首页 > 期刊论文知识库 > 低温真空微波干燥研究论文

低温真空微波干燥研究论文

发布时间:

低温真空微波干燥研究论文

真空冷冻干燥技术的现状及发展趋势 1 引言 近几年来, 真空冷冻干燥技术发展非常迅速, 国内尤为突出。十年前, 国内生产冻干设备的工厂只有3 家,现在已近30 家。冻干产品由生物制品到药品,再发展到出口冻干食品。生产冻干食品的厂家从无到有,目前已有几十家。冻干理论研究也活跃起来,有十几所高等院校和科研机关在研究冻干过程的传热传质,发表论文数十篇,出版了5 本专著。可以肯定地说,冻干设备、工艺和理论研究已经取得了可喜的成果,但也存在着不足。 2 冻干设备的现状及发展趋势 医药用冻干机已经基本成熟, 国内也制定了相应技术标准。有关厂家生产的医药用冻干机,已能代替进口设备。其压盖、清洗、消毒灭菌等功能齐全,产品质量和自动化程度较高,只是水分在线测量仪和个别电器元件等尚需进口。食品冻干机发展较快,生产厂家较多,质量、性能、规格型号各不相同。前几年多从国外引进,近几年已经基本国产化了。 目前,国产食品冻干机还都是非标准化产品。大部分生产厂家走的是仿制道路。有的厂家在采用国外先进技术的同时, 并且进行了很大的改进。如: 加热板内采用了特殊导流装置, 使板内流体的流量均匀, 保证了加热的均匀和稳定; 捕水器在工作中可实现交替捕水和融冰, 捕水器盘管内氨液制冷方式由传统的氨液相变制冷改为氨液无相变制冷, 使捕水器盘管内温度均匀, 结霜性能良好。除仿制之外, 国内自己的研制能力也在提高, 有的单位已经脱离了仿制国外机型, 抽气系统采用低架式水蒸汽喷射泵抽水蒸气, 省去了捕水器和制冷系统, 使设备价格有所降低。设计采用地车式装卸料, 地车采用万向胶轮支撑运输装卸料盘的料车进出冻干箱。它与我国台湾产地车运送料盘不同,与丹麦ATLAS 公司等引进的设备采用上吊车的结构也有区别, 是两者优点的结合, 既省去了车间铺吊轨、影响美观、进出冻干室需搬道叉的麻烦,又克服了地车送料盘装卸料时间长、传导加热温度不均匀等缺点。这种设备结构简单,制造容易,使用方便。 食品冻干机还存在着许多不足, 无论是国产还是引进设备其共同的缺点是价格贵, 耗能高,收回投资慢。因此,降低成本,减少能耗是食品冻干机今后的主攻方向。除此之外,国产冻干机还存在一些不足之处: (1) 搁板温度不均匀,造成冻干产品含水率不均匀,产品合格率受影响。造成温度不均匀的原因各不相同。有的是搁板结构和材料质量不好;有的是加热流体分流或流程有缺欠; 有的是捕水器在干燥箱内绝热不好。 (2) 干燥速率低, 干燥箱内各点干燥快慢不一致,反映在产品上仍然是合格率受影响。其原因除搁板温度不均匀外,还与真空系统配置得不合理有关。主要体现在捕水器配置得不合理;水蒸汽喷射泵性能不稳定;抽气口位置不合理等。 (3) 无法判断干燥何时结束,这是重要缺欠,因为它可能造成产品含水率高而不合格,也可能造成干燥时间过长而浪费能源。 (4) 捕水器效率低。主要体现在捕水器面积大而捕水量小,有部分无效面积,其根本原因是捕水器设计不合理。 (5) 真空度不稳定。除操作原因外,可能是真空系统设计不合理。对于水蒸汽喷射泵而言,可能出现的问题是蒸汽锅炉压力不稳定。 食品用冻干机的研究方向和发展趋势应该是: (1) 改进结构,优化设计,降低成本,减少能耗。国外有些冻干机不采用不锈钢制造, 而采用低碳钢涂覆食品用可烘干树脂, 涂层厚度为0. 12~0. 20 mm ,在室温下就会发出红外线。搁板表面涂高性能远红外发射材料,增强其辐射能力, 料盘表面处理, 增强其吸热能力。料盘在两块辐射搁板之间有一最佳位置, 而不是取中间位置,因此应优化设计。捕水器的结构、尺寸、结霜特性的优化,更有实际意义,因为它的造价目前几乎相当于冻干箱的造价, 运转功耗较大。对于冻干机而言, 加热系统只是补充升华热,功率消耗本不应太高,但现有设备并不尽如人意,应该通过结构优化,降低能耗。 (2) 保证质量, 提高性能。有的厂家生产的冻干机从安装好之后, 一直不能投入正常生产; 有的冻干机虽然能生产,但能耗太高,生产的产品越多,赔钱越多; 还有的元器件不断出现故障,影响正常生产。因此,今后生产的冻干机质量必须保证,可靠性要好。提高性能是指除加热速率、抽气速率、温度均匀性、真空度稳定性之外,增强设备新的功能。例如增加冻干结束的判断功能,最简单的办法是称重法。目前已经有人试验,但都不太成功。原因是没有离开天平和地秤的模式,致使小设备安装困难,大设备笨重而不稳定。应该发展重量传感器,用很小的一次元件给出重量随时间的变化。 (3) 开发连续式冻干设备, 当前生产的冻干机都是间歇式产品, 随着工业技术的发展,人民生活水平的提高,消费量会增大,因此发展连续冻干设备,增加冻干产品的产量是必然趋势。 3 冻干工艺的现状及发展趋势 目前,研究冻干工艺的人员比研究冻干设备的人员要多,研究食品冻干工艺的人员比研究医药冻干工艺的人员要多。被研究的冻干食品品种也越来越多。仅就本校已研究过的冻干品种有: (1) 中草药类:人参、冬虫夏草、山药。 (2) 水果类:桃、梨、苹果、香蕉、草莓。 (3) 蔬菜类:葱、菠菜、洋葱、胡萝卜。 (4) 肉类:牛肉、牛肝、鸡肝。 (5) 水产类:虾、海带、海参、扇贝。 (6)其它类:蜂蜜、幼竹鲜汁、紫草红色素、“勿忘我”鲜花等。 本校研究的冻干工艺都没有进行优化研究, 不能算是最佳工艺, 从实验室走入生产车间还应该进一步优化, 使其适合于产业化、快速、节能的要求。有的单位对几种食品的冻干工艺研究得比较出色,其中比较有代表性的食品是蘑菇、大蒜粉、芦笋、速溶咖啡、速溶茶等,并给出了脱水大蒜和脱水洋葱的技术要求,这是冻干食品走向成熟的标志。 西药、血液制品和生物制品的冻干工艺比较难,工艺成熟与否关系重大,产品质量直接关系到人的生命安全。所以研究人员比较少,研究成果有一定时间的保密性。西药冻干的关键问题是避免染菌,一但染菌就会造成重大事故。生物制品则要求更加严格,除避免染菌外还要防止菌种变异,保持活菌活毒的活性。在冻干过程中要加入添加剂和保护剂,这是技术水平很高的工作, 国内外有不同的冻干保护剂, 我国六大生物制品研究所之间也各有妙方。 生物体的冻干工艺已经提到了日程上,本校将灰鼠皮肤去毛冻干后在沈阳药科大学做药理实验证明了与新鲜皮肤的药理作用相同, 复水后在生物显微镜下做组织观察, 与鲜皮细胞组织基本相同。现正在国家自然科学基金的资助下,与中国医科大学合作开展家兔角膜的冻干实验研究。 4 冻干理论的研究现状及发展趋势 真空冷冻干燥技术的理论研究可概括为低压低温传热传质的理论研究,非稳态流场的理论研究和热物性参数与其测量方法研究三大部分。其中低压低温传热传质的理论研究进行得比较早,效果比较明显,目前公认的冻干模型可归纳成三种: 一种是1976 年Sandall 等提出的冰界面均匀后移的稳态模型(URIF) ; 另一种是1968 年Dryer [6 ]等提出的准稳态模型; 第三种是1979 年Litchield 等提出的吸附- 升华模型。 这几种模型都可以描述冻干过程,但又都存在着不足,描述传热过程比较准确,描述传质过程误差较大。主要问题是在传质过程中要发生固- 汽相变,水蒸气在多孔的通道中传递,通道长度要随时间不同而变化,是非稳态过程。多孔通道的结构尺寸还与预冻速度、被冻干物料的物质结构等有关。从近几年的研究报道中还没有见到有新的突破。冻干过程传热传质的理论研究重点是研究发生在被冻干物料内部的过程。非稳态流场的理论研究,重点是研究物料之外、冻干机之内的低压低温空间环境。描述该空间环境的参数有温度、压力、湿度等,这些参数形成的温度场、压力场、湿度分布等都是随时间变化的非稳态流场,这些非稳态流场的模拟方法至今还是个难题。冻干机捕水器中的非稳态流场中又增加了一个汽- 固相变的问题,使研究更加复杂化。因此,近几年虽然有人研究并发表了论文,但都没有形成有效的理论,仍然是值得深入研究的课题之一。无论是传热传质理论研究还是非稳态流场理论研究,都需要一些热物性参数,例如被冻干物料的密度、导热系数、传质系数、水分含量等。由于被冻干物料是各种各样的,无法查找这些数据,需要自己测量。测量时采用什么方法、什么仪表、什么原理等都是研究的课题。还有一类热物性参数测量更是比较困难,这就是在低温低压下湿空气和霜层的特性参数。例如,在真空条件下霜层的密度、厚度、导热系数等都随时间、温度、压力而变化,研究工作相当困难,进展缓慢。 5 结束语 从上述分析可见,冻干技术发展很快,存在问题也不少。迈向21 世纪的冻干技术,除了在设备、工艺和理论方面开展更新、更好、更深入地研究之外,还有待于开拓市场。目前冻干产品销售情况不景气, 除国际市场受东南亚经济危机的影响外, 也受冻干产品质量和品种的制约。国内市场受冻干产品的价格限制,也受新鲜果蔬生产和保鲜技术的冲击。开拓市场的方向应该是上品种、重质量、降价格、面向国外。冻干技术还需开发新的应用领域,生命科学、材料科学等都是冻干技术的交叉学科,是很有发展前途的领域,应该作为开发应用新领域的首选范围。

微波能应用技术在食品加工领域的新发展南京三乐微波技术发展有限公司目录0 前言1 微波真空(冷冻)干燥2 微波保鲜、杀菌新技术3 微波与传统加热技术的结合4 微波膨化技术5 微波设备现状0 前言随着我国国民经济实力增强、人民生活质量的提高,食品机械迅猛发展,微波食品加工设备也步入一个新的发展时期。家用微波炉已进入千家万户,人们越来越多的了解并感觉到微波加热特性。这为微波能应用发展的打下良好的基础。九十年代后,我国微波食品机械已成为微波应用领域主流,取得可观的效益。本文仅从微波技术应用的一个侧面,介绍近几年微波在食品工业的技术发展1 微波真空(冷冻)干燥真空冷冻干燥(FD脱水)最早产生于1909年,用于生物材料及生物组织的研究。微波真空冷冻升华干燥(MD脱水)源于二战期间,当时战争需要大量新鲜血液制品,而在储存、运输环节存在许多棘手问题无法克服;另外,抗生素的生产也需要采用冻干技术。为此,因战争需要,科学家提出一项研究工程,即“血浆不变性冷冻真空微波升华脱水研究工程”,简称“血浆工程”。把刚抽出的新鲜血浆在极短的时间内速冻成冰块,然后在真空条件下,施以微波升华干燥、脱水成干血粉(含水量约1%),用铝箔复合袋避光密封,保质期可达两年以上,运到前方加定量的无菌蒸馏水稀释即可当新鲜血浆注射。这项工程开创了微波升华脱水干燥步入实用的先河。南京三乐微波技术发展有限公司于87年开始微波真空干燥和微波真空冷冻干燥技术研究,93年研制出了大型微波真空冷冻设备投入蔬菜的冷冻干燥,近几年技术上不断创新,又攻克了微波在低真空状态下易拉弧放电技术难点,现在实用性微波真空冷冻干燥已推上市场。同时微波真空干燥机也进入批量生产阶段。微波真空(冷冻)干燥与其它干燥方法比较的优越性:1、最好地保存原物料的色、香、口味和营养成份;因冻干食品是在低温真空(缺氧)条件下完成,酶和细菌不滋生,食品不变质、不氧化,营养成份特别是那些遇高温会分解的维生素、化冻时与水一起流失的水溶性营养成份损失少。据美国陆军委托食品容器研究所测定:冻干干燥法对肉、蛋、豆类、青菜、甜玉米等食品中的蛋白质无损害,Vc、β胡萝卜素和其它水溶性维生素仅损失5%,对脂溶性维生素(Va,D,E,K)则完全不受损失。微波升华脱水能够最大限度地保留物料中原有的营养成份。例如:晒干青菜的维生素、叶绿素等营养成份只能保留原有的3%;阴干可以保留17%;热片快速干燥可保留40%;FD真空冷冻干燥可以保留到70%以上;微波升华干燥的有效成份可以保留到97%。因此称为不变性脱水。2、干燥速度快,不受形状、厚度影响:微波的穿透性加热和选择性加热能均匀地、快速干燥物料。微波处理5~10cm厚度制品时,干燥时间可节省原来的30%;若厚度增加到20~30cm时,则可节省时间60%以上。例如:用常规热传导给小香葱做冷冻干燥,需18~21小时;而用微波仅8~9小时。3、 能最好的保持原物料形状、口感与风味、复水性好4、节能降耗:热效率高,理论计算可达94%。5、产品品质高:常规热传导升华脱水时,有用温度载热油,或用密封增压技术把水加热,在加热板中强制循环,传递热量给盛料盘和物料,底部物料中热敏物质因长时间过热而变性、变色、变味,严重的变焦黄,就是进口设备正品率也不超过90%,国产只达60%上下,而微波独特的加热方式使物料内外同时升温汽化,脱水后的产品上、下质量一致,可达到100%合格率。产品保存期可达3至5年,最长10年。而一般的保鲜冷藏至多几个月,最多不会超过1年。微波兼有杀菌、灭酶功效。6、干燥温度低,适合加工高档、热敏性产品:目前广泛应用在对温度敏感的药物、饮料、果汁或富含维生素的物料上。微波真空干燥速溶橘粉装置,真空室直径为,长12m,微波功率48Kw,使用玻璃增强聚乙烯传送带连续传递,具有膨化作用。它先将含有63%固形物的橘浆抽吸并涂抹在宽的传送带上,堆高厚度为3~7mm,在~(80~100mmHg)的低压下输入微波能量,加热40min,可膨化到厚度为80~100mm,制成含水率为20%的速溶橘粉,生产能力50kg/h。产品不仅保持橘汁原有色、香、味,而且所保留的维生素C量是喷雾干燥法不可能达到的。2 微波保鲜、杀菌新技术为了防止食品早期变质以便储存,通常使用紫外灯、蒸气、高压、钴60、臭氧、充氮、添防腐剂等方法进行杀菌,微波技术则又开辟了一种理想方式,能在短时间内,对物料内外同时杀菌,又不破坏营养成分。在过去30年,对食品特别是袋装、瓶装食品进行了大量研究,采用微波短时间照射,可快速升温杀菌。与常规方法相比,可保持更好的口味、颜色和营养成份。在我国食品的微波杀菌保鲜技术已被越来越多食品生产厂家所采用。利用脉冲调制的微波能进行杀菌试验,证实可以用较小的温升达到杀菌的目的。这也说明微波杀菌不只是热力杀菌,还有非热力致死细菌的能力。这就是所谓的非热效应。根据这个原理,我们可以在极短的时间内、采用高于常规微波场能量密度的数倍或数十倍的脉冲微波能量照射食品,不但可以可靠杀死细菌,还可大大降低食品温升、降低设备的能耗。降低杀菌的成本。目前廉价的915MHz、2450MHz大功率微波脉冲源已开发出来,实用性整机近期可以推出。3 微波与传统加热技术的结合众所周知微波能可将被加热物质内外同时加热,但在实际应用中,由于物体周边流动空气的影响,外表面散热较为容易,使得物体内部温升往往高于外表面。而热风系统中,物体加热是从外向内进行热的传导,故外表面温度往往大于内部。可以设想若将两种加热方法结合在一起可有几点好处:1、可真正实现内外同时加热;2、环境温度上升加大系统抽湿能力,避免水蒸气在加热器内部结露;3、由于微波设备一次性投资高于常规设备,合理的分配两者之间比例,可降低系统造价,起事半功倍效果。4、发挥各自的工艺优势。国外的许多食品干燥项目采用此技术。日本研制的一种微波膨化干燥蛋黄粉设备使用16只2450MHz,5kw的磁控管,总输出功率90kW,其方法是先将蛋黄浆料涂布在传送带上,用远红外预热到80℃,然后用微波加热,膨化至3~5cm厚,再急速冷却到40℃,切碎后继续用常规方法制成蛋黄粉,日产1吨。瑞典采用2450MHz 30kw的微波装置生产肉馅饼。由自动机械生产的肉馅饼,经微波完成烹制过程,最后用电热丝加热使表面褐化,产品质量明显提高,每块饼的处理时间为2分钟,每小时16000只。近几年国内许多微波食品工程采用综合加热技术,将微波加热分别与电热风、蒸汽、红外、喷雾、火焰、冷干风等常规加热方法联合使用,取得良好效果。4 微波膨化技术膨化食品深受广大群众喜爱,今几年发展较快。微波可迅速加热食品,并使得内部压差急剧变化,这种特性使得微波在食品的膨化干燥领域占有一席之地。微波苹果膨化生产技术,是一重大科技创新技术。 通过对苹果进行系列加工和微波膨化干燥,制成一种新颖独特的休闲食品――苹果脆片。它保持了原有水果的风味和色泽,不添加任何添加剂,是地道的天然绿色食品,该产品口感酥脆、酸甜适口、风味独特浓郁、营养丰富、复水性好,且便于贮存、运输携带,是老少皆宜的高级休闲食品及边防、海防、高山、高原上士兵们及野外、水下人员的必需食品。它的研制成功是苹果加工技术上一个重大突破,本技术还可生产其它果蔬酥产品。薯条、薯片的膨化过去都是用油炸,这不但增加了食品的热量、还破坏了其原有的营养成分。用微波膨化薯条、薯片,不但保持了食品原汁原味,还省去油炸工艺、口感极好、风味独特,加工成本较低。是农副产品深加工极好项目。微波加工方便面的技术近来又有所突破,用高场强微波使方便面在加工中产生膨化,生产出的产品复水性极好,对冲泡方便面的水温要求降低,冲泡时间缩短,口感上升。此技术还降低了棕榈油的损耗。此设备采用2450MHz频率、功率35KW,班产量3~4吨。可24小时连续工作。5 微波设备现状微波应用技术在我国发展已有近三十年的历史,虽然它还属新兴的应用领域,但随着现代科学技术不断进步,近几年微波设备的可靠性、实用性不断提高。微波专业生产厂家制造技术也趋于成熟,制造成本大副下降。许多微波食品加工设备均具有操作简单、可连续稳定工作、可抗空载、维修方便等特点。微波技术发展初期,微波设备有许多典型缺点:加热不均匀、故障率高、可靠性差、难以操作和维护等,现均得到彻底改善。常规微波食品加工设备用于脱水干燥时,每一度电耗可脱~1公斤水份;用于灭菌保鲜时每一度电耗可处理7~12公斤物料。用于解冻、膨化物料时每一度电耗可处理物料12~24公斤。定购微波食品加工设备不但要注意外观造型、价格与质量。作为微波设备,有三个重要性能指标必须了解:1、微波泄漏量:微波设备的微波能量泄漏有害人体健康,设备进、出料口、炉门、操作区等地方,微波泄漏应符合国家有关标准规定。2、整机效率:微波设备应是节能高效设备,专业厂家生产的整机热转换总效率应在50%以上。3、均匀性:不管微波设备是用于加热、干燥还是杀菌,其设备加热物料的温升差值应小于±5℃。这样才能保证微波加热效果的一致性。微波设备的设计是以电磁波传输理论为基础的。从事设备设计的技术人员一般不了解食品的工艺、特性,而食品工艺研究人员积累的大量常规食品加热的经验又不能全部移植在微波加热系统,两者的结合需要一定时间,这就是目前微波技术在食品业推广所遇到的障碍。好在我们已跨入信息时代,行业之间合作将很快打破这个瓶颈。与国外微波设备相比,国内微波技术本身并无逊色,但在机电一体化技术、自动控制水平、整机运行可靠性程度和生产线配套能力存在明显差距,这是今后国内从事微波应用技术工作的科研人员急需化大力量解决的课题。

我给你一部分,因为太多了,过不来,具体的你点击下面的网址自己挑选吧,拼拼就成了!干燥是保持物质不致腐败变质的方法之一。干燥的方法许多,如晒干、煮干、烘干、喷雾干燥和真空干燥等。但这些干燥方法都是在0℃以上或更高的温度下进行。干燥所得的产品,一般是体积缩小、质地变硬,有些物质发生了氧化,一些易挥发的成分大部分会损失掉,有些热敏性的物质,如蛋白质、维生素会发生变性。微生物会失去生物活力,干燥后的物质不易在水中溶解等。因此干燥后的产品与干燥前相比在性状上有很大的差别。而冷冻干燥法不同于以上的干燥方法,产品的干燥基本上在0℃以下的温度进行,即在产品冻结的状态下进行,直到后期,为了进一步降低产品的残余水份含量,才让产品升至0℃以上的温度,但一般不超过40℃。冷冻干燥就是把含有大量水分物质,预先进行降温冻结成固体,然后在真空的条件下使水蒸汽直接升华出来,而物质本身剩留在冻结时的冰架中,因此它干燥后体积不变,疏松多孔在升华时要吸收热量。引起产品本身温度的下降而减慢升华速度,为了增加升华速度,缩短干燥时间,必须要对产品进行适当加热。整个干燥是在较低的温度下进行的。冷冻干燥有下列优点:一.冷冻干燥在低温下进行,因此对于许多热敏性的物质特别适用。如蛋白质、微生物之类不会发生变性或失去生物活力。因此在医药上得到广泛地应用。二.在低温下干燥时,物质中的一些挥发性成分损失很小,适合一些化学产品,药品和食品干燥。三.在冷冻干燥过程中,微生物的生长和酶的作用无法进行,因此能保持原来的性装。四.由于在冻结的状态下进行干燥,因此体积几乎不变,保持了原来的结构,不会发生浓缩现象。五.干燥后的物质疏松多孔,呈海绵状,加水后溶解迅速而完全,几乎立即恢复原来的性状。六.由于干燥在真空下进行,氧气极少,因此一些易氧化的物质得到了保护。七.干燥能排除95-99%以上的水份,使干燥后产品能长期保存而不致变质。因此,冷冻干燥目前在医药工业,食品工业,科研和其他部门得到广泛的应用。第二节 冻干机的组成和冻干程序产品的冷冻干燥需要在一定装置中进行,这个装置叫做真空冷冻干燥机,简称冻干机。冻干机按系统分,由致冷系统、真空系统、加热系统、和控制系统四个主要部分组成。按结构分,由冻干箱或称干燥箱、冷凝器或称水汽凝集器、冷冻机、真空泵和阀门、电气控制元件等组成。图十三是冻干机组成示意图。冻干箱是一个能够致冷到-40℃左右,能够加热到+50℃左右的高低温箱,也是一个能抽成真空的密闭容器。它是冻干机的主要部分,需要冻干的产品就放在箱内分层的金属板层上,对产品进行冷冻,并在真空下加温,使产品内的水份升华而干燥。冷凝器同样是一个真空密闭容器,在它的内部有一个较大表面积的金属吸附面,吸附面的温度能降到-40℃以下,并且能恒定地维持这个低温。冷凝器的功用是把冻干箱内产品升华出来的水蒸气冻结吸附在其金属表面上。冻干箱、冷凝器、真空管道和阀门,再加上真空泵,便构成冻干机的真空系统。真空系统要求没有漏气现象,真空泵是真空系统建立真空的重要部件。真空系统对于产品的迅速升华干燥是必不可少的。致冷系统由冷冻机与冻干箱、冷凝器内部的管道等组成。冷冻机可以是互相独立的二套,也可以合用一套。冷冻机的功用是对冻干箱和冷凝器进行致冷,以产生和维持它们工作时所需要的低温,它有直接致冷和间接致冷二种方式。加热系统对于不同的冻干机有不同的加热方式。有的是利用直接电加热法;有的则利用中间介质来进行加热,由一台泵使中间介质不断循环。加热系统的作用是对冻干箱内的产品进行加热,以使产品内的水份不断升华,并达到规定的残余水份要求。控制系统由各种控制开关,指示调节仪表及一些自动装置等组成,它可以较为简单,也可以很复杂。一般自动化程度较高的冻干机则控制系统较为复杂。控制系统的功用是对冻干机进行手动或自动控制,操纵机器正常运转,以冻干出合乎要求的产品来。冷冻干燥的程序是这样的:在冻干之前,把需要冻干的产品分装在合适的容器内,一般是玻瓶或安瓶,装量要均匀,蒸发表面尽量大而厚度尽量薄些;然后放入与冻干箱尺寸相适应的金属盘内。装箱之前,先将冻干箱进行空箱降温,然后将产品放入冻干箱内进行预冻,抽真空之前要根据冷凝器冷冻机的降温速度提前使冷凝器工作,抽真空时冷凝器应达到-40℃左右的温度,待真空度达到一定数值后(通常应达到100uHg以上的真空度),即可对箱内产品进行加热。一般加热分两步进行,第一步加温不使产品的温度超过共熔点的温度;待产品内水份基本干完后进行第二步加温,这时可迅速地使产品上升的规定的最高温度。在最高温度保持数小时后,即可结束冻干。整个升华干燥的时间约12-24小时左右,与产品在每瓶内的装量,总装量,玻璃容器的形状、规格,产品的种类,冻干曲线及机器的性能等等有关。冻干结束后,要放干燥无菌的空气进入干燥箱,然后尽快地进行加塞封口,以防重新吸收空气中的水份。在冻干过程中,把产品和板层的温度、冷凝器温度和真空度对照时间划成曲线,叫做冻干曲线。一般以温度为纵坐标,时间为横坐标。冻干不同的产品采用不同的冻干曲线。同一产品使用不同的冻干曲线时,产品的质量也不相同,冻干曲线还与冻干机的性能有关。因此不同的产品,不同的冻干机应用不同的冻干曲线。图十四是冻干曲线示意图(其中没有冷凝器的温度曲线和真空度曲线)。第三节 共溶点及其测量方法需要冻干的产品,一般是预先配制成水的溶液或悬浊液,因此它的冰点与水就不相同了,水在0℃时结冰,而海水却要在低于0℃的温度才结冰,因为海水也是多种物质的水溶液。实验指出溶液的冰点将低于溶媒的冰点。另外,溶液的结冰过程与纯液体也不一样,纯液体如水在0℃时结冰,水的温度并不下降,直到全部水结冰之后温度才下降,这说明纯液体有一个固定的结冰点。而溶液却不一样,它不是在某一固定温度完全凝结成固体,而是在某一温度时,晶体开始析出,随着温度的下降,晶体的数量不断增加,直到最后,溶液才全部凝结。这样,溶液并不是在某一固定温度时凝结。而是在某一温度范围内凝结,当冷却时开始析出晶体的温度称为溶液的冰点。而溶液全部凝结的温度叫做溶液的凝固点。因为凝固点就是融化的开始点(既熔点),对于溶液来说也就是溶质和溶媒共同熔化的点。所以又叫做共熔点。可见溶液的冰点与共熔点是不相同的。共熔点才是溶液真正全部凝成固体的温度。显然共熔点的概念对于冷冻干燥是重要的,因为冻干产品可能有盐类、糖类、明胶、蛋白质、血球、组织、病毒、细菌等等的物质。因此它是一个复杂的液体,它的冻结过程肯定也是一个复杂的过程,与溶液相似,也有一个真正全部凝结成固体的温度。即共熔点。由于冷冻干燥是在真空状态下进行。只有产品全部冻结后才能在真空下进行升华,否则有部分液体存在时,在真空下不仅会迅速蒸发,造成液体的浓缩使冻干产品的体积缩小;而且溶解在水中的气体在真空下会迅速冒出来,造成象液体沸腾的样子,使冻干产品鼓泡,甚至冒出瓶外。这是我们所不希望的。为此冻干产品在升华开始时必须要冷到共熔点以下的温度,使冻干产品真正全部冻结。在冻结过程中,从外表的观察来确定产品是否完全冻结成固体是不可能的;靠测量温度也无法确定产品内部的结构状态。而随着产品结构发生变化时电性能的变化是极为有用的,特别是在冻结是电阻率的测量能使我们知道冻结是在进行还是已经完成了,全部冻结后电阻率将非常大,因此溶液是离子导电。冻结是离子将固定不能运动,因此电阻率明显增大。而有少量液体存在时电阻率将显著下降。因此测量产品的电阻率将能确定产品的共熔点。正规的共熔点测量法是将一对白金电极浸入液体产品之中,并在产品中插一温度计,把它们冷却到-40℃以下的低温,然后将冻结产品慢慢升温。用惠斯顿电桥来测量其电阻,当发生电阻突然降低时,这时的温度即为产品的共熔点。电桥要用交流电供电,因为直流电会发生电解作用,整个过程由仪表记录。(图十六)也可用简单的方法来测量,如图十五所示。用二根适当粗细而又互相绝缘的铜丝插入盛放产品的容器中,作为电极。在铜电极附近插入一支温度计,插入深度与电极差不多,把它们一起放入冻干箱内的观察窗孔附近,并用适当方法把它们固定好,然后与其他产品一起预冻,这时我们用万用表不断地测量在降温过程中的电阻数值,根据电阻数值的变化来确定共熔点。把电极引线通过一个开关与万用表相连,可以不分正负极。如果冻干箱没有电线引出接头,则可以用二根细导线从箱门缝处引出,在电线附近涂些真空密封蜡,这样不致于影响真空度。待温度计降至0℃之后即开始测量并作记录。把万用表的转换开关放在测量电阻的最高档(×1K或×10K)。由于万用表内使用的是直流电,为了防止电解作用,在每次测量完之后要把开关立即关掉,把每一次测量的温度和电阻数值一一记录下来。开始时电阻值很小,以后逐步增高。到某一温度时电阻突然增大,几乎是无穷大,这时的温度值便是共熔点数值。用这种方法测量的共熔点有一定的误差,因为铜电极处多少有些电解作用。万用表对于高阻值没有电桥灵敏;另外,冻结过程与熔化过程电阻的变化情况并不完全相同,但所测之值仍有实用参考价值。共熔点的数值从0℃到40℃不等,与产品的品种、保护剂的种类和浓度有关。一些物质的共熔点列表二十二供参考,因实际的冻干产品还有其它成份。所以与此不相同。第四节 产品的预冻产品在进行冷冻干燥时,需要装入适宜的容器,然后进行预先冻结,才能进行升华干燥。预冻过程不仅昰为了保护物质的主要性能不变;而且要获得冻结后产品有合理的结构以利于水份的升华;还要有恰当的装量,以便日后的应用。产品的分装通常有散装和瓶装二种方式。散装可以采用金属盘,饭盒或玻璃器皿;瓶装采用玻璃瓶和安瓿。玻璃瓶又有血浆瓶。疫苗瓶和青霉素小瓶等,安瓿也有平底安瓿、长安瓿和圆安瓿等;这些需根据产品的日后使用情况来决定,瓶子还需配上合适的胶塞。表二十二 一些物质的共熔点(℃)物质 共熔点氯化钠溶液 -2210%蔗糖溶液 -2640%蔗糖溶液 -3310%葡萄糖溶液 -272%明胶、10%葡萄糖溶液 -322%明胶、10%蔗糖溶液 -1910%蔗糖溶液、10%葡萄糖溶液、氯化钠溶液 -36脱脂牛奶 -26马血清 -35各种容器在分装之前要求清洗干净并进行灭菌处理。需要冻干的产品需配制成一定浓度的液体,为了能保证干燥后有一定的形状,物质含量在10~15%之间最佳。产品分装到容器有一定的表面积与厚度之比。表面积要大一些,厚度要小些。表面积大有利于升华,产品厚度大不利于升华。一般分装厚度不大于10mm。有些产品需用大瓶。并冻干较大量的产品时,可以采用旋冻的方法冻成壳状,或倾斜容器冻成斜面,以增大表面积,减小厚度。产品的预冻方法有冻干箱内预冻法和箱外预冻法。箱内预冻法是直接把产品放置在冻干机冻干箱内的多层搁板上,由冻干机的冷冻机来进行冷冻。大量的小瓶和安瓿进行冻干时为了进箱和出箱方便,一般把小瓶或安瓿分装在若干金属盘内,再装进箱子。为了改进热传递,有些金属盘制成可分离式,进箱时把底抽走,让小瓶直接与冻干箱的金属板接触;对于不可抽低的盘子要求盘底平整,以获得产品的均一性。采用旋冻法的大血浆瓶要事先冻好后加上导热用的金属架或块后再进行冷冻。箱外预冻有二种方法。有些小型冻干机没有进行预冻产品的装置。只能利用低温冰箱或酒精加干冰来进行预冻。另一种是专用的旋冻器,它可把大瓶的产品边旋转边冷冻成壳状结构。然后再进入冻干箱内。还有一种特殊的离心式预冻法,离心式冻干机就采用此法。利用在真空下液体迅速蒸发,吸收本身的热量而冻结。旋转的离心力防止产品中的气体溢出,使产品能“平静地”冻结成一定的形状。转速一般为800转/分左右。冷冻会对细胞和生命体产生一定的破坏作用,其机理是非常复杂的。目前尚无统一的理论,但一般认为主要是由机械效应和溶质效应引起。生物物质的冷冻过程首先是从纯水结冰开始,冰晶的生长逐步造成电解质的浓缩。随后是低共熔混合物凝固。最后全部变为固体。机械效应是细胞内外冰晶生长而产生的机械力量引起的。特别是对于有细胞膜的生命体影像较大。一般冰晶越大,细胞膜越易破裂,从而造成细胞死亡;冰晶小,对细胞膜的机械损伤也较小。缓慢冷冻产生的冰晶较大,快速冷冻产生的冰晶较小;就此而言。快速冷冻对细胞的影响较小。缓慢冷冻容易引起细胞的死亡。溶质效应是由于水的冻结使间隙液体逐渐浓缩,从而使电解质的浓度增加,蛋白质对电解质是较敏感的。电解质浓度的增加引起蛋白质的变性,而使细胞死亡;另外电解质浓度的增加会使细胞脱水而死亡。间隙液体浓度越高。上述原因引起的破坏也越厉害。溶质效应在某一温度范围最为明显。这个温度范围在水的冰点和该液体的全部固化温度之间。若能以较高的速度越过这一温度范围,溶质效应所产生的效果就能大大减弱。另外冷冻时所形成的晶体大小在很大程度上也影响干燥的速率和干燥后产品的溶解速度。大的冰晶容易升华,小的冰晶不利于升华;但大的冰晶溶解慢,小的冰晶溶解快。冰晶越小、干燥后越能反映产品的原来结构。综上所述,需要有一个最优的冷却速率。以得到最高的细胞存活率,最好的产品物理性状和溶解速度。当然提高存活率与在产品中加入抗低温剂(保护剂之一)还有很大的关系。列如甘油、二甲亚砜、糖类等。这些抗低温物质能帮助产品扩大最优冷却速率的范围,以便使更多的细胞存活下来。为了获的不同的降温速度。就要采取不同的预冻方法;列如有时需装箱之后才开始冻干箱的降温,有时需让机器预先降到低温,再将产品装入冻干箱内。预冻的目的也是为了固定产品,以便在真空下进行升华。如果没有冻实。则抽真空时产品会冒出瓶外来,没有一定的形状;如果冷的过低,则不仅浪费了能源和时间,而且对某些产品还会降低存活率。因此预冻之前应确定三个数据。其一是预冻的速率,应根据产品不同而试验出一个最优冷冻速率。其二是预冻的最低温度,应根据改产品的共熔点来决定,预冻的最低温度应低于共熔点的温度。其三是预冻的时间,根据机器的情况来决定,保证抽真空之前所有产品均已冻实。不致因抽真空而冒出瓶外,冻干箱的每一板层之间,每一板层的各部分之间温差越小,则预冻的时间可以相应缩短,一般产品的温度达到预冻最低温度之后1-2小时即可开始抽真空升华。第五节 产品的第一阶段干燥产品的干燥可分为二个阶段,在产品内的冻结冰消失之前称第一阶段干燥、也叫作解吸干燥阶段。产品在升华时要吸收热量,一克冰全部变成水蒸汽大约需要吸收670卡左右的热量,因此升华阶段必须对产品进行加热。但对产品的加热量是有限度的,不能使产品的温度超过其自身共熔点温度。升华的产品如果低于共熔点温度过多,则升华的速率降低,升华阶段的时间会延长;如果高于共熔点温度,则产品会发生熔化,干燥后的产品将发生体积缩小,出现气泡,颜色加深,溶解困难等现象。因此升华阶段产品的温度要求接近共熔点温度,但又不能超过共熔点温度。由于产品升华时,升华面不是固定的。而是在不断的变化,并且随着升华的进行,冻结产品越来越少。因此造成对产品温度测量的困难,利用温度计来测量均会有一定的误差。可以利用气压测量法来确定升华时产品的温度,把冻干箱和冷凝器之间的阀门迅速地关闭1-2秒的时间(切不可太长)。然后又迅速打开,在关闭的瞬间观察冻干箱内的压强升高情况,计下压强升高到某一点的最高数值。从冰的不同温度的饱和蒸汽压曲线或表上可以查出相应数值,这个温度值就是升华时产品的温度。产品的温度也能通过对升华产品的电阻的测量来推断。如果测得产品的电阻大于共熔点时的电阻数值,则说明产品的温度低于共熔点的温度;如果测得的电阻接近共熔点时的电阻数值,则说明产品温度已接近或达到共熔点的温度。冷冻干燥时冻干箱内的压强,过去认为是越低越好,现在则认为不是越低越好,而是要控制在一定的范围之内。压强低当然有利于产品内冰的升华。但由于压强太低时对传热不利,产品不易获得热量,升华速率反而降低。实验标明:在冻干箱的压强低于毫巴时,气体的对流传热小到可以忽略不计;而压强大于毫巴时,气体的对流传热就明显增加。在同样的板层温度下,压强高于毫巴时,产品容易获得热量,因而升华速率增加。但是,当压强太高时,产品内冰的升华速率减慢,产品吸热量降减少。于是产品自身的温度上升,当高于共熔点温度时,产品将发生熔化,造成冻干失败。冻干箱的合适压强一般认为是在毫巴之间,在这个压强范围内,既利于热量的传递又利于升华的进行。超过毫巴时,产品可能熔化,此时应发出真空报警信号,切断对产品的加热,甚至启动冷冻机对冻干箱进行降温,以保护产品不致发生熔化。冻干箱内的压强是由空气的分压强和水蒸汽的分压强组成的,因此要使用能测量全压强的热真空计来测量真空度;而不宜使用压缩式真空计,以水银为介质的压缩式真空计由于水银蒸汽有害产品应禁止使用。1克冰在压强毫巴时大约能产生10000升体积的蒸汽,为了排除大量的水蒸汽,光靠机械真空泵排除是不行的。冷凝器作为冷却使大量水蒸汽凝结在其内部的制冷表面上,因此冷凝器实际上起着水蒸汽泵的作用。大量水蒸汽凝结时放出的热量能使冷凝器的温度发生回升,这是正常的现象。但由于冷凝器冷冻机的制冷能力不够,冷凝器吸附水蒸汽的表面太小,或对产品提供热量过多而产生过多的水蒸汽等原因,会引起冷凝器温度的过度回升。当发生这种情况时。冻干箱和冷凝器之间的水蒸汽压力差减小,从而导致升华速率的降低;与此同时冻干机系统内水蒸汽的分压强增强,使真空度恶化,进而又引起升华速率的减慢,产品吸收热量减少,产品温度上升,致使产品发生熔化,冻干失败。因此为了冷冻干燥出好的产品,需要保持系统内良好而稳定的真空度。需要冷凝器始终能低于-40℃以下的低温,因为-40℃时冰的蒸汽压为毫巴左右。在升华干燥阶段,冻干箱的板层是产品热量的来源。板层温度高,产品获得的热量就多;板层温度低,产品获得的热量就少;板层温度过高,产品获得过多的热量使产品发生熔化;板层温度过低,产品得不到足够的热量会延长升华干燥时间。因此,板层的温度应进行合理的控制。板层温度的高低应根据产品温度、冻干箱的压强(即冻干箱的真空度)、冷凝器温度三个因素来确定。如果在升华干燥的时候,产品的温度低于该产品的共熔点温度较多,冻干箱内的压强小于真空报警设定的压强较多,冷凝器温度也低于-40℃较多,则板层的加热温度还可以继续提高。如果板层温度提高到某一数值之后产品的温度已接近共熔点温度,或者冻干箱的压强上升到接近真空报警的数值或者冷凝器温度回升到-40℃,则板层温度不可再继续提高,不然会出现危险的情况。实际上升华时板层温度的高低还与冻干机的性能有关,性能较好的冻干机,板层的加热温度可以升得高一些。升华阶段时间的长短与下列因素有关:产品的品种:有些产品容易干燥,有些产品不容易干燥。一般来说,共熔点温度较高的产品容易干燥,升华的时间短些。产品的分装厚度:正常的干燥速率大约每小时使产品下降1毫米的厚度。因此分装厚度大,升华时间也长。升华时提供的热量:升华时若提供的热量不足,则会减慢升华速率,延长升华阶段的时间。当然热量也不能过多地提供。冻干机本身的性能,这包括冻干机的真空性能,冷凝器的温度和效能,甚至机器构造的几何形状等,性能良好的冻干机使升华阶段的时间较短些。在产品的第一阶段时,除了要保持冻结产品的温度不能超过共熔点以外,还要保持已干燥的产品温度不能超过崩解温度。所谓崩解温度是对已经干燥的产品而言的。已干燥的产品应该是疏松多乱,保持一个稳定的状态,以便下层冻结产品中升华的水蒸汽顺利通过,使全部的产品都良好的干燥。但某些已干燥的产品当温度达到某一数值时会失去刚性,发生类似崩溃的现象,失去了疏松多乱的性质,使干燥产品有些发粘。比重增加,颜色加深。发生这种变化的温度就叫做崩解温度。干燥产品发生崩解之后,阻碍或影响下层冻结产品升华的水蒸汽的通过,于是升华速度减慢冻结产品吸收热量减少,由板层继续供给的热量就有多余。将会造成冻结产品温度上升,产品发生熔化发泡现象。崩解温度与产品的种类和性质有关,因此应该合理的选择产品的保护剂,使崩解温度尽可能高一些,例如产品的崩解温度应高于该产品的共熔点温度。崩解温度一般由试验来确定,通过显微冷冻干燥试验可以观察到崩解现象,从而确定崩解温度。

红枣干燥技术现状研究论文

将鲜红枣从含水量70%左右降低到 25%左右,使其可溶性固形物的浓度提高到微生物难以生存和利用的程度。

干制红枣不使用太阳的晾晒,这样的方法效率极低,而且还不容易保存,如今用发达的科技去干制红枣。将红枣干制的技术有四种:

1. 热风干燥技术,利用热源提供热量来加热干燥室内的空气,使得物料之间与物料周围的空气存在温度差,使物料内部的水分由于温度梯度而蒸发出来,从而达到干制的目的。

2. 微波干燥技术,微波是一种电磁波,既具有粒子携带的机械能,同时也具有电场能和磁场能。当电场极性方向不断改变时,原料中的极性分子高速运动,并产生摩擦热,从而使物质的表面和内部同时升温,达到干燥的目的。

3. 真空冷冻干燥,将含水物料预先进行降温冻结,然后在适当的温度( 45~55℃) 和高真空度下使冰晶直接升华为水蒸气以除去物料内部的水分。

4. 太阳能干制,指利用太阳辐射能和太阳干制装置所进行的干制作业。

红枣味甘性温、归脾胃经,有补中益气、养血安神、缓和药性的功能,尤其适合更年期女性出现的失眠、燥热、烦躁,以及神经衰弱。。红枣口感好,完全可以代替粗粮做成米饭或粥。具有防便秘、防痔疮、降血脂和预防胆结石的作用。

红枣,身材小,但热量大。中等大小的红枣,每天食用量不要超过15颗。一旦红枣吃多了,也容易发生肥胖、口干舌燥现象。

参考资料:百度百科_红枣干

一、加强中、后期管理是提高红枣制干率的基础1.水肥管理措施。中、后期的水肥管理,特别是后期的水肥管理非常重要。枣的膨大期要追施以磷、钾肥为主的化肥,结果多、产量高的大树每株追施普通磷肥10公斤、硫酸钾肥公斤左右,树叶太黄的枣树还需考虑施部分氮肥(或10%左右的复合肥公斤左右)。同时结合叶面喷要,混喷 ~磷酸二氢钾液,每10天喷1次。在红枣生产后期单喷或结合喷施农药混喷~磷酸二氢钾液、的硼肥液,增强果实着色和提高含糖量;喷施~氯化钙2~3次,以喷果实为主,可增加果肉硬度,提高耐贮性等,每10天喷1次。中后期枣园土壤的墒情好坏,直接关系到枣树的产量和果品质量。要密切注意降雨情况,降雨量大的年份要及时排水、防涝,雨后放晴时,及时中耕除草;天气干旱时注意枣园土壤的墒情,按照需要进行灌溉。我国北方枣农对于中、后期浇水一般都不太重视,特别是后期即将成熟的时候多数不愿意浇水,这种习惯应当改变。后期浇水不仅可以提高枣树的产量和果品质量,而且还可以预防裂果。2.病虫害防治措施。红枣后期的病虫害比较多,主要有桃小食心虫、锈病、炭疽病、缩果病、浆烂果病及裂果病等,它们对枣果的制干率和品质都有着举足轻重的影响。桃小食心虫又叫桃小,在枣产区曾普遍发生,枣果开始变红,幼虫在果内蛀食为害直至采收,尤其大枣产区为害更严重,若不及时防治,一般虫果率在50~70%;炭疽病、缩果病、浆烂果病及裂果病等都是危害果实的病害,感病初期若不及时防治,枣果很难正常发育;锈病主要危害叶片,感病初期若不及时防治,一旦蔓延,很难控制,严重时叶片落光,枣果停止发育,直接影响枣果的成熟和制干率。3.改善枣园和树体内部通风透光条件,提高果品的质量。枣果的发育需要一个合适的生长环境,在其他生长条件基本具备的基础上,树体内部通风透光好坏直接影响枣果的发育和后期的制干率。一般枣农多不重视后期的修剪,这对后期营养生长较慢的树种来说,关系不大,但对地力差、后期营养生长较快的树种就很重要。二、完熟期采收是提高红枣制干率的重要措施制干品种应以完熟期采收最好。脆熟期晾晒制干,果实水分多,晾晒时间长,“黄皮”枣多,每100千克鲜枣出干率一般在50%左右,且含糖量低,易腐烂。完熟期时果肉开始变软,含水量下降,果皮出现皱纹,色泽紫红,果肉呈金黄色,近核处果肉变成黄褐色(糖心),果柄退绿转黄。此时是采收的最佳期,每100千克鲜枣出干率一般在80%以上。三、正确的制干方法是提高红枣制干率保证1.自然晾晒法。红枣采收后,须分类晾晒。一般可分为三类:第一类是含水分较多的脆枣;第二类是蔫枣,即皮起了皱纹的糖心枣;第三类是僵烂枣。只有这样才能保持同一箔上枣果一致的干湿度,并可防止僵烂枣对好枣的沾染。晾晒要选择地势高、平坦干燥、向阳开阔的空地。数量不大时也可在房顶上晾晒。根据场地大小摆几行砖,每行砖上放一个秫秸把或竹竿、木棍等,上面即可铺箔晒枣了。将箔支离地面15~20厘米高,把枣摊在上面5~10厘米厚,暴晒3~5天。在此过程中每1小时翻动一次,每日翻动8~10次,日落时堆成垄状,用席盖好,第二天揭去席,等箔面露水干后再将枣摊开,空出中间堆枣的箔面。暴晒3~5天后改为每天早晨将枣摊开晾晒,上午11点堆起,下午两点后再摊开,傍晚收拢,封盖。经过10天左右晾晒后,即可达到干枣的标准(大型果含水量低于25%,小型果含水量低于28%),果皮纹理细浅,手握有弹性,即可将枣在箔上堆积,用席盖好。每天揭开席通风3~4个小时即可。不同成熟度的枣果晾晒的方法有所不同。脆枣每张箔上可晾晒200~250千克, 每天用木耙搂7~8次,特别是中午11时至下午2时这段时间,太阳光强,要多搂几次。这样晒出的枣色泽均匀,不出阴阳面。晒到出现皱纹后,即可把二、三张箔的枣并在一起,以后每隔几天上午8时到下午4时揭席通风。蔫枣每箔可放350~400千克,以翻箔和倒箔为主(用木锨将枣堆底部的翻到上面来,把上面的翻到下部去)。如须晾晒的枣多,箔和箔之间要留出1米的路。随后,将分好级的枣摊在箔上,早揭席晒,晚堆堆盖。雨水多的年份易霉烂,要多晒少晾;雨水少的年份要早并箔,以防晒的太干。僵烂枣要先堆在箔上,每天揭席通风,不用摊开晒,注意不要堆的太厚,以免发霉。枣在晾晒中应特别注意以下几点:不要把刚采收的枣在地面上堆大堆过夜;晾晒要均匀,并随时分级;雨天要及时封盖枣堆,以防雨水渗漏;连阴天时要注意检查堆内温度,以防堆内温度过高而变质。自然晾晒的枣,制干时间越长,枣果内酶的活性不能有效地受到抑制,枣果的呼吸作用不断进行,消耗的营养物质越多,会使制干率降低。2.烘干法果品采摘后,如遇阴雨天气可进烘房进行烘干。烘干法与自然晾晒法相比,制干率可提高15%左右。

1.原料选择:应选新鲜成熟、果形大(小枣优良品种也可)、皮较薄、肉质肥厚致密,含糖量高、核小的果实。挑出风落枣、病虫枣和破枣。2.分级:剔除枯枝落叶,按品种、大小、成熟度进行分级,并干燥程度一致。3.热烫:将枣果装入竹篮或铁丝篮,将篮浸渍在沸水中,烫漂5分钟左右,至果皮稍软即可。热烫后立即在冷水中冷却。4.干燥:分自然干燥与人工干燥两种。(1)自然干燥:一般需要25天。早晨日出后摊开,日落时收集成堆,用草席覆盖。中午前后翻动几次。若遇阴雨天,可在仓库内摊晾。(2)人工干燥:每平方米烘盘面积上的装枣量,因枣的品种不同而异,一般为12~15公斤。装枣厚度以不超过两层枣为度。小果品种如鸡心小枣、金丝小枣等可适当装厚些。当烘盘送至烤房内后,关闭通风设备及门窗,拉开烟囱底部闸板,使易于升火及迅速提高烤房内的温度,在6~8小时内使温平稳上升到55~60℃,继续8~10小时,使温度上升至68~70℃,不能超过75℃,再延长6小时,使温度逐步下降到50℃。全部烤烘时间共需24小时左右。一般在烤到七至八成干后,再以一周时间进行晾晒或风干。即使遇阴雨天在席上搁置10~15天,也不会发生霉烂现象。5.回软:由于刚干燥的制品,内外水分不均匀,需经过15~20天的堆放,使水分平衡而回软。方法是,在仓库内将红枣堆至1米左右高,枣堆长度与宽度视仓库条件灵活掌握,在枣堆中每隔1米多的距离,用秸秆捆成碗口粗的束竖立中间,用以散热透气。并须勤加检查,严防发热、发酵或虫鼠为害,必要还可进行倒翻工作。6.分级:目测或手测。同一品种一般均以红枣个头大小、色泽和破损等为分级标准。如金丝小枣分级标准如下:魁王级:每公斤红枣180~220颗;无虫害及破口,颜色红润。特级:每公斤红枣220~260颗;无虫害及破口,颜色红润。一级:每公斤红枣260~360颗;无虫害及破口,颜色红润。二级:每公斤红枣460颗;虫害及破口等损伤允许占6%。三级:为风落枣,色泽由桔黄至红色不等,肉质干缩、风味不良、虫害及破口等损伤允许占10%。等外枣:质量最差。7.包装:大多采用普通麻袋或蒲包包装,每袋50~100公斤不等。也可用塑料袋包装,每包重量1~10公斤。质量标准 枣身干燥,掰开枣肉不见丝纹(断丝),颗粒大而均匀,短壮圆整,皱纹少而浅,核小、皮薄、肉质细实,甜性足,无酸、苦和涩味,无虫蛀、破口。小枣皮色深红。大枣皮色紫红。新货有自然光泽,含水量在22%左右,每100克枣总含糖量达65克,维生素c为200毫克。注意事项:1.人工干制过程中,若天气良好,一般不采用全干法。因为烘得太干,使产品呈现干瘪状,有损品质,且降低出枣率。2.除热烫可加速干燥外,在1%的盐水中煮5分钟,或进行浸硫处理,都能加快干燥速度

大枣烘干技术 1、我国大枣产量及分布中国枣品种现有704个,品质较好的不超过20个,其中干制红枣25%左右,鲜食枣不足5%。干制品种224个,主要有干制红枣、黑枣、焦枣、蜜枣等十多个品种枣在全国的分布范围很广,河北、河南、山东、山西、陕西作为全国著名的枣产区,产量约占全国总产量的90%以上。在常温下,鲜脆状态的大枣(含水份65~75%)只能保持三五天,时再长就会逐渐脱水,果皮皱缩。所以,采收期一过,鲜枣即随之消失。干燥后的大枣含水率不高于25%。2、大枣干燥技术及主要设备 1)烘房我国大枣干燥主要采用烘房,烘房为砖混结构,楼板盖顶,顶部设2个50 cm见方的排湿通气孔,地面为火坑,前面为 m× m的门,后面为烟囱和炉膛。烟囱有效高度为 m,炉门宽、高分别为28 cm、30 cm,下坑为50 cm。房内长6 m、宽 m、高 m,中间设1 m宽通道,两侧放铁架,每个铁架8层,每层放3个盛枣用的竹箅子,1个烘烤房可放336个竹箅子,1个竹箅子可盛鲜枣6 kg(每平方米可有12~15 kg枣),1次可烘烤鲜枣2016 kg。大枣烘干技术

微波滤波器的研究的论文

哥德巴赫猜想已经被证明,详细的视频教程,请在腾讯视频爱奇艺视频,优酷视频搜索哥德巴赫猜想证明教程。

当然没解决了而且,一般认为,要解决哥德巴赫猜想必须有新的方法的突破因为原来使用的筛法最多只能做到1+2,已经不可能取得突破了,而必须寻求其他的,新的数学方法才行了

1892年,英国科学家麦克斯韦出版了《电磁学》(第三版),书中他提出“点电荷在介质球中能够形成多大的镜像,位于何处”的问题。这个难题被誉为电磁学界“哥德巴赫猜想”。解开这个百年未解的难题是很多电磁学家的梦想。

抗日战争胜利后,林为干获得了去美国学习的机会,并顺利入读加州大学伯克利分校,师从电磁学家教授,开始与他从事了一生的微波理论和技术研究工作结缘。

1951年,他的博士论文《关于一腔多模的微波滤波器理论》发表于美国《应用物理》杂志8月号首页。该论文打破了微波学界长期以来的“一个圆柱谐振腔仅有两个简并模可以利用”的观点,轰动一时。这是他研究电磁学界的“哥德巴赫猜想”难题的起点。同年,林为干从美国回国,前往岭南大学任教,后参与筹建成都电讯工程学院(现电子科技大学)。

1959年,他在美国《物理学报》发表论文《格林函数在计算部分电容中的应用》,专注于计算一个静电点电荷的作用,研究了麦克斯韦提出介质球中的点电荷问题。但这项成果并没有彻底解决这个难题。此后的十几年间,他遭受过政治冲击、参加过劳动改造,但从未放弃科学研究。为及时了解国际学术前沿发展,林为干还用工资订阅了外文学术刊物。

它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。微波滤波器是一类无耗的二端口网络,广泛应用于微波通信、雷达、电子对抗及微波测量仪器中,在系统中用来控制信号的频率响应,使有用的信号频率分量几乎无衰减地通过滤波器,而阻断无用信号频率分量的传输。滤波器的主要技术指标有:中心频率,通带带宽,带内插损,带外抑制,通带波纹等。微波滤波器的分类方法很多,根据通频带的不同,微波滤波器可分为低通、带通、带阻、高通滤波器。按滤波器的插入衰减地频响特性可分为最平坦型和等波纹型。根据工作频带的宽窄可分为窄带和宽带滤波器。按滤波器的传输线分类可分为微带滤波器、交指型滤波器、同轴滤波器、波导滤波器、梳状线腔滤波器、螺旋腔滤波器、小型集总参数滤波器、陶瓷介质滤波器、SIR(阶跃阻抗谐振器)滤波器、高温超导材料等。

低温温度测量研究的论文

我可以把程序和电路图给你。全是本人亲自做的。

说到地球上的最低温度,我们都会想到在南北极,实际上南极要比北极更冷,因为南极圈内大部分都是陆地,属于极地高原气候,而北极圈内大部分都是北冰洋,又有北大西洋暖流注入,所以南极洲的最低温度平均要比北极地区低很多。 北极地区的最低温度一般在零下70 左右,如西伯利亚维尔霍杨斯克曾记录到零下70 C的低温,但位于南极的俄罗斯东方站曾经测到零下 的低温,这一温度也曾被长时间认为是地球已知的最低温度。 但在2013年时,气象学家们利用南极陆基气象站的数据校准了卫星地面温度的测量值,认为在东南极高原的最高点——冰穹阿尔戈斯(冰穹A,整个南极冰盖的最高点)与第二高点富士冰穹(冰穹F)之间大约有100个强冷空气穴,其最低温度可达零下93 ;挪威位于南极的气象站点,这表示测得过零下度的低温,在这样的温度下,玩泼热水成冰完全没有问题,水滴掉地上都成冰雹了,撒尿真得用棍子敲着了,钢板掉地上也会摔成八瓣,钢筋则像冰棒一样脆。 不过到了2019年时,又有美国气象学家通过分析气象卫星在南极拍摄的数据资料发现,南极洲的东南极高原一带的最低气温可下降到零下100 左右,之后该数据便被认为是地球自然界可达到的极端低温的温度,是地球表面温度所能达到的最低极限。 然而这一记录最近又被打破了,据外媒报道,有美国科学团队在《地球物理研究快报》上发表了新的研究论文,表示美国国家海洋和大气管理局(NOAA)的气象卫星在地球大气层中监测到了零下 的最低气温,这个新的低温记录并非产生在南极,也不是产生了北极,而是产生在西太平洋上,而且是在一个热带风暴中产生的。 该研究团队分析了美国国家海洋和大气管理局的VIIRS气象卫星(携带有可见光红外成像辐射仪)收集的2018年末在西太平洋形成的风暴数据,结果在一场热带风暴中发现了风暴云中的温度达到了零下 的低温,这一温度数据被认为是目前地球有记录以来的最低温度。 VIIRS气象卫星可收集地球陆地、大气、冰层和海洋在可见光和红外波段的辐射图像,可用来测量地球大气温度、大气中云量、空气气溶胶含量和特性、海洋和陆地表面温度等,因此可以得出地球表面温度的高低和分布特性等。 那么为什么热带风暴中会出现如此之低的温度呢?居然超过了南北极的极端低温,因为在在热带风暴的形成和运行过程中,来自海洋和陆地的暖湿气流会从周围随云团上升到高空,但是冷空气却会从中间的台风眼的位置由高空被吸到下面,这样一来,如果热带风暴比较强的话,那么来自地球大气层外围的极端冷空气也会被吸到大气层内部,甚至钻到台风眼的下面,因此即便在热带的大气层中,也会出现极端低温了。 不过一般情况下,非常寒冷的空气并不会到达地表,因为在到达地表之前就会被热空气中和了,但总体来说,台风热带风暴经过的地区温度都会大幅下降。 参考资料: 《环球网》3月31日文章《新研究发现2018年曾有一场热带风暴打破了地球最低温度纪录》

你好,我有你需要的设计!需要的联系回答者 目 录 一、引言 4 二、设计内容及性能指标 5 三、系统方案论证与比较 5 (一)、方案一 5 (二)、方案二 6 四、系统器件选择 7 (一)、 单片机的选择 7 1、 89S51 引脚功能介绍 8 (二)、温度传感器的选择 10 1、 DS18B20 简单介绍: 10 2、 DS18B20 使用中的注意事项 12 3、 DS18B20 内部结构 12 4、DS18B20测温原理 16 5、提高DS1820测温精度的途径 17 (三)、显示及报警模块器件选择 18 五、硬件设计电路 18 (一)、主控制器 19 (二)、显示电路 19 (三)、 温度检测电路 20 (四)、温度报警电路 25 六、 软件设计 26 (一)、 概述 26 (二)、主程序模块 26 (三)、各模块流程设计 27 1、 温度检测流程 28 2、报警模块流程 28 3、 中断设定流程 29 七、总结和体会 31 八、致谢 31 仪器简介 数字温度计是测温仪器类型的其中之一。根据所用测温物质的不同和测温范围的不同,有煤油温度计、酒精温度计、水银温度计、气体温度计、电阻温度计、温差电偶温度计、辐射温度计和光测温度计、双金属温度计等。编辑本段仪器参数和适用范围 数字温度计采用进口芯片组装精度高、高稳定性,误差≤, 内电源、微功耗、不锈钢外壳,防护坚固,美观精致。 数字温度计采用进口高精度、低温漂、超低功耗集成电路和宽温型液晶显示器,内置高能量电池连续工作≥5年无需敷设供电电缆,是一种精度高、稳定性好、适用性极强的新型现场温度显示仪。是传统现场指针双金属温度计的理想替代产品,广泛应用于各类工矿企业,大专院校,科研院所。 温度数我们日常生产和生活中实时在接触到的物理量,但是它是看不到的,仅凭感觉只能感觉到大概的温度值,传统的指针式的温度计虽然能指示温度,但是精度低,使用不够方便,显示不够直观,数字温度计的出现可以让人们直观的了解自己想知道的温度到底是多少度。 数字温度计采用温度敏感元件也就是温度传感器(如铂电阻,热电偶,半导体,热敏电阻等),将温度的变化转换成电信号的变化,如电压和电流的变化,温度变化和电信号的变化有一定的关系,如线性关系,一定的曲线关系等,这个电信号可以使用模数转换的电路即AD转换电路将模拟信号转换为数字信号,数字信号再送给处理单元,如单片机或者PC机等,处理单元经过内部的软件计算将这个数字信号和温度联系起来,成为可以显示出来的温度数值,如摄氏度,然后通过显示单元,如LED,LCD或者电脑屏幕等显示出来给人观察。这样就完成了数字温度计的基本测温功能。 数字温度计根据使用的传感器的不同,AD转换电路,及处理单元的不同,它的精度,稳定性,测温范围等都有区别,这就要根据实际情况选择符合规格的数字温度计。 数字温度计有手持式,盘装式,及医用的小体积的等等。仪器发展历史 最早的温度计是在1593年由意大利科学家伽利略(1564~1642)发明的。他的第一只温度计是一根一端敞口的玻璃管,另一端带有核桃大的玻璃泡。使用时先给玻璃泡加热,然后把玻璃管插入水中。随着温度的变化,玻璃管中的水面就会上下移动,根据移动的多少就可以判定温度的变化和温度的高低。温度计有热胀冷缩的作用所以这种温度计,受外界大气压强等环境因素的影响较大,所以测量误差大。 后来伽利略的学生和其他科学家,在这个基础上反复改进,如把玻璃管倒过来,把液体放在管内,把玻璃管封闭等。比较突出的是法国人布利奥在1659年制造的温度计,他把玻璃泡的体积缩小,并把测温物质改为水银,这样的温度计已具备了现在温度计的雏形。以后荷兰人华伦海特在1709年利用酒精,在1714年又利用水银作为测量物质,制造了更精确的温度计。他观察了水的沸腾温度、水和冰混合时的温度、盐水和冰混合时的温度;经过反复实验与核准,最后把一定浓度的盐水凝固时的温度定为0℉,把纯水凝固时的温度定为32℉,把标准大气压下水沸腾的温度定为212℉,用℉代表华氏温度,这就是华氏温度计。 在华氏温度计出现的同时,法国人列缪尔(1683~1757)也设计制造了一种温度计。他认为水银的膨胀系数太小,不宜做测温物质。他专心研究用酒精作为测温物质的优点。他反复实践发现,含有1/5水的酒精,在水的结冰温度和沸腾温度之间,其体积的膨胀是从1000个体积单位增大到1080个体积单位。因此他把冰点和沸点之间分成80份,定为自己温度计的温度分度,这就是列氏温度计。? 华氏温度计制成后又经过30多年,瑞典人摄尔修斯于1742年改进了华伦海特温度计的刻度,他把水的沸点定为0度,把水的冰点定为100度。后来他的同事施勒默尔把两个温度点的数值又倒过来,就成了现在的百分温度,即摄氏温度,用℃表示。华氏温度与摄氏温度的关系为 ℉=9/5℃+32,或℃=5/9(℉-32)。 现在英、美国家多用华氏温度,德国多用列氏温度,而世界科技界和工农业生产中,以及我国、法国等大多数国家则多用摄氏温度。数字温度测量仪表的精度等级和分度值 仪表名称 精度等级 分度值,℃(摄氏度) 双金属温度计 1,, 压力式温度计 1,, 玻璃液体温度计 热电阻 1~10 热电偶 5~20 光学高温计 1~ 5~20 辐射温度计(热电堆) 5~20 部分辐射温度计 1~ 1~20 比色温度计 1~

管腔类器械干燥方法的研究论文

就是因为在做力量训练的时候,很可能就是由于你下面摩擦力不够,导致出现伤病,所以说在做器械训练的时候,一定要保持器械的干燥。

为什么器械台要保持干燥?是什么器械台,医用器械台吗?个人观点器械台保持干燥是因为,潮湿容易滋生细菌,造成交叉感染。个人观点,仅供参考。

一,毕业论文选题要求:毕业论文选题要遵循价值性,科学性,创新性,和可行性的原则.选题方向要与专业对口,不应超出专业课内容的范围;选要大小要适中,课题难易要适度,要充分考虑主客观条件,选择适合自己的课题.二,论文撰写基本要求毕业论文类型可以是基础或临床研究论文,文献综述,临床病例分析,临床病例(病理)讨论,临床经验体会,临床新技术报道,临床护理论文,流行病学调查报告等.其格式主要包括:题目,摘要,关键词,正文,参考文献等.论文字数一般不少于2000字.1题目:题目应恰当,准确的反映课题的研究内容.论文的文题目应不超过20字.题目要简练,准确,可分为两行.2摘要:再要是对论文的高度概括,内容要简洁.一般200字左右,用第三人称书写.3关键词:关键词是从论文中提炼出来的最能反映论文主题的名词,词组,或短语.一般3-8个词.4正文:几种主要论文类型的格式构成如下:(1)研究论文:前言,材料与方法(临床资料或治疗方法),结果,讨论和结论等.(2)综述:前言,主体,总结(3)临床经验体会:前言,临床资料,讨论.(4)临床病例分析:前言,资料分析,讨论和总结.(5)临床病例讨论:病例摘要,临床讨论等.,(6)临床新技术报道:前言,材料与方法,(操作方法,步骤和技术原理),结果(临床应用效果),讨论等.撰写研究论文或临床医疗报告等,学生必须在研究课题或临床实践中有独立完成的工作任务及相应的要求.撰写综述必须是学生查阅了某一专题在一段时期内的一定数量的文献资料,经过分析研究,加以归纳,总结,作出综合性描述的文章.并由提供的文献资料引出重要结论.5参考文献:为了反映论文的的科学依据和作者尊重他人研究成果的严肃态度,同时向读者提供有关信息的出处,正文之后一般应刊主要参考文献.参考文献一般不少于五篇,并应有近两年的参考文献.教材,词典,产品说明书,各类标准,各种报纸上刊等的文章及未公开发表的研究报告等通常不宜做为参考文献引用.参考文献的书写格式为:序号([1][2][3],,,,,,).所列文献来自刊物需注明:作者姓名,问题名,期刊名,年份,卷(期)号:起止号码:所列文献来自著作需注明:作者姓名,著作名,版次,出版地,出版单位,出版时间,起止号码.例如:[1]王玉璞,王志涛,黄正良,等.癌化液对荷瘤动物化疗增效和减毒作用的实验研究.中药药理临床,2000,16(2):21-22[2]徐叔云,卞如濂,陈修主编.药理实验方法学.第二版.北京:人民卫生出版社,1991:1423-1431[3]皋聪,曹于平,孙继红,等.养正合剂在抗肿瘤治疗中的减毒作用.中国药科大学学报,1994,25(6):357-360正文中引用文献的标示应置于所引用内容的最后一个字的右上角,所引文中引用文献编号用阿拉伯数字置于方括号"[]"中,用小4号字体的上角标,如"抗肿瘤药[1]"引用文献统一以尾注形式标注.三,论文装订和排版要求我校学生毕业论文有封面和论文两部分组成.论文装订方式统一规定为做装订,装订线在左边2厘米处.1排版:提交的论文一律用A4纸打印,页边距为上,下为厘米.左,右为厘米.页码在页面地段居中放置,页码编排从论文正文起始.2格式与字体:封面格式(见附件1)研究论文格式(见福建2)其余论文格式参照进行.四,其他要求1,学生应按照要求在指导老师的指导下独立完成毕业论文撰写工作,严禁查系他人或期刊杂志上的论文,如发现抄袭现象,将严肃处理,直至取消毕业资格.2,按时提交毕业论文,学校将根据论文的选题,文献资料合理引用情况,论文质量,创新性等综合评定成绩,不按时提交毕业论文或毕业论文不合格者将不颁发毕业证书.

器械台需要保持干燥的主要原因是为了确保器械台处于无菌状态。目前用于铺制器械台主要是布类敷料,一旦器械台洒落液体,布类敷料吸收水分变得潮湿,会导致无菌屏障被破坏,进而造成器械台上的器械等手术物品受到污染,增加术后感染的可能。

  • 索引序列
  • 低温真空微波干燥研究论文
  • 红枣干燥技术现状研究论文
  • 微波滤波器的研究的论文
  • 低温温度测量研究的论文
  • 管腔类器械干燥方法的研究论文
  • 返回顶部