800千米、宽30千米、深千米。火星给人印象最深刻的面貌是巨大的盾状火山,例如奥林匹克火山就是一个庞然大物,直径达550千米,山峰高千米,是太阳系最高的山峰。火星的北半球似乎曾经是辽阔的大洋盆地,是“河流”汇集的“海洋”。火星是一个寒冷的、干燥的荒漠世界。 寻找生命迹象 自1961年以来,美国和前苏联在火星探测上展开了一场激烈的竞争。 2003年,欧空局开始发射“火星快车”探测火星,迄今为止对火星实施了42次探测,探测方式实现了对火星的飞越、环绕、软着陆、火星车巡视和现场分析样品,突破了一系列关键技术,大大提高了人类对太阳系探测的能力,获得了对火星深入系统的科学认识。火星探测的科学问题主要集中在探测火星生命活动的信息,探测与研究火星的演化,以及与类地行星的比较研究和探讨火星的长期改造与今后大量移民建立人类第二个栖息地的前景,为人类社会的持续发展服务。 火星探测的首要任务是探测火星生命活动的信息。通过大量火星轨道环绕探测器的探测,特别是美国在1975年发射的海盗1号和海盗2号着陆器和2007年发射的凤凰号着陆器,在火星表面开展了一系列生命活动信息的探测与生命科学实验,证明当今火星表面没有任何生命活动的迹象。 正当人们对火星生命的探测怀着绝望之际,却在火星大气层中发现了含有微量的水蒸气和甲烷,又重新点燃了探测火星生命的希望。凡有生命的活动必定会释放甲烷,大气层中的甲烷可能表证火星有最低等生命的活动。地球上广泛分布的天然气藏(主要成分是甲烷),绝大部分也是生物成因;但是,在大庆等地也发现一些天然气藏是由非生物过程形成的。因此,关键问题是要科学判别火星大气中的甲烷是生物成因,还是非生物成因?由于火星大气中甲烷的含量仅有30ppt(1ppt是1万亿分之一),当今火星探测卫星的同位素质谱仪还不具备测定甲烷等化合物碳同位素的技术能力,只能在技术取得突破后才有可能予以回答。 1984年在南极阿连山地区找到了一块火星陨石ALH84001。美国的科学家将陨石切片在电子显微镜下观察,发现陨石中有大量密密麻麻分布的微体生物 “化石”——细菌。微体生物的截面大约只有1%头发丝大小。经测定,ALH 84001的形成年龄为36亿年,表明36亿年前,火星曾繁衍过最低等的生命——细菌。当时,地球发育的生物水平也是最低等的微体生物——细菌。问题引发了更大范围的科学争论:既然火星的生物“化石”现在可以带到地球上来,在更远古的时代,火星的生命物质也可以随陨石带到地球上来,说不定地球的生命是火星生命的后代。当然也完全可以相反,地球的生命物质也可以随地球陨石带到火星上去,火星的生命却是地球生命的后代。也许地球和火星都曾各自发育过生命。由于火星环境恶劣,生命被夭折了,而地球的生命得以演化繁衍。ALH84001经过全世界科学家的精细研究,有一派科学家列举大量事实证明,这些“化石”并不是生命物质的化石,而是自然过程形成的特殊结构,是典型的非生物成因。火星是否曾经有过生命仍然是一个谜。 希望依然存在 火星现在没有任何生命活动的信息。火星过去可能发育过生命,火星的演化历史的确存在过气候适宜于生命产生与生存的环境。大量的探测成果表明,火星表面存在大量的古河道体系和水流动痕迹。生命产生与演化的必要条件之一是必须有水的存在,而火星上曾经有过大量的水体活动,无疑给火星上曾经有过生命物质的观点提供了有利的证据。要确证火星曾经存在过生命,必须找到火星表面的沉积岩并在沉积岩中发现火星的生物化石。 火星现在是不是具备生命存在与繁衍的条件与环境? 根据海底黑烟囱、极地冰盖下、盐湖淤泥和炎热沙漠等极端环境下各种生命形态的发现与研究,表明火星表面的环境依然具备生命繁衍的条件。由于火星表面是干枯的,没有水体的活动,而大量的事实证明火星的水体埋藏在地下。探测火星地下水的埋藏位置,有可能发现火星的低等生命形态。 火星生命的探测依然是任重而道远!

伙计上有生命

火星上有没有生命调查报告一.问题的提出火星是太阳系中的第四颗行星,它与地球的距离仅次于金星,也是我们的近邻。这几天我对火星上是否有生命这个问题产生了浓厚的兴趣,为了解释这些问题,我进行了一系列的研究。二调查方法1.查阅相关资料,上网浏览。2.发调查表做统计。3.通过多种途径,搜集火星的地底下是否也有微生物存在。三.调查情况和资料整理经过调查,在火星的大气中,含有形成生命不可缺少的基本元素:碳.氢.氧.氮以及水蒸气。据美国天文学宣布,火星上有二个地区水份比较充足。美国的火星探测器证实,这二个地区的水蒸气比火星上其他地方要多10到15倍,地球上许多生物能够在这种条件下生存。这一系列结果都说明了火星过去可能存在高级生命。经过进一步的研究我发现火星表面已经有水的痕迹,但并没有生命的迹象。不过火星上也不是不可能没有存在活着生物,它们也许被封闭在了10米厚的永久冰土层当中,也许已以火星悬浮的大气里存在了无比漫长的时期。四.结果分析通过以上的情况调查,我明白了火星上并没有生命,因为海盗号飞船的宇宙员进行了有关生命过程的实验。他们将火星上土壤样品放入营养液中,再充入可能导致细菌活动的二氧化碳.甲烷和氧气。结果发现火星土壤是化学活性的,而不是生物活性的。由此可推出生命不可能在又干又冷的火星上存在的。

火星农业最新研究进展论文

未来,人类将重返月球,甚至 探索 火星等更远的天体。长期载人 探索 任务面临诸多挑战,其中就包括解决宇航员的吃饭问题。具备在太空或者外星球种庄稼的能力对未来的 探索 任务至关重要。新研究发现与人类一样,生活在微重力环境下的植物在基因表达方面与地球上不同。 具备太空种庄稼的能力对未来的 探索 任务至关重要 太空植物 未来的宇航员能够吃上自己在太空中栽种的新鲜蔬菜吗?随着科学家不断推进太空中栽种植物的相关研究,在将来的某一天,人类有望在太空或者火星表面种庄稼,自己动手解决吃饭问题。佛罗里达大学太空植物实验室的科学家正在进行一项新研究,对从国际空间站所栽植物提取的组织进行分析。研究表明植物能够在太空环境下生存,但它们要面临一系列独特挑战。现在,科学家刚刚开始了解这些挑战。 革新性水培植物种植舱——月球温室原型,在设计上旨在让月球或火星上的宇航员获得稳定的蔬菜供应 通过观察转录组(RNA序列或者遗传信使),科学家对太空植物在任何给定时间的基因表达进行分析,同时与地球上的样本进行比较。论文作者和首席研究员安娜-丽萨·保罗表示,基因表达提供了一个引人注目的读数,揭示植物如何对所处环境做出响应。“从某种程度上说,你可以将其理解为植物使用的一系列‘工具’,用于对抗太空飞行环境。”研究论文刊登在《植物学应用》杂志上。 学名“Arabidopsis thaliana”的拟南芥。科学家在空间站上栽种的拟南芥进行了研究 研究植物“大脑” 研究过程中,科学家对拟南芥样本进行了分析,尤其是根尖。这是一种小型开花植物,学名“Arabidopsis thaliana”,与卷心菜和芥菜存在血缘关系。保罗表示:“根尖的作用有点像大脑,帮助植物感知环境变化,而后将信号分子输送到相关部位并触发一系列变化,帮助根部生长回到正常轨道。如果没有引力帮助完成信号传导,会发生什么?根尖仍充当根部的中央处理单元。通过观察根尖的转录组,我们能够洞察植物如何在无重力环境下生长。” 月球温室原型,座落于亚利桑那州大学的可控环境农业中心 对于植物如何在微重力环境下生长,科学家仍有太多东西需要了解。这项研究帮助科学家确定太空和地球环境下植物生长的差异。保罗指出:“我们发现太空飞行中的很多基因表达差异与细胞壁重塑和细胞扩增之间存在联系。如果因为特定压力的存在面临生存挑战,植物会相应地做出反应。即使在太空飞行环境下,植物的生长也给人一种无压力的感觉。通过这项研究,我们意识到植物能够感知到自己处在一个奇异环境。虽然能够继续生存,但它们需要付出很大努力。” 2016年12月2日,国际空间站,第50远征队指挥官谢恩·金布罗正在采摘生菜 火星农业生产 研究太空环境下植物如何生长对未来的空间站、月球和火星载人 探索 任务至关重要。保罗说:“我们需要首先了解植物如何应对零重力环境或者任何发生改变的重力环境,而后才能确信它们能否在火星上茁壮成长。” 这项研究分析了空间站的微重力环境如何影响植物生长,揭示植物如何应对重力改变的环境。保罗指出了解植物如何在受控和资源受限的空间站上生长,能够为未来的相关研究提供参考,进一步了解植物如何应对外星球的受控环境。 在空间站上栽种的京水菜 现在的宇航员无法在太空享受到新鲜食物。他们在空间站的逗留时间相对较短,同时还能定期获取补给。此外,航天机构还在不断努力,为他们提供可口的饭菜。在空间站上,宇航员拥有充足的食物,不会出现饿肚子的情况。 未来,宇航员要执行探月任务,甚至还要登上火星,吃饭问题将成为一个重大挑战。如果想让宇航员执行长期火星 探索 任务,必须具备在火星上种庄稼的能力。只有让火星农业生产成为可能,才能让宇航员获得 健康 的食物,确保载人 探索 任务的可持续性。

据外媒报道,火星之所以成为无生命的荒原,原因不止一个。不仅温度和缺水让生命难以应对,磁场的缺乏也意味着辐射不断地冲击地表。如果人类计划在这颗红色星球上度过更长的时间,他们将需要支持一种额外的生命类型--作物。 然而,据瓦格宁根大学和代尔夫特理工大学的研究人员发表的一篇新论文显示,即使是火星表面的温室也不足以保护植物免受火星表面致命辐射的伤害。 理想情况下,火星表面的农业应该由温室圆顶组成,让照射地球的有限阳光直接照射到作物上。然而目前的温室玻璃技术无法阻挡持续照射火星的致命伽马射线。火星上的伽马辐射水平约是地球上的17倍,足以显著影响生长在温室表面的作物。 研究人员进行了一项实验,他们种植了菜园里的西洋菜和黑麦并测量了在火星辐射水平下和在“正常”环境中只有地球辐射水平下种植的作物的产量。辐照组的作物最终变成矮生,叶子呈褐色,在生长28天后收成显著减少。 为了模拟伽马辐射环境,该项目的大部分工作都是由本科生Nyncke Tack完成,他使用了5个单独的钴60放射源。它们被均匀地分散在测试作物的头顶上以创建一个“辐射面”,类似于火星上一直存在的辐射场。 尽管固体更容易阻止这些类型的辐射,但其他混杂的因素--包括增加β和α辐射--也可能导致作物腐烂。研究小组对他们的发现并不感到惊讶,他们建议在地球风化层阻挡大部分辐射的地方以建造地下农场。这样做有一个明显的缺点,就是会失去阳光,并且有一个额外的好处,那就是成为一个更可控的环境,LED和温度控制则能填补表面的环境条件。 为了证明研究人员的理论,他们接下来将征用荷兰的一个冷战时期的地堡,看看如果辐射来自外部,同样的辐射实验是否会影响种植在内部的作物。虽然不能直接模拟火星风化层,但这是一种理解人类最终如何在天空中耕种的新方法。

第一批登陆火星的人类殖民者将不得不放弃地球上的许多物质享受,比如享受臭氧层,或者选择放弃养育火星上的基因工程婴儿。幸运的是,这些穷困潦倒的殖民者可能不会放弃一个基本的人间便利就是酒。格鲁吉亚是一个有着8000年葡萄种植传统的国家,它正在把自己的顶级空间和葡萄酒科学家投入到研究如何在火星上种植葡萄的工作中。这个名为IX Millennium项目表面上是对格鲁吉亚第九个千年酿酒计划的肯定,它将涉及火星农业基础设施建设的几个阶段的研究。关键的一步是确定地球上最适合抵御这颗红色星球的强烈辐射、可怕的沙尘暴和剧烈温度波动的葡萄品种。这项研究将有助于在2024年之前为火星上的永久定居点提供水源。这一年,SpaceX公司的创始人埃隆·马斯克(Elon Musk)计划在火星上进行首次载人飞行(NASA希望在本世纪30年代也能这样做)。格鲁吉亚太空研究机构(Space Research Agency)创始人、葡萄酒项目顾问尼科洛兹·多博吉尼泽(Nikoloz Doborjginidze)说:如果有一天我们要在火星上生活,格鲁吉亚需要做出贡献,我们的祖先把葡萄酒带到了地球,所以我们可以对火星做同样的事情。 据格鲁吉亚新闻机构报道,新太空葡萄酒项目将于今年晚些时候启动,在首都第比利斯的一家酒店内安装“垂直温室”。在那里,地面到天花板的土壤和种子荚(包括葡萄、草莓和芝麻菜)将在水培灯下生长,人类的干扰最小,模拟火星上受控农业荚的可能条件。与此同时,格鲁吉亚葡萄酒专家正在努力研究哪种葡萄品种最适合在火星恶劣的环境中生存。据《华盛顿邮报》报道,未来几年,第比利斯商业技术大学(Business Technology University)的研究人员计划在实验室中模拟火星环境,将土壤样本暴露在零下环境、高浓度的一氧化碳和稀薄的空气中,以模拟“地球上20000英尺(6000米)高的大气压力”。这些实验可能至少要到2022年才会有结果,但科学家们已经预感到,白葡萄酒在这个红色星球上最受欢迎。乔治亚葡萄园实验室主任Levan Ujmajuridze说:白人往往对病毒更有抵抗力。所以,我想它们也能很好地抵抗辐射,他们的皮肤可以反映出来。这些实验可以很好地为未来的火星人提供葡萄藤——但实际的发酵、装瓶和陈酿将取决于他们。目前还没有人确切知道在微重力条件下如何发酵葡萄,但美国宇航局科学家认为这是可能的。乔治亚州研究小组的酗酒实验并不是第一次尝试太空农业。国际空间站(ISS)上的宇航员已经开始在微重力条件下种植沙拉作物,而中国最近部署的嫦娥四号着陆器将尝试在月球上种植土豆和芥蓝(一种类似卷心菜和芥菜的开花植物)。与此同时,百威啤酒(Budweiser)制造商已三次将大麦种子送入太空,希望成为“火星上的第一款啤酒”,而从2011年到2014年,一批阿德莫尔(Ardmore)苏格兰威士忌在国际空间站上度过了三年时间。该项目向地球人表明,即使是一滴古老的纯净水,显然也无法免受微重力的破坏;据报道,这款苏格兰威士忌回家后尝了一口“消毒含片”和“橡胶烟”。

  • 索引序列
  • 火星研究论文
  • 关于火星的研究论文
  • 基于火星的研究论文
  • 关于火星的研究现状论文
  • 火星农业最新研究进展论文
  • 返回顶部