论文网站如下:
1、中国知网(期刊、学位论文)
2、维普资讯中文科技期刊数据库(期刊论文)
3、万方数字资源系统(学位论文、会议论文、外文文献)
4、读秀学术搜索
5、超星数字图书馆(电子图书、讲座、读秀学术搜索)
古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。
它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。
论文著作权实行自愿登记,论文不论是否登记,作者或其他著作权人依法取得的著作权不受影响。我国实行作品自愿登记制度的在于维护作者或其他著作权人和作品使用者的合法权益,有助于解决因著作权归属造成的著作权纠纷,并为解决著作权纠纷提供初步证据。
免费论文的网站有爱学术、汉斯出版社等。
1、爱学术是一家专业的学术文献分享平台,覆盖各个行业期刊论文,学位论文,会议论文,标准,专利等各类学术资源,是国内最大的学术文献交流中心和论文资源免费下载网站,旨在构建一个专业的学术文献交流分享平台。
2、汉斯出版社聚焦于国际开源(OpenAccess)中文期刊的出版发行,是秉承着传播文化和促进交流的理念,积极探索中文学术期刊国际化道路,并且积极推进中国学术思想走向世界。
1、爱学术。
2、谷歌学术镜像。
3、Oalib。
4、汉斯出版社中文学术期刊。
5、国家科技图书文献中心。
6、知网,cnki
例,爱学术是一家专业的学术文献分享平台,覆盖各个行业期刊论文,学位论文,会议论文,标准,专利等各类学术资源,是国内最大的学术文献交流中心和论文资源免费下载网站,旨在构建一个专业的学术文献交流分享平台。为广大用户提高有价值的可利用的学术文献。同时,也会帮助认证机构展示擅长领域给广大用户,提升机构的影响力,活跃用户。爱学术也会竭力提供一个良好学术生态圈,让用户分享和交流自己的学术成果,发现更有价值的学术科研信息,获得分享和交流的乐趣和满足感。
1、全国图书馆参考咨询联盟:在该网络将可得到全国图书馆为你提供的网上参考咨询和文献远程传递服务。需要注册使用,适用于中文文献查找下载。部分文献可免费下载。
优点:注册简单,部分文献、电子书免费,网站稳定
缺点:资源量有限
电子书文献传递,需要有效邮箱,仔细阅读“服务说明”所有咨询内容有效期为20天
2、文献党下载器:一款资源集成的文献下载平台,几乎整合了所有中外文献数据库资源,覆盖全科以及各种文献类型。资源多、数据库权限高,中外文献基本在这一个站都可找到。采用的是客户端方式,在资源利用能力方面,客户端软件>浏览器+插件>浏览器,所以有更丰富的资源优势。(首页下载客户端)
优点:文献资源量目前最多,网站稳定,不管什么学科类型文献下载成功率非常高(中外文献都有),两种免费使用方法,一个短期的一个长期的
缺点:客户端只支持电脑Windows系统(客户端能更好的资源集成),手机暂时无法使用。
登录客户端进入资源库,就可使用资源了,文献党下载器资源库提供了不计其数的中外文献数据库入口,需要下载哪个数据库文献就双击哪个数据库名称,
例如下载知网文献,双击“知网”名称——进入知网检索文献——检索到需要文献点击PDF下载全文即可
3、国家哲学社会科学学术期刊数据库简称“国家期刊库(NSSD)”:是由全国哲学社会科学规划领导小组批准建设,中国社会科学院承建的国家级、开放型、公益性哲学社会科学信息平台,适合社会科学类文献查找下载。需要注册后使用。
优点:免费、易操作、网站稳定
缺点:资源有限,涉及学科不全面
4、百度学术:是百度旗下的免费学术资源搜索平台,提供海量中英文文献学术资源,涵盖各类学术期刊、学位、会议论文。百度学术搜索可检索到收费和免费的学术论文,并通过时间筛选、标题、关键字、摘要、作者、出版物、文献类型、被引用次数等细化指标提高检索的精准性。(需要有百度号)
优点:网站稳定、部分文献免费、可查看文献相关信息
缺点:只是部分免费
在文献检索结果页,可单篇导出参考文献也可多选批量导出,在获取方式栏中可看到有免费可付费筛选
5、Web of Science是获取全球学术信息的重要数据库。Web of Science 包括著名的三大引文索引数据库(SCI、SSCI、A&HCI)。由于其严格的选刊标准和引文索引机制,使得Web of Science在作为文献检索工具的同时,也成为文献计量学和科学计量学的最重要基本评价工具之一。
优点:功能非常多的一个检索外文文献数据库,查找核心期刊文献、查看期刊影响因子、分析检测结果、引文报告、创建跟踪服务等
缺点:需要权限才可使用(如果没有可用文献党下载器解决)
文献详情页,可看到该期刊的卷、期、页码、作者、DOI、期刊影响因子等信息,点击“出版商处的免费全文”进入文献全文页,
有些时候我们需要知道转录本长度,比如在使用RNA-seq计算FPKM的时候,为了准确地评估不同基因的表达量,一般是用覆盖该基因/转录本的总reads数除以基因/转录本的长度,有些时候我们需要知道基因编码区的长度,比如在使用VAAST评估致病候选基因的时候,有些基因因为编码区特别长(如TTN)总是排名靠前,如果考虑到它的编码区长度后,排序将会更加科学。 那么怎样获得基因编码区长度呢?这个问题看起来比较简单,只要将每个外显子的长度加起来就可以了,对于单个转录本可以通过NCBI的CCDS数据库查询,但是基因有多个转录本,每个转录本的编码区有重合,所以基因编码区不是每个转录本编码区的简单相加,所以要想准确地获得每个基因的编码区长度并不容易,而且目前并没有现成的数据库,经过游侠在网上摸索后将相关方法整理如下,供大家参考。首先从sanger网站下载基因注释文件GTF,。然后在R中使用GenomicFeatures工具包。library(GenomicFeatures)txdb <- makeTranscriptDbFromGFF("",format="gtf")收集每个基因的编码区编号 <-cdsBy(txdb,by="gene")通过reduce函数避免重复计算重叠区 <- lapply((x){sum(width(reduce(x)))})生成的gene ID为ensemble编号,可以通过,转换为gene symbol。另外游侠已经处理好了人类所有基因的编码区长度,如果有需要的话,可以在微信号留言索取。基因检测与解读(gh_561c4ccc5356)查看原文 分享到微信 文章为作者独立观点,不代表微头条立场基因检测与解读的最新文章匪夷所思的遗传方式我们知道常染色体隐性遗传一般是有缺陷的染色体分别来自父母两方,根据突变位点的位置是否相同分为纯合突变与复合杂合突变,但是你听说过两个有缺陷的位点全部来自父母一方吗?基因检测与解读·09月19日 10:17外显子重新分析之前未确诊的临床全外显子案例可提高诊断率本文主要介绍Genetics in Medicine(IF:)杂志上的一篇论文pmid:27441994。基因检测与解读·09月13日 12:14基因检测文章基因检测与解读文章列表关注微信号回复数字查看文章基因检测与解读·09月13日 12:14RVAS是个什么鬼?居然将替代GWAS在过去的8年中,GWAS(genome-wide association studies)研究被广泛地应用于解析遗传基因与复杂常见疾病和数量性状。基因检测与解读·09月07日 11:17样本遗传家系样本采集有捷径最近游侠君应邀参加某同学国自然课题讨论:一个大家系某种疾病的致病基因,当他拿出家系图并标出哪些样本有DNA时,游侠很吃惊,30多人的大家系居然只有5个人有DNA样本基因检测与解读·08月26日 06:09基因检测遗传病如何临床医生该如何选择遗传病基因检测最近本公众号接到一位女士的后台留言,请游侠帮忙解读基因报告,她有两岁的女儿,血小板低,治疗1年略有好转但仍不达标,无其他临床表现基因检测与解读·08月26日 06:09最大的项目世界最大的先天性发育异常遗传研究---DDD项目作者:周在威概况 “DDD计划”是一项创新型的罕见病课题项目,DDD是Deciphering De基因检测与解读·08月13日 00:15外显子如何如何分析全外显子拷贝数变异介绍XHMM与CODEX分析全外显子CNV。基因检测与解读·08月13日 00:15如何如何从散发病例中寻找新致病基因临床遗传医生在门诊过程中经常遇到不能明确基因诊断的病例,目前即使是全外显子测序也大约只有30%的遗传病能够找到致病基因,剩下的这些未明确基因案例积累多了对于发现新的致病基因就非常有价值基因检测与解读·07月25日 10:37动画什么是DNA?3d动画告诉你想查看原始动画的朋友请下载基因检测与解读·07月25日 10:37网站中心以罕见病患者为中心的MyGene2网站华盛顿大学的孟德尔基因组学医学中心创建了mygene2网站,使得患者及其家属参与临床医生和科学家寻找罕见疾病相关基因成为可能基因检测与解读·07月25日 10:37染色体基因组寻找染色体断裂点-捕获测序or全基因组测序?今天微信上有朋友询问染色体内倒位,通过捕获测序可以检测具体的断裂点吗?首先从理论上来说肯定是可以的,但是从性价比上来说肯定不如直接从全基因组测序。基因检测与解读·07月25日 10:37外显子浅谈临床全外显子基因数据分析临床全外显子测序方法与平台与科研外显子没有区别,都是利用序列捕获技术将全基因组外显子区域DNA捕捉并富集后进行高通量测序基因检测与解读·07月25日 10:37基因检测文章基因检测与解读文章列表关注微信号回复数字查看文章基因检测与解读·07月25日 10:37怎样批量计算基因编码区长度?有些时候我们需要知道转录本长度,比如在使用RNA-seq计算FPKM的时候,为了准确地评估不同基因的表达量,一般是用覆盖该基因/转录本的总reads数除以基因/转录本的长度基因检测与解读·07月25日 10:37腹痛加反复低热也许是基因惹的祸最近佛蒙特大学的Leonard教授建立了一个“了解你的基因组(Understand Your Genome)”工作组,其中73名佛蒙特大学教职工自愿测序他们的全基因组基因检测与解读·07月17日 21:23你知道基因有多长吗?很多不懂生物的朋友会问我,基因有多长啊?这是个难以给出确定答案的问题,基因是一段有功能的DNA片段,由ATGC四种碱基组成,每个碱基成为1个bp,有的基因很长,目前最长的基因是DMD基因,全长2,220,291bp(来自NCBI)基因检测与解读·07月16日 21:24基因检测基因检测报告解读不可缺最近公众号收到一位读者的求助,希望游侠帮忙解读一下基因检测报告,她本人非常担心自己的健康状况,认为自己经过基因检测已经确诊为一种遗传病,不敢涂口红,不敢吃鸡肉,连家里的装修都停了基因检测与解读·06月09日 10:21科学家发现冠心病科学家发现罕见基因位点可显著降低冠心病发病风险随着人类的不断繁衍,基因也在不断的突变进化,大多数时候这些突变有可能会破坏人体的健康,比如单基因遗传病,但有些基因突变也许能够保护我们的健康,只是由于科学研究手段的缺乏,导致很难发现这样的有益突变基因检测与解读·05月30日 01:29基因检测欢乐颂做什么《欢乐颂》中的安迪该做什么基因检测最近电视剧《欢乐颂》非常火,剧中安迪的妈妈及外婆都患有严重的精神疾病,而弟弟小明有严重的智力低下基因检测与解读·05月21日 11:48地中海遗传病一例疑似家族性地中海热遗传病的遗传分析近日基因检测与解读微信公众号收到一位读者的求助,希望游侠能够帮忙解读基因检测报告基因检测与解读·05月20日 00:30基因组CNV专题二:CREST分析全基因组拷贝数变异这一期主要介绍利用CREST (Clipping REveals STructure)软件分析人全基因组测序拷贝数变异,上一期游侠提到目前的软件主要利用三种feature来计算CNV,而CREST主要利用其中的一种来计算基因检测与解读·05月02日 15:09基因组CNV专题一:genomestrip2分析全基因组拷贝数变异CNV又称拷贝数变异,包括缺失与重复,属于非平衡易位的一种,据文献估计每个人都有几千个CNV,这些CNV有大有小,很多都位于基因间或基因的内含子中基因检测与解读·04月18日 00:31一起学一起学NGS数据分析之位点筛选二在前面游侠介绍了利用Annovar注释之后的信息进行筛选位点,今天介绍VAAST软件如何进行候选致病位点的筛选基因检测与解读·03月20日 22:21资源遗传家系资源交流平台最近游侠接到一位读者的电话,他有一个3代2人患病的小家系,做了3例全外显子捕获测序筛选下来得到几十个候选基因位点,他想询问下一步该如何继续研究?基因检测与解读·03月01日 12:23一起学操作系统一起学NGS数据分析之操作系统由于很多免费及开源的软件都是在linux系统下运行,所以如果你要想学习生物信息分析,安装linux系统是逃不掉的,不过不要太担心,现在的linux系统早已不是当初的DOS命令行了基因检测与解读·01月29日 00:08基因组人全基因组测序究竟强在哪里?作为国内为数不多接触并分析过人全基因组测序(WGS)分析的人员之一,看到很多从业人员甚至专业的生物信息人员都对WGS不了解,游侠觉得有必要向大家普及一下全基因组测序究竟强在哪里!基因检测与解读·01月19日 17:20一起学检测一起学NGS数据分析之肿瘤突变检测上一节我们讲述了germline variation如何检测,这一期聊聊肿瘤体细胞之突变检测基因检测与解读·01月15日 23:50一起学检测一起学NGS数据分析之检测突变很久没有更新了,有读者留言期待后面的文章,所以我又开始写了,下次大家看到我没有更新,及时留言提醒我啊,不然我又偷懒了!基因检测与解读·01月15日 03:50如何如何根据表达谱芯片数据巧妙设计定量PCR引物的位置有朋友做完表达谱芯片寻找到有差异表达的基因后,设计引物定量PCR验证会发现对照样本与处理样本无显著性差异?这究竟是怎么回事呢?基因检测与解读·01月06日 03:27一起学一起学NGS数据分析之数据质控拿到基因测序公司的原始数据后,一般是clean data又称PF data,首先要做的就是查看数据量够不够以及测序的质量怎么样,目前最为流行的数据质量查看软件就是FastQC基因检测与解读·01月03日 19:57基因检测与解读gh_561c4ccc5356介绍基因检测新进展,交流临床基因测序结果,探讨基因数据分析流程与方法,发表自己对于基因行业的理解与看法,提供遗传咨询服务!热门文章1.空调室外机毁坏 物业公司有无责任2.物业管理用房产权属于谁?3.㊙男人苦,所以赌,男人忙,所以常常上错 床......(太精辟了)4.▶小视频(很短,连看了7遍)5.爱牙日|为宝宝的牙齿做点什么6.【物管案例】业主起诉邻居私搭乱建,法院判限期拆除7.忻州【小咖秀】058期:囡囡8.㊙献给所有老同学9. 水中分娩,你绝没见过......10.《农村的玉米地里》一首歌 火了最新文章1.先抢先得 乐次元“爵无仅有”大礼包9月20日全面开售成茶叶商标(图)3.你会调整后视镜吗?分16秒,正好拍到这一幕5.【仲和堂】心如玉,世无双大坚果食用禁忌7.人性/狗性/狼性8.【仲和堂】中秋|天涯共此月圆时9.汽车仪表指示灯,最全面的解释基因检测与解读gh_561c4ccc5356介绍基因检测新进展,交流临床基因测序结果,探讨基因数据分析流程与方法,发表自己对于基因行业的理解与看法,提供遗传咨询服务!本站文章来自网友的提交收录,版权归原作者所有,如需删除或申请收录,请联系微信号:iyipengcheng 我要入驻 公号大全Copyright©2015 微头条 京ICP备14
需要 NUMINDS is the number of individuals and PRINT INDIVS is set to 1,即根据 Individual的情况画图。Column 2 gives a code number for the individual . Column 4 gives the code number for the population to which the individual belongs. Columns 1, 3, and 5 are ignored. Columns 6 to K + 5 show membership coefficients for clusters 1, 2, ..., K。会根据输入文件中个体的顺序画图,并根据种群分组。需设置 PRINT LABEL BELOW to 1 及 INFILE LABEL BELOW 文件(第一列为population code,第二列为种群名称),默认打印种群id作为label. 种群顺序跟 INFILE LABEL BELOW 文件保持一致。 与上条目一致 设置图形中的颜色选用,颜色很多。 INFILE CLUST PERM 指定k个颜色,无指定则默认使用颜色表顺序颜色。 GRAYSCALE 设置为1 使用灰度颜色(黑白)。程序与需要使用的文件在同一个目录。 drawparams 里的参数以 #define 开头,#应该不是注释作用。 // 后的内容是注释内容,对参数的顺序不敏感 INFILE POPQ : 种群矩阵 INFILE INDIVQ :个体矩阵 INFILE LABEL ATOP :图上边的lable INFILE LABEL BELOW :图下边的label INFILE CLUST PERM :图形颜色 PRINT INDIVS : 1 plot 个体。0 plot 群体 PRINT SEP : 不同种群间有黑色线条 BOXHEIGHT :单个个体图形中的高度 ORIENTATION :设置图形方向 PRINT INFILE NAME :print INFILE POPQ 文件到图形 看完手册 还是不清楚怎么在图形上显示个体名称或许需要对数据进行排序。 (1)define PRINT_INDIVS
免费论文网站软件关于论文软件好用的论文app如下:好的论文app有:超级论文、论文指南、论文帮、科技论文在线。查找论文的app有:Sci-hub、Kopernio、网易有道词典、SPSS、Matlab、Origin、Python、幕布、Xmind、百度脑图等。一般各大院校都会购买第三方数据库(比如知网是标配),学生在校内可以直接访问数据库,下载需要的文献资源,基本上中文文献都很全。碰到少数找不到全文资源的文献,可以在百度学术、google scholar里搜一下看看,有时候会给资源的链接。另外,计算机学科的同学也可以用“学术范”这个平台(域名就是“学术范”的拼音全拼),上面优质的计算机学科外文文献很多,还有很多数据统计以及筛选功能,可能帮你定位到有价值的文献。另外这个平台还有文献管理和社区讨论功能,很适合毕业季写毕业论文使用。常用的都是知网吧,就是知网要花钱,毕竟论文都是人家辛辛苦苦写的,你要搞研究借鉴看人家的当然得付费。一个绿色的re什么的论文网站论文资料查询网站免费 免费论文搜索引擎(一个学术论文存储量超过420W篇的网站) 斯坦福学术文献电子期刊(号称是提供免费全文的、全球最大的学术文献出版商)(是一个免费电子书籍搜索下载网站,号称世界最大的免费电子图书馆。拥有513万多书籍和7751万多文献下载。) 学术资源搜索工具(是一个专注于教学、研究方面且免费、专业、强劲的学术搜索工具,在论文质量上是绝对具有权威性的)(一个免费下载外文的网站,可以说是家喻户晓,但有时候会打不开)6.中国知网(号称全国资源总库,以收录核心期刊和专业期刊为主,权威、检索效果好,覆盖范围广)7.万方(内容一科技信息为主,兼顾人文,适合工科或理工科院校,收录文献质量高)8.维普(内容以自然科学和工程技术为主,几乎涵盖了全国的国内中文出版物)文献馆(内容包含海量中外文献资源全文下载、论文查重、解决疑难文献,覆盖各科领域,写论文用比较省时省力)10.国家哲学社会科学文献中学(有中文文献,还有古籍,哲学、社会科学等相关专业必备
打开 App别再用知网下载文献了,这16个国内外好用的论文网站,赶紧收藏起来4737阅读程序员晚枫关注大家好,我是程序员晚枫。最近中科院停用知网的消息,已经被中科院回复了:消息属实!今天我给大家分享16个写论文时会用到的神仙网站,国内外都有。有了它们的帮助,你一定可以顺利完成任务~还没或者已经毕业的小伙伴也可以先收藏起来,以后一定会用到的~国内论文搜索引擎1、DocTranslator网址:一个可以翻译文档的网站。大家在写论文的过程中免不了要搜集资料,有时候一些文献是外文的,不太方便理解。这时候就可以用到DocTranslator这个神仙网站了。它支持直接翻译文档,你可以将整个文档放进去,翻译后的结果也是以文档的形式呈现的。而且它支持翻译109种不同的语言,非常实用~2、ParperTime网址:一个超级好用的论文查重工具。图片ParperTime是一个论文查重平台,有知网、万方、维普等知名查重品牌,所以完全不用担心权威性。而且它可以在线查重、改重,用起来非常方便,论文排版也是完全免费的。最重要的是,它可以免费查重10万字,对于大多数同学来说都是够用的~3、文献部落网址:一个免费下载文献的学术导航网站,汇总最新免费下载国内外文献的网站,英文文献下载网站应有尽有,百度学术、文科、知网等网站文献都免费下载,为广大研究生提供最便捷的文献下载方法。除了文献下载,文献部落内还涵盖了众多国外的文献查询网站,X-MOL、Zlibrary、SJR、Libgen等,方便查询文献的来源,更便利、更迅速、更快捷的查询文献。文献部落罗列了三个SCI文献下载入口,不仅确保能够正常使用,而且提升了文献的下载速度,除了SCI,还有OALib网站,同样可以查询并下载文献,每个网站的侧重点都不一样,方便查找,省时又省力!还有文献互助群,有找不到的文献可以求助群内大佬,多位学术大佬,帮你查找文献,回答问题。不进群,你永远不知道你和别人的差距在哪儿……4、文献小镇网址:这是一款集国内外文献查询于一体的综合性文献搜索网站,里面包含了多个SCI-HUB、Google的镜像网址,还有国内文献、百度文库、知网文库等超多、超全文库,还有超多备用链接,总有一款适合你!图片文献小镇是号称中国版的SCI-HUB,界面同SCI-HUB一样简介明了,可以采用URL,PMID/DOI等方式搜索下载文献。5、格桑花学术导航网址:小众学术导航网站,可能大多数人都没有听过.他的优势是网站操作简单,没有广告,弹窗,同样不会垂涎很多乱七八槽的东西,网站包含国内外最受欢迎的学术网站:SCI-HUB,谷歌学术、EI、Nature、ACS、Springer、Direct、知网、万方、维普等各大官方网站.图片由于比较小众,知道的人不是很多,所以查找文献十分流畅,基本不会出现卡顿的情况。6、百川文献翻译一款全新上线的免费翻译文献的软件,支持多种语言实时翻译,不仅能够节省宝贵的精力和时间,还能够帮助科研人员节省下一大笔翻译的费用。7、万千合集站网址:万千合集站是一个高质量论文,文档搜索网站,是一个非常适合大学生的一个网站。它支持各种不同学科论文,文档搜索,包括:数学建模,电气工程,中国哲学,材料科学,心理学,高等数学,生物物理,统计力学,量子物理,电子工程师,医学统计,天体化学,遗传学,数学方法论,线性规划,病理学 ,函数。利用这款搜索工具,你可以轻松搜索到你需要的论文文档,并且这个网站支持免费帮你找到文档的下载地址,你可以直接免费下载你需要的论文和文档。8、科塔学术导航网址:科塔学术导航网站包含四个模块,包括学术资源、科研社交、科学传播、科研机构四个模块。其中学术资源模块下包含十来套学术工具,每套工具下面又细分为多种类型的工具。图片国外论文搜索引擎9、OALib 免费论文搜索引擎网址:是一个学术论文存储量超过420W篇的网站,其中涵盖数学、物理、化学、人文、生物、材料、医学和人文科学等领域,文章均可免费下载;它的一大特色在于功能上支持页面快照,不出站就可直接浏览文章标题、作者、关键词、以及摘要等基本信息,大大缩短了时间成本,是一个较为高效的论文查找网站。图片10、BaseSearch 德国比勒菲尔德学术搜索引擎网址:它是由德国著名的比勒菲尔德(Bielefeld)大学图书馆开发的一个多学科的学术搜索引擎,提供对全球异构学术资源的集成检索服务。BaseSearch整合了德国比勒菲尔德大学图书馆的图书馆目录和大约160个开放资源(超过200万个文档)的数据。11、BioMed Central 生命科学网络期刊网址:拥有大约300种同行评审期刊的发展组合,分享科学,技术,工程和医学研究领域的发现。BMC现已在生物医学领域拓展到物理科学,数学和工程学科领域,可在单一开放式访问平台上提供更广泛的学科领域。12、Highwire 斯坦福学术文献电子期刊网址:号称是提供免费全文的、全球最大的学术文献出版商之一。该网站收录的期刊内容囊括了生命科学、医学、物理学、社会科学等多个领域,具体收录电子期刊882种,文章总数已达282万篇。图片13、IntechOpen 免费科技文献网址: 提供免费科技文献涵盖生物科技、计算机和信息科学、地球科学、电气与电子工程、材料科学、医学、技术等科学领域。14、MinimanuScript 学术文献维基百科平台网址:这是一个用户可以自由地编辑优化,评论并添入音频、视频、图片等更多相关文件的平台,属于维基类学术文献百科。在MiniManuscript上你能看到其他读者在读完某篇文献后整理出来的框架:这篇论文究竟用什么方法研究了什么问题,有了怎样的发现等。有希望成为一个更加开放更有效率的学术平台。15、SemanticScholar 免费学术搜索引擎网址:该网站是由微软联合创始人 Paul Allen 做的免费学术搜索引擎,其检索结果来自于期刊、学术会议资料或者是学术机构的文献。这个搜索引擎能检索到 80% 的免费论文文献,大约有 300 万份,另外它直接提供图表预览,看起来能方便研究人员省下更多筛选的工作。图片16、Sci-Hub网址:提到Sci-Hub这个文献下载利器,大家都不陌生。你在各大SCI杂志上看到的英文文献,90%以上都能免费下载。为什么不到论文的期刊官网去下载?因为如果你们学校图书馆没买这个期刊,去官网下载是要收费的,一篇论文要20至100美元不等。图片只需要将网址输入该网站,就会随机从来自全球的志愿者提供的账号密码登入系统,下载并自动备份论文电子文件。开启 后,可输入论文网址、PMID(PubMed Unique Identifier)、DOI(Digital Object Identifier)或关键词来进行查找
基因工程的利弊基因工程的利与弊说【摘要与前言】基因工程技术,在医药及农业上应用广泛。这项尖端科技加上最近突破性的生殖科技,却引发人们极大的隐忧及争论。生物学家在一百多年前就知道,生物的表征遗传自其亲代。生物细胞的细胞核,含有染色体,组成分为DNA。DNA含有四种碱基(简称A、T、C、G)。这些碱基在DNA中看似杂乱无章,但它们的排列顺序,正代表遗传讯息。每三个碱基代表一种胺基酸的密码。基因就是这些遗传密码的组合,亦即代表蛋白质的胺基酸序列。每个基因含有启动控制区,以调控基因的表达。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。基因工程对于人类的利弊一直是个争议的问题,主要是这项技术创造出原本自然界不存在的重组基因。但它为医药界带来新希望,在农业上提高产量改良作物,也可对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。但它亦引起很大的忧虑与关切。当此科技由严谨的实验室转移至大规模医药应用或商业生产时,我们如何评估它的安全性?此项技术是否可能因为人为失控,反而危害人类健康并破坏大自然生态平衡?【正文】观点:辨证的看待基因工程的利与弊一.基因工程可用来筛检及治疗遗传疾病。遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。但是广泛的基因筛检将会引起一连串的社会问题。如果有人接受基因筛检,发现在某个年龄将因某种病死亡,势必将会极度改变他的人生观。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。譬如人寿保险公司将会要求客户提供家族健康数据,如心脏病、糖尿病、乳癌等,而针对高危险群家族成员设定较高的保费。保险公司可由基因筛检资料预知客户的预估寿命。这些人可能因而得不到保险的照顾,也可能使这些人被公司老板提早解聘。二.基因工程配合生殖科技——全人类的震撼基因筛检并不改变人的遗传组成,但基因治疗则会。科学家正努力改变遗传病人的错误基因,把好的基因送入其中以纠正错误。因为这是在操作生命的基本问题,必须格外小心。首先须划分医疗及非医疗的行为。医疗行为目的在治病,非医疗者如想提高孩子的身高、智慧等。选择胎儿性别也是非医疗行为,不能被接受,但是遇到某些性连遗传的疾病,选择胎儿的性别就是可被接受的医疗行为。另一项须区分的,就是体细胞(somatic cell)或生殖细胞(germ-line cell)的基因操作。体细胞的基因操作只影响身体的体细胞,不影响后代。但卵子、精子等生殖细胞之基因操作,会直接影响后代,目前基因工程禁止直接用在生殖细胞上。三.基因治疗法——遗传病人的福音目前医学界正在临床试验多种遗传病的基因治疗法。最早采用基因治疗的是一种先天免疫缺乏症,又称气泡男孩症(bubble-boy disease),患病婴幼童因为腺脱胺(adenosine deaminase)基因有缺陷,骨髓不能制造正常白血球发挥免疫功能,必须生活在与外界完全隔离的空气罩内。最新的治疗法是由病人骨髓分离出白血球的干细胞,把正常的酵素基因接在经过改造不具毒性的反录病毒(retrovirus),藉此病毒送入白血球干细胞,再将干细胞送回病人体内,则病人可产生健康的白血球获得免疫功能。这项临床试验,在美国的女病童证明很成功。另一种较便捷的治疗法亦在实验中,纤维性囊肿(cystic fibrosis)在英国平均每两千人中就有一人罹患此症。病人无法制造形成细胞膜氯离子通道的蛋白。此蛋白分布于分泌性细胞的胞膜上,控制氯离子的运输,使黏液畅通。病人体内因缺乏此蛋白,体内浓黏液堆积阻塞肺部通道,甚至发炎死亡。为了治疗此病,目前正在发展新方法,将正常基因加入雾状喷剂中,病人可借着吸入喷剂,使基因进入肺细胞产生蛋白,达到治疗目的。四.农林渔牧的应用——生态环保的顾虑目前全世界正重视发展永续性农业(sustainable agriculture),希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。英国爱丁堡科学家已经可以使绵羊分泌含有人类抗胰蛋白(α-1-antitryspin)的羊奶。抗胰蛋白可以治疗遗传性肺气肿,价格很昂贵。若以后能由羊奶大量制造,将变得很便宜。但是目前以基因工程开发培育基因转殖绵羊的过程,仍是很费时费钱的。基因转殖的细菌用处也很大,如改造细菌可以消化垃圾废纸,而这些细菌又可成为一种蛋白质的营养来源。基因转殖的细菌可带有人类基因,以生产医疗用的胰岛素及生长激素等。其实基因工程在农业上的应用,在某些方面而言并不稀奇。自古以来,人们即努力而有计划地进行育种,譬如一个新种小麦,乃是经过上千代重复杂交育成的。目前的小麦含有许多源自野生黑麦的基因。农人早在基因工程技术发明以前,就知道将基因由一种生物转移至另一生物。传统的育种也可大量提高产量。但是传统的育种过程缓慢,结果常常难以预料。基因工程可选择特定基因送入生物体内,大大提高育种效率,更可把基因送入分类上相差很远的生物,这是传统的育种做不到的。不久,在美国即将有基因工程培育出来的西红柿要上市了。这种西红柿含有反意基因(antisense gene),能使西红柿成熟时不会变软易烂。基因工程也生产抗病抗虫作物,使作物本身制造出“杀虫剂”。如此农夫就不需费力喷洒农药,使我们有健康的生活环境。也可培育出抗旱耐盐作物以适合生长在恶劣的环境下,如此可克服第三世界的粮食短缺问题。但是,会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。在高盐的沼泽地种植基因工程育成的作物,可能会干扰了生态系统。假如热带作物改造得可以于温带地区生长,可能会严重伤害开发中国家的经济,因为农作物水果的输出是他们的主要收入。最近更逐渐发现危害作物的害虫,已经慢慢地演化,以抵抗基因转殖作物所产生的「杀虫剂」了。基因工程培育的鱼,也引起一连串的问题。目前已送两个基因到鲤鱼中,一是生长激素,一是抗冻蛋白(antifreeze protein)。若有人不小心或刻意地把这些鱼放入自然环境的河、湖中,将会严重影响自然界的鱼群生态。五.基因转殖动物——爱护动物人士的关切基因转殖动物对于生物医学研究,真是一大恩赐。科学家现在可将基因送入实验室的老鼠,以研究基因的表达调控功能。也可以把实验动物的某个基因刻意破坏,培育出患有类似人类遗传疾病的动物,以利治疗方法的探讨。美国一家公司已经培育出一种基因转殖老鼠,它在数个月大时会长出癌瘤,此项发明正在申请专利。但是爱护动物人士已表示严重关切,他们认为应该限制基因工程技术如此折磨虐待实验动物。(注:基因工程的应用并不只有以上部分,我只对以上部分发表个人观点。)【结语】不久的将来,基因工程技术仍只限于转殖少数的基因,如此培育出来的生物仍将是我们熟悉的生物。但是有很多疾病及生物特征是由多数基因决定的,而且基因常常不是独立行使功能,它们会受环境的影响。譬如一组基因会造成某人罹患气喘,但症状受生活的环境影响很大。一个人罹患糖尿病的机率,也与环境因子(饮食条件)息息相关。一个天才钢琴家的音乐天赋包括听力及灵敏的双手巧妙地配合,这跟他的遗传基因、童年音乐的启发、生活环境等都有关连。所以我们在还未了解基因与环境因子的互动关系前,还不能奢望创造出具有超高智商的人,或是利用基因筛检法筛选出具有特殊天赋的孩子。21世纪是基因工程技术蓬勃发展的时代,基因工程的兴起是生物革命的必然结果,尽管基因工程的隐忧及争论众说纷纭,但其给人带来的好处是显而易见的。希望随着生物界的不断发展,使基因工程的安全性得到保证,让人们在生活的各个方面都能感受基因工程给人类带来的利益。
“一旦戴上‘遗传病’的帽子,就意味着这个孩子只能抱回家等死了!” 很多年前,不仅老百姓这样想,就连毕业于北京医科大学,在北京大学第一医院做了好些年儿科大夫的杨艳玲也这样想过。 直到1991年杨艳玲去日本东京读研究生,她的老师恰好是遗传代谢病、内分泌疾病筛查的专家,从那时起杨艳玲才知道有些遗传病是能治的,而且很多遗传代谢病还可以治得特别好。 震惊之下,杨艳玲跟着日本老师开始学习遗传代谢内分泌疾病的筛查和诊断治疗,看了大量的各年龄段的遗传病病人,积累了一定的临床经验。 1996年,回国后的杨艳玲开始专攻遗传代谢病,一个病例一个病例地把这个领域建立起来,现在身为儿科遗传学教授的她,已经是国内遗传代谢病领域首屈一指的大牌专家了。 苯丙酮尿症: 饮食疗法就能治好的 “ 绝症 ” 采访杨艳玲,有一个词出镜率特别高——“傻孩子”,每当说出这个词时,她的语气满是浓浓的心疼和怜惜。 “为什么说患了遗传代谢病的孩子都是傻孩子呢?” “因为患病的孩子90%都侵犯到了大脑,而且大部分都是第一胎。” “为什么孕前检查不出来呢?” “因为做不到。现在已知命名的有21000多种遗传病,其中90%以上的疾病是常染色体隐性遗传,而每个人身上都带着大约100~400个基因致病突变,而且绝大多数是隐性的,所以无从检查。隐性遗传就是夫妻双方都携带致病基因,但是他们自己并不知道。当这两人撞在一起,就可能把两人共同的遗传缺陷传给孩子,导致遗传代谢病。所以说这茫茫人海中,两个携带相同的致病基因的人走到一起也真是太有缘份了。” “那么,如果一个人携带致病基因,另一个人没有,孩子会怎么样?” “那孩子有50%的可能性是携带致病基因,只是携带是没关系的。上帝创造人类很有技巧,他让每个人身上都带着缺陷降生,世上没有完美的人。但是,因为夫妻双方携带同样的致病基因缺陷的几率非常高,所以遗传病防不胜防。这个是世界难题。” 杨艳玲主要研究遗传代谢病,国际已经命名的有600多种,其中有一些是小分子代谢病,有一些是大分子代谢病,不是所有病都能治,但是小分子代谢病里面,像苯丙酮尿症,中国新生儿筛查覆盖率已经到了86%了,诊断和治疗技术也非常成熟,不仅最有社会价值,也成为很多遗传代谢病的诊治模板。 从1953年的德国开始,首先研发出了苯丙酮尿症的治疗方法,即饮食治疗方法,通过饮食干预,苯丙酮尿症病人可以健康成长并正常的工作、结婚、生育。说它具有创新性,是因为从不治之症到可以治疗,并且治得非常好;说它是模板,是因为将苯丙酮尿症的饮食治疗和药物治疗的原理,推广到其他的病种,同样也获得了很好的效果。 遗传代谢病最基本的发病原理就是身体里产生了大量的垃圾导致自身中毒,饮食和药物治疗原理即通过饮食和药物给病人解毒,让他自身产生比较好的代谢功能,维持生命机能。恢复的程度要看病种,比如生物素缺乏、多巴反应性肌张力不全,还有维生素B6反应性癫痫,这些疾病只要针对性治疗都能很快控制。比如维生素B6反应性的癫痫,只要给病人服用维生素B6,病人就能好转,多数马上就不抽风了。 甲基丙二酸尿症: [if !supportLineBreakNewLine] [endif] 漂洋过海去做检查的尿样 1996年,杨艳玲从日本回国,当时国内的遗传代谢病领域尚处于很落后的状态,很多病医生都没见过没听过,更不必说那些诊断检测的仪器了,“这直接导致很多病被发现后,尿样只能漂洋过海去检测的奇特现象。”杨艳玲感慨地说。 第一个有此“出国”殊荣的尿样来自一位患有甲基丙二酸尿症的女孩儿,杨艳玲回忆当时的情景说,那时是吴希如老师在病房查房,发现有个病人严重的大细胞贫血,严重的神经系统损害,癫痫,震颤,无法行走,对比这些症状,吴老师马上说,这怎么那么像文献上的甲基丙二酸尿症?但那个病当时在中国根本没有条件确诊,如果没有正确的诊断,治疗起来就很盲目。正好杨艳玲跟日本的老师们关系比较好,于是,这位患者的尿样就漂洋过海地送到了日本,很快日本回复说确实是甲基丙二酸尿症,建议用维生素B12及叶酸等进行治疗。按此方法孩子很快就好转了,现在已经快二十岁了,非常健康。 杨艳玲说,如果当时没有得到及时治疗,这个孩子现在肯定不在人世了。但是,由于吴老师首先意识到这个病,然后找渠道把尿样送出去确诊,挽救了这个孩子的生命。就这样,通过海外的合作,杨艳玲诊断了中国第一例甲基丙二酸尿症,还在国际上发表了相关论文。 在这个病例之后,经过筛查,这种病例越来越多,从1996年到现在,光是北大妇儿医院,积累的甲基丙二酸尿症病例已经有500多个了,绝大多数都是因为脑子的问题,比如说癫痫,昏迷,或者是智力倒退,瘫痪,经过在小儿神经内科的筛查、确诊和治疗,有很多病人康复。 后来,遗传代谢病的研究获得了国家的重视,卫生部作为重点项目支持,2003年,实验室终于买了第一台气相色谱质谱联用分析仪,进行尿有机酸分析,病人的尿样再也不用漂洋过海,在自己的医院就可以解决诊断问题了。 说起这台仪器,杨艳玲很兴奋,“通过尿有机酸分析,可以同时筛查34种有机酸尿症,包括丙酸尿症、甲基丙二酸尿症都可以涵盖,所有的病种在我们科都被筛出来了,最关键它是无创性的,只验一泡尿,检测一下尿中的代谢垃圾,就可以知道这个孩子是不是患了其中某一种疾病。在当时,这台仪器是非常先进的,现在通过我们的推广和培训,不断的传播这些疾病的诊断筛查治疗知识,在国内很多城市也都已经装上了。” 相比较筛查和诊治,杨艳玲更关心这些孩子经过治疗后的情况,能不能上学、工作、结婚生育,都是随着病人长大会面临的问题。过去人们对遗传病比较悲观,后来能诊断治疗了,治着治着又发现这些病的预后比原先预料的要好得多,就像甲基丙二酸尿症,已经有相当一部分孩子正常上学了,而且不是弱智学校,上的是正常学校。 虽然这些病要终身治疗,但治疗方法却不难,就是维生素B12加上叶酸、左卡尼汀、甜菜碱,都是比较容易得到的,费用也就一个月几百块,就可以把这些孩子治得很好。 “我们医院诊治过的孩子,现在上托儿所、小学、大学的都有了,有几个都大学毕业了,工作得非常好。有一个北京的孩子在银行工作,还有一个女孩子不仅结婚还生了一个孩子,当时我们都说这样的孩子自己能活着都不简单。”说起那些孩子,杨艳玲的语气里有着掩不住的疼爱。 肉碱缺乏症: [if !supportLineBreakNewLine] [endif] 一场纠纷引出的国内首例 遗传病大多治起来比较困难,或是智力渐渐出问题或是瘫痪,家长会有一个缓慢的接受过程。但是原发性肉碱缺乏症不一样,很多情况下孩子会猝死,或是新生儿猝死,或是运动中猝死,对此杨艳玲感触最深。 原发性肉碱缺乏症的发病原因也是常染色体隐性遗传,基因的功能是维持人体里面的肉碱的吸收、利用和转运,当父母都各携带了一个致病基因时,就造成了父母比普通人血液里肉碱的水平要低,如果妈妈怀孕了,必须负担两个人的营养,这时母亲和胎儿的代谢负担就会非常严重。 杨艳玲遇到的国内第一例原发性肉碱缺乏症跟医疗纠纷有关的病例。 一位产妇在一家三甲医院生的孩子,刚生下来挺好,没想到72小时后孩子在妈妈怀里断气了。家属认为是产科医生的责任,后来做了尸检,才发现孩子是特别严重的心肌病,是由于先天性遗传代谢病引起的心脏骤停。 为了能把病因查清楚,这家人找到了杨艳玲,她把孩子保存下来的尸解样本做了基因分析,证实了孩子的死因是原发性肉碱缺乏症,因为肉碱缺乏导致的结果主要就是心肌损伤和骨骼肌的损伤,并且从父母身上也发现携带了致病突变,这样才算是弄清了死因。 后来,这位妈妈在杨艳玲的帮助下开始了二次怀孕,怀孕前杨艳玲先给夫妻二人补充了左卡尼汀,提高身体的代谢功能,顺利怀孕后又一直给孕妇做监测。当怀孕四五个月开始,孕妇出现了脂肪肝和高脂血症,血液里的肉碱特别低,经过检测,证明是由于胎儿肉碱缺乏,不断跟妈妈抢夺肉碱导致。 虽然知道胎儿患有肉碱缺乏症,但孕妇表示只要这个病是能治疗的,就要把孩子生下来。于是,杨艳玲让孕妇开始服用左卡尼汀,用了一周药后,孕妈妈的脂肪肝和血脂全部正常了。足月后孩子也正常出生了,全家人欣喜若狂。 而在孩子出生后,妈妈哺乳期间也一直在服用左卡尼汀,让孩子通过母乳获得足够的左卡尼汀,孩子发育很好,现在已经正常上学了。 杨艳玲说,孩子大了以后也一直在做监测,小时吃母乳,大了吃牛羊肉,里面含的肉碱比较高,一旦监测发现血液的肉碱不够,家长会把左卡尼汀加量,所以这孩子一直维持得挺好的。假如没有之前的尸解诊断和产前诊断,这个家族很可能再次发生不幸。 线粒体病: [if !supportLineBreakNewLine] [endif] 替妈妈们平冤的 “ 双方遗传 ” 杨艳玲的科研重点还包括一组难治的遗传代谢病——线粒体病,线粒体是细胞里的发动机,发动机出了问题,细胞功能也就随之丧失,所以死亡率非常高,在五岁之内超过20%,而且相当一部分是在一岁之内死亡。这组疾病一直是医学上的大难题。 经过十几年的努力,杨艳玲的课题组对于线粒体病的研究有了很多国内、外首例的发现,但其中一个病例杨艳玲讲述的时候很是振奋,因为这项研究替很多妈妈平了冤昭了雪。 那是我国第一例核基因异常引起的线粒体病,在病因不明之前被认为是母系遗传的。但国外研究发现,线粒体病中90%以上是由夫妻双方遗传,只有10%的可能与妈妈相关,有90%的可能性是父亲也参与遗传了,这一结论颠覆了以往孩子一得线粒体病就认为是妈妈遗传的观念,为妈妈们摘掉了一顶大帽子。 此外,线粒体病的诊断主要依据基因的分析,而线粒体病的典型症状是脏器的损害,比如说脑、心脏、肝、肾甚至胃肠道的损害,如果做病理检查,就需要取孩子的肌肉或肝活检,这种活检无疑难度太大了,大夫下不去手,家长舍不得。多方探讨后,北大医院中心实验室决定研发其他的方法,一个是通过血液细胞做无创的基因分析,另一个则是利用尿液,离心尿液,把尿里的细胞沉渣拿来做基因分析,也非常有效,解决了很多线粒体疾病的病因诊断问题。 在对线粒体病的治疗上,过去一直都比较悲观,而现在杨艳玲的课题组发现线粒体疾病里面有一些病治疗起来效果很不错,比较说丙酮酸脱氢酶复合物的缺陷,这组疾病对维生素B1的反应特别好,已经有好几个病人经过大剂量的维生素B1的治疗,恢复得非常好,上托儿所、上学、工作的都很棒。 而对于一些特别难治的线粒体病,可以通过鸡尾酒疗法,就是把线粒体需要的维生素如维生素B1,辅酶Q10、左卡尼汀、维C、维E等大剂量堆在一起,让家长给孩子每天服用,有很多孩子的线粒体功能也逐渐恢复了。 杨艳玲说,未来我们要解决更多线粒体病人的病因诊断问题,对症治疗。病因诊断另一个重要的目的是产前诊断。这些病人的家庭一般都有诉求,下一个孩子怎么办,如果没有明确的病因诊断,没有正确的基因突变结果的分析,下一胎的产前诊断是没法做的。所以我们在线粒体疾病的产前诊断上做了很多的工作,很多在国际上发表的文章都很受欢迎,有不少是国内首例特别有创新价值。
1、通过遗传学研究人类起源2、在遗传学的指导下通过生物工程开发转基因作物3、基因治疗
遗传携带者的检出 遗传携带者(genetic carrier)是指表型正常,但带有致病遗传物质的个体。一般包括: ①隐生遗传杂合子;②显性遗传病的未显者;③表型尚正常的迟发外显者;④染色体平衡易位的个体。 遗传携带者的检出对遗传病的预防具有积极的意义。因为人群中,虽然许多隐性遗传病的发病率不高,但杂合子的比例却相当高。例如苯酮尿症的纯合子在人群中如为1:1000,携带者(杂合子)的频率为2:50,为纯合子频率的200倍。对发病率很低的遗传病,一般不做杂合子的群体筛查,仅对患者亲属及其对象进行筛查,也可以收到良好效果。对发病率高的遗传病,普查携带者效果显著。例如我国南方各省的α及β地中海贫血的发病率特别高(共占人群8%-12%,有的省或地区更高),因此检出双方同为α或同为β地贫杂合子的机会很多,这时,进行婚姻及生育指导,配合产前诊断,就可以从第一胎起防止重型患儿出生,从而收到巨大的社会效益和经济效益,不仅降低了本病的发病率,而且防止了不良基因在群体中播散。 染色体平衡易位携带者生育死胎及染色体病患儿的机会很大(参阅第二章),因此,对染色体平衡易位的亲属进行检查十分重要。 隐性致病基因杂合子检出方法的理论根据是基因的剂量效应,即基因产物的剂量,杂合子介于纯合子与正常个体之间,约为正常个体的半量,但因机体内外环境各种因素对基因表达的影响,以及检测方法的不同(直接测定基因产物或测定基因间接产物),使测定值在正常与杂合子之间,杂合子与纯合子之间发生重叠,造成判断的困难。 杂合子携带者的检测方法大致可分为:临床水平、细胞水平、酶和蛋白质水平及分子水平。从临床水平,一般只能提供线索,不能准确检出,故已基本弃用。细胞水平主要是染色体检查,多用于平衡易位携带者的检出。酶和蛋白质水平的测定(包括代谢中间产物的测定),目前对于一些分子代谢病杂合子检测尚有一定的意义,但正逐渐被基因水平的方法所取代。即随着分子遗传学的发展,可以从分子水平即利用DNA或RNA分析技术直接检出杂合子,而且准确,特别是对一些致病基因的性质和异常基因产物还不清楚的遗传病,或用一般生化方法不能准确检测的遗传病,例如慢性进行舞蹈病、甲型和乙型血友病、DMD、苯酮尿症等;最后,对一些迟发外显携带者还可作症状前诊断,因而有可能采取早期预防性措施,如成人多囊肾病等(参阅第十三章)。目前,用基因分析检测杂合子的方法日益增多,并逐步向简化、快速、准确的方向发展,以求扩大到高危人群的筛查。
疾病简介 遗传病是指由遗传物质发生改变而引起的或者是由致病基因所控制的疾病。[编辑本段]疾病类型 由于遗传物质的改变,包括染色体畸变以及在染色体水平上看不见的基因突变而导致的疾病,统称为遗传病。根据所涉及遗传物质的改变程序,可将遗传病分为三大类: 其一是染色体病或染色体综合征,遗传物质的改变在染色体水平上可见,表现为数目或结构上的改变。由于染色体病累及的基因数目较多,故症状通常很严重,累及多器官、多系统的畸变和功能改变。 其二是单基因病,目前已经发现 5余种单基因病,主要是由单个基因的突变导致的疾病,分别由显性基因和隐性基因突变所致。所谓显性基因是指等位基因中(一对染色体上相同座位上的基因)只要其中之一发生了突变即可导致疾病的基因。隐性基因是指只有当一对等位基因同时发生了突变才能致病的基因。 第三是多基因病,顾名思义,这类疾病涉及多个基因起作用,与单基因病不同的是这些基因没有显性和隐性的关系,每个基因只有微效累加的作用,因此同样的病不同的人由于可能涉及的致病基因数目上的不同,其病情严重程度、复发风险均可有明显的不同,如唇裂就有轻有重,有些人同时还伴有腭裂。值得注意的是多基因病除与遗传有关外,环境因素影响也相当大,故又称多因子病。很多常见病如哮喘、唇裂、精神分裂症、高血压、先心病、癫痫等均为多基因病。 遗传病是指完全或部分由遗传因素决定的疾病,常为先天性的,也可后天发病。如先天愚型、多指(趾)、先天性聋哑、血友病等,这些遗传病完全由遗传因素决定发病,并且出生一定时间后才发病,有时要经过几年、十几年甚至几十年后才能出现明显症状。如假肥大型肌营养不良要到儿童期才发病;慢性进行性舞蹈病一般要在中年时期才出现疾病的表现。有些遗传病需要遗传因素与环境因素共同作用才能发病,如孝喘病,遗传因素占80%,环境因素占20%;胃及十二指肠溃疡,遗传因素占30%~40%,环境因素占60%~70%。遗传病常在一个家族中有多人发病,为家族性的,但也有可能一个家系中仅有一个病人,为散发性的,如苯丙酮尿症,因其致病基因频率低,又是常染色体隐性遗传病,只有夫妇双方均带有一个导致该疾病的基因时,子女才会成为这种隐性致病基因的纯合子(同一基因座位上的两个基因都不正常)而得病,因此多为散发,特别在只有一个子女的家庭,偶有散发出现的遗传病患者,就不足为奇了。 那么,遗传病能够治疗吗? 以前,人们认为遗传病是不治之症。近年来,随着现代医学的发展,医学遗传学工作者在对遗传病的研究中,弄清了一些遗传病的发病过程,从而为遗传病的治疗和预防提供了一定的基础,并不断提出了新的治疗措施。家族遗传病 遗传性疾病是由于遗传物质改变而造成的疾病。 遗传病具有先天性、家族性、终身性、遗传性的特点。 遗传病的种类大致可分为三类: 一、单基因病。 单基因常常表现出功能性的改变,不能造出某种蛋白质,代谢功能紊乱,形成代谢性遗传病。单基因病又分为三种: 1.显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的代代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。 2.隐生遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。 3.性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。 二、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。 三、染色体异常:由于染色体数目异常或排列位置异常等产生;最常见的如先天愚型,这种孩子面部愚钝,智力低下,两眼距离宽、斜视、伸舌样痴呆、通贯手、并常合并先天性心脏病。 上述遗传病并非携带致病基因就肯定会发病。 其实几乎所有的疾病都与基因有关系,也和环境有密切联系!遗传按生物体的照性状分,还可以分为质量性状和数量性状!所谓质量性状就是白种人和黄种人的差别,这主要是遗传决定的,受环境因数影响小。也就是男女的差别!数量性状即稻谷的重量,人的身高,颜色深浅等等,这些都叫数量性状。数量性状是多基因决定的,基因数一般不易测算,因为误差可以相差一个数量级。所以主要讲基因的总效应!数量性状受环境的影响非常大。可以说超过遗传因子! 总之,绝大部分疾病是环境因子和遗传因子共同作用的结果由于受精卵形成前或形成过程中遗传物质的改变造成的疾病。有人认为只有受父母遗传因素决定的疾病才是遗传病,这一认识不够全面。例如有一些染色体畸变并非由父母遗传因素决定,而是在受精卵形成过程中产生,习惯上染色体畸变都包括在遗传病的范畴内。还有人认为凡是受遗传因素影响的疾病都是遗传病,这一概念也不确切,因为在人类所有疾病中,除了少数几种(如外伤造成骨折)完全由环境因素所致,不受遗传因素影响外,几乎绝大多数疾病都是环境和遗传两方面因素互相作用的结果,只是两者影响疾病发生的程度可不相同。即使细菌感染、外伤后癫痫等环境因素十分明显的疾病,不同个体之间也存在着易感性的差异,而这种差异也是受遗传因素影响的,不可能把这些病都包括在遗传病的范畴之中。完全由遗传因素决定的疾病(A类,如21三体综合征)和完全由环境因素决定的疾病(D类, 如外伤性骨折)都是少数,而大多数人类疾病都居于B类和C类。B类指基本上由遗传因素决定,但需要环境中一定的诱因才发病,如苯丙酮酸尿症患儿在出生后摄入苯丙氨酸就会发病。 C类指遗传因素和环境因素都对发病起作用的疾病,如高血压病、感染等;但不同疾病的遗传度不同,即遗传因素影响越大,则遗传度就越高。所以从理论上来说, A、B、C等三类均属遗传病,但C类如感染、外伤后癫痫等在习惯上不包括在遗传病的范畴中。遗传病不同于先天性疾病,后者是指出生时就已表现出来的疾病。虽然不少遗传病在出生时就已表现出来,但也有些遗传病在出生时表现正常,而是在出生数日、数月,甚至数年、数十年后才开始逐渐表现出来,这显然不属于先天性疾病。另一方面,先天性疾病也并不都是遗传因素造成的,例如孕期母亲受放射线照射时所致的先天畸形,就不属于遗传病。遗传病也不同于家族性疾病。虽然有些由于同一个家族成员具有相同的遗传基础可表现遗传病的家族发病,但是不同的遗传病在亲代、子代之间的传递规律是复杂多样的,有些遗传病(如白化病等隐性遗传病)就可能没有家族史,另一方面,家族性疾病也可能由非遗传因素(如相同的生活条件)造成,如饮食中缺乏维生素 A使多个家族成员出现夜盲。 过去认为遗传病是一个较罕见的疾病,但随着医学的发展和人民生活水平的提高,一些过去严重威胁人类健康的传染病、营养性疾病得以控制,而遗传病成为比较突出的问题。如英国1914年的一项儿童死因调查表明,非遗传性疾病(如感染、肿瘤等)占%,而遗传性疾病只占%,但到20世纪70年代后期,两类疾病各占50%。国内的情况也同样,1951年北京市儿童的死亡原因中,感染性疾病占重要地位,但在1974~1976年儿童死因分析中,先天畸形占全部死因的%,居首位,而在这些畸形中,属遗传病的达3~10名。另一方面,遗传病的病种非常多,随着生物学和医学的发展,近年发现新的遗传病更是层出不穷。表1 表明1958~1982年人类认识的单基因病的病种,至今已有4000种左右的遗传病被人们所认识。 简史 18 世纪法国人莫佩尔蒂第一个对遗传病作了家系调查,他分析了白化病的遗传方式。1814年亚当斯发表有关临床疾病遗传性质的论文,这被认为是近代最早的一篇系统论述遗传病的文章。1908年.加罗德首次提出“先天代谢异常”的概念,将遗传与代谢联系起来,并认为尿酸尿症等先天代谢异常的遗传规律可以用孟德尔定律来解释,为医学遗传学作出了划时代的贡献。1949年L.波林提出了“分子病”的概念。1944年比克尔首先提出控制新生儿营养,可有效防止苯丙酮酸尿症的发展,为遗传病的有效治疗开创了新的一章。1958年J.勒热纳发现先天愚型患儿为三条21号染色体,这是第一次报道了遗传病的染色体异常。 1969年拉布斯发现了 X染色体的脆性部位,为染色体的畸变的研究开辟了一个新的领域。从60年代起,遗传病的产前诊断开始应用于临床。1978年卡恩和多齐首次将 DNA重组技术应用于遗传病的诊断,他们诊断了一例镰刀状细胞性贫血,此后这一诊断技术发展极为迅速。 分类 按照目前对遗传物质的认识水平,可将遗传病分为单基因遗传病、多基因遗传病和染色体病三大类。 单基因遗传病 同源染色体中来自父亲或母亲的一对染色体上基因的异常所引起的遗传病。这类疾病虽然种类很多,3000种以上(见表[1958~1982年全世界报告的单基因遗传病的病种数]1958~1982年全世界报告的单基因遗传病的病种数),但是每一种病的患病率较低,多属罕见病。欧美国家统计,约1%的新生儿患有较严重的基因病。按照遗传方式又可将单基因病分为四类:①常染色体显性遗传病。人类的23对染色体中,一对与性别有关,称为性染色体,其余22对均称常染色体。同源常染色体上某一对等位基因彼此相同的,称为纯合子,一对基因彼此不同的称杂合子。如果在杂合状态下,异常基因也能完全表现出遗传病的,称为常染色体显性遗传病,如多指并指、先天性肌强直,这类遗传病的发生与性别无关,男女患病率相同。父母中有一位患此疾病,其子女中就可能出现患者。据估计,约7‰新生儿患有常显体显性遗传病。②常染色体隐性遗传病。常染色体上一对等位基因必须均是异常基因纯合子才能表现出来的遗传病。大多数先天代谢异常均属此类。父母双方虽然外表正常,但如果均为某一常显体隐性遗传基因的携带者,其子女仍有可能患该种遗传病。近亲婚配时容易产生纯合状态,所以其子女隐性遗传病的发病率也高。③常染色体不完全显性遗传病。这是当异常基因处于杂合状态时,能且仅能在一定程度上表现出症状的遗传病。如地中海贫血,引起该病的异常基因为,纯合子 表现为重症贫血,杂合子则表现为中等程度的贫血④ 伴性遗传病。分为X连锁遗传病和Y连锁遗传病两种。有些遗传病的基因位于X染色体上,Y染色体过于短小,无相应的等位基因,因此,这些异常基因将随X染色体传递,所以称为X连锁遗传病。也分为显性和隐性两种,前者是指有一个X染色体的异常基因就可表现出来的遗传病,由于女性拥有两条X染色体而男性只有一条,所以女性获得该显性基因的机会较多,发病率高于男性,但这类遗传病为数很少,至今仅知10余种。如Xg血型,又如抗维生素D佝偻病是 X连锁不完全显性遗传病。X连锁隐性遗传病是指X染色体上等位基因在纯合状态下才发病者,在女性,只有当两条X染色体上的一对等位基因都属异常时才患病,如果其中有一条 X染色体的等位基因正常就不会患有此病。但是男性只有一条X染色体,只要X染色体上的基因异常,就会表现出遗传病,所以男性发病率高于女性发病率。这种伴性隐性遗传病占伴性遗传病的绝大部分,例如红绿色盲、血友病等都比较常见。据估计约1‰新生儿患有X连锁遗传病。 Y连锁遗传病的致病基因位于Y染色体上,X染色体上则无相应的等位基因,因此这些基因随着Y染色体在上下代间传递,也叫全男性遗传。在人类中属于 Y连锁遗传病的有外耳道多毛症等。 多基因遗传病 与两对以上基因有关的遗传病。每对基因之间没有显性或隐性的关系,每对基因单独的作用微小,但各对基因的作用有积累效应。一般说来,多基因遗传病远比单基因遗传病多见。受环境因素的影响,不同的多基因遗传病,受遗传因素和环境因素影响的程度也不同。遗传因素对疾病发生的影响程度,可用遗传度来说明,一般用百分数来表示,遗传度越高,说明这种多基因遗传病受遗传因素的影响越大。例如唇裂、腭裂是多基因遗传病,其遗传度达76%,而溃疡病仅37%。多基因遗传病还包括一些糖尿病、高血压病、高脂血症、神经管缺陷、先天性心脏病、精神分裂症等。在人群中,多基因遗传病的患病率在2~3%以上。 染色体病 指由于染色体的数目或形态、结构异常引起的疾病。新生儿中染色体异常的发病率为 %。染色体异常称为染色体畸变,包括常染色体的异常和性染色体的异常。但是染色体病在全部遗传病中所占的比例不大,仅约1/10。 遗传病的研究和诊断 要研究判断某一疾病是否为遗传病可通过以下几个途径:家系调查及分析、挛生子分析、种族比较,伴随性状研究、动物模型和 DNA分析。通过家系调查、分析并与人群发病情况比较,不仅可以判断某病是否为遗传病,如果是遗传病的话,还可进一步确定其遗传方式。通过单卵孪生和双卵孪生同胞发病的一致率分析,可能判断某种病受遗传因素及环境因素影响的程度。不同种族和民族发病情况的比较,尤其是对同样生活环境不同种族的发病率的研究可能为遗传病的判断提供重要线索。在伴随症状分析中,目前应用最多的是同种白细胞抗原(HLA)系统,应用这一系统作为遗传病标志。研究作为某一遗传的伴随性状,进行连锁分析,则也能为遗传病的判断提供依据。目前已建立了数十种染色体畸变和单基因遗传病的动物模型,为遗传病的研究提供了有力手段。 DNA分析是近年来发展的重要手段,其中以限制片断长度多态性(RFLP)分析在遗传病判断中应用最多。 遗传病的临床诊断比其他疾病更困难。一方面遗传病的种类极多,另一方面每一种遗传病的单独发病率很低,所以临床医师在遗传病的诊断上不容易取得经验。除了一般疾病的诊断方法(如病史、体格检查、实验室和仪器检查)外,遗传病的诊断还可能需要依靠一些特殊的诊断手段,如染色体检查,特殊的生化学测定及系谱分析。遗传病的临床表现是最重要的诊断线索,每一种遗传病都有一些症状、体征同时存在,被称为“综合征”,这是提示诊断的最初线索,也是选择实验室检查和其他遗传学检查的依据。对遗传病患者必须要详细询问家族史并绘制准确可靠的家系谱,对家系谱的分析不仅是遗传病诊断的一项依据,而且对遗传方式的判明及进行遗传咨询也是极为重要的。皮纹分析是遗传病诊断的另一种特殊手段,主要对染色体病最有价值,对其他个别单基因遗传病也可能有一定意义,常用于临床检查的是指纹、掌纹、掌褶纹、指褶纹和脚掌纹。许多遗传病的最后诊断,还有赖于染色体检查和特殊的生化测定或DNA分析。 产前诊断是遗传病诊断的一个重要方面,在婴儿出生以前通过穿刺取得羊水或绒毛组织。进行染色体检查、特异的酶活性或代谢产物测定,或进行DNA分析对胎儿的发病情况作出判断,决定是否需要进行人工流产以终止妊娠,这在减少遗传病患儿的出生,提高人口素质方面具有重要意义,尤其在目前人类对大多数遗传病还不能进行有效治疗的条件下,用终止妊娠来防止遗传病患儿的出生更具有突出的意义。近年来由于 B型超声扫描仪的广泛应用和技术的提高,在产前诊断,尤其是发育畸形的诊断上有很大的价值。胎儿镜也开始应用于产前诊断。 基因诊断是新发展起来的一项重要技术,也能对近百种遗传病作出准确的诊断,但是由于这些遗传病大多数还不能作有效治疗,所以从医学伦理学的观点来看,除应用于产前诊断外,基因诊断的推广仍存在很大问题。 治疗和预防,要根治遗传病,应该从基因水平或染色体水平来纠正已发生的缺陷,这种方法称为基因治疗,属于基因工程的范畴。但是基因治疗在理论上、技术上还存在着极大的困难,目前谈不上临床应用。目前对遗传病所能进行的治疗只是在早期诊断的前提下,通过控制环境条件(如饮食成分等),调节代谢过程,防止症状的出现,称为“环境工程”。目前能应用于环境工程的治疗包括饮食控制疗法(如苯丙酮尿症用低或无苯丙酮酸奶粉喂养)、药物疗法(如用维生素B6治疗B6 依赖症,用别嘌呤醇治疗痛风等)、手术治疗(如脾切除术治疗遗传性球形红细胞增多症)、酶的补充(如异体骨髓移植治疗戈谢氏病)和对症疗法(如用抗癫痫药物控制苯丙酮酸尿症的惊厥)等。环境工程虽然可以减轻或消除一些遗传病的症状,对个体来说是有利的,但是治疗结果却使带有致病基因的患者不仅存活下来,甚至还能继续繁殖后代,而这些患者如果不经治疗本来可以自然淘汰,至少不会繁衍后代。所以环境工程对整个人类的影响可能是有害的,它将使致病基因的频率在人群中逐代提高,从而导致遗传病发病率的增高。 正因为目前对大多数遗传病尚无有效治疗方法,所以遗传病的预防就有特别重要的意义。预防措施包括新生儿筛查、环境保护、携带者的检出和遗传咨询等方面。新生儿筛查是指对所有出生的婴儿进行某项遗传病的简单检查,以便在症状出现以前就开始治疗,防止症状发生。只有那些在症状出现以前就可以通过检查发现生化异常,而且已有治疗措施,而不给予治疗日后又会造成严重残疾的遗传病才进行新生儿筛查。苯丙酮酸尿症和先天性甲状腺功能低下在许多国家已列为法定新生儿筛查项目。中国自1982年以来在北京、上海、天津、武汉等地也进行了一些筛查。其中1985年发表的全国12省市的苯丙酮酸尿症筛查是中国第一次报告的较大规模的新生儿筛查。生物素基酶缺陷的新生儿筛查在国际上也还是一个新课题,中国从1987年开始已在北京开始了这项筛查工作。环境保护是指减少或消除环境中的致畸剂、致癌剂、致染色体畸变剂和致基因突变剂,主要是工农业生产中产生的污染。携带者检出是指将那些外表正常,但带有致病基因或异常染色体的个体从人群中检出,对其婚姻和生育进行指导,防止其后代发生这种遗传病,检出的方法主要是染色体检查、特异的酶活性测定或代谢产物测定以及DNA分析,目前已能对染色体平衡易位及百余种单基因病作携带者的检出,对这些遗传病的预防有重要意义。遗传咨询, 1952年首先出现在美国,中国70年代以后才开展起来,是医务人员对遗传病患者及其家属对该遗传病的病因、遗传方式、防治、预后,以及提出的各项问题进行解答,并对患者的同胞子女再患此病的危险率作出估计,给予建议和指导。可以认为遗传咨询、产前诊断和终止妊娠三者为防止遗传病患者出生的“三部曲”。有人把婚姻咨询和生育咨询也纳入遗传咨询的范畴内,这些工作对优生优育具有重大意义。
1、通过遗传学研究人类起源2、在遗传学的指导下通过生物工程开发转基因作物3、基因治疗
遗传携带者的检出 遗传携带者(genetic carrier)是指表型正常,但带有致病遗传物质的个体。一般包括: ①隐生遗传杂合子;②显性遗传病的未显者;③表型尚正常的迟发外显者;④染色体平衡易位的个体。 遗传携带者的检出对遗传病的预防具有积极的意义。因为人群中,虽然许多隐性遗传病的发病率不高,但杂合子的比例却相当高。例如苯酮尿症的纯合子在人群中如为1:1000,携带者(杂合子)的频率为2:50,为纯合子频率的200倍。对发病率很低的遗传病,一般不做杂合子的群体筛查,仅对患者亲属及其对象进行筛查,也可以收到良好效果。对发病率高的遗传病,普查携带者效果显著。例如我国南方各省的α及β地中海贫血的发病率特别高(共占人群8%-12%,有的省或地区更高),因此检出双方同为α或同为β地贫杂合子的机会很多,这时,进行婚姻及生育指导,配合产前诊断,就可以从第一胎起防止重型患儿出生,从而收到巨大的社会效益和经济效益,不仅降低了本病的发病率,而且防止了不良基因在群体中播散。 染色体平衡易位携带者生育死胎及染色体病患儿的机会很大(参阅第二章),因此,对染色体平衡易位的亲属进行检查十分重要。 隐性致病基因杂合子检出方法的理论根据是基因的剂量效应,即基因产物的剂量,杂合子介于纯合子与正常个体之间,约为正常个体的半量,但因机体内外环境各种因素对基因表达的影响,以及检测方法的不同(直接测定基因产物或测定基因间接产物),使测定值在正常与杂合子之间,杂合子与纯合子之间发生重叠,造成判断的困难。 杂合子携带者的检测方法大致可分为:临床水平、细胞水平、酶和蛋白质水平及分子水平。从临床水平,一般只能提供线索,不能准确检出,故已基本弃用。细胞水平主要是染色体检查,多用于平衡易位携带者的检出。酶和蛋白质水平的测定(包括代谢中间产物的测定),目前对于一些分子代谢病杂合子检测尚有一定的意义,但正逐渐被基因水平的方法所取代。即随着分子遗传学的发展,可以从分子水平即利用DNA或RNA分析技术直接检出杂合子,而且准确,特别是对一些致病基因的性质和异常基因产物还不清楚的遗传病,或用一般生化方法不能准确检测的遗传病,例如慢性进行舞蹈病、甲型和乙型血友病、DMD、苯酮尿症等;最后,对一些迟发外显携带者还可作症状前诊断,因而有可能采取早期预防性措施,如成人多囊肾病等(参阅第十三章)。目前,用基因分析检测杂合子的方法日益增多,并逐步向简化、快速、准确的方向发展,以求扩大到高危人群的筛查。
遗传学的论文一篇,给点素材你怎么理解,分析探讨具体谈清晰的
题目 : 你那有问题吗? ——————活在世上靠自己 内容:你再加5亿分 都没人帮你写 你实际点啦 你给钱请人写 人家还可以考虑考虑 这50分什么东西啊 可以兑换人民币吗 1000字 全世界的人都很忙
疾病简介 遗传病是指由遗传物质发生改变而引起的或者是由致病基因所控制的疾病。[编辑本段]疾病类型 由于遗传物质的改变,包括染色体畸变以及在染色体水平上看不见的基因突变而导致的疾病,统称为遗传病。根据所涉及遗传物质的改变程序,可将遗传病分为三大类: 其一是染色体病或染色体综合征,遗传物质的改变在染色体水平上可见,表现为数目或结构上的改变。由于染色体病累及的基因数目较多,故症状通常很严重,累及多器官、多系统的畸变和功能改变。 其二是单基因病,目前已经发现 5余种单基因病,主要是由单个基因的突变导致的疾病,分别由显性基因和隐性基因突变所致。所谓显性基因是指等位基因中(一对染色体上相同座位上的基因)只要其中之一发生了突变即可导致疾病的基因。隐性基因是指只有当一对等位基因同时发生了突变才能致病的基因。 第三是多基因病,顾名思义,这类疾病涉及多个基因起作用,与单基因病不同的是这些基因没有显性和隐性的关系,每个基因只有微效累加的作用,因此同样的病不同的人由于可能涉及的致病基因数目上的不同,其病情严重程度、复发风险均可有明显的不同,如唇裂就有轻有重,有些人同时还伴有腭裂。值得注意的是多基因病除与遗传有关外,环境因素影响也相当大,故又称多因子病。很多常见病如哮喘、唇裂、精神分裂症、高血压、先心病、癫痫等均为多基因病。 遗传病是指完全或部分由遗传因素决定的疾病,常为先天性的,也可后天发病。如先天愚型、多指(趾)、先天性聋哑、血友病等,这些遗传病完全由遗传因素决定发病,并且出生一定时间后才发病,有时要经过几年、十几年甚至几十年后才能出现明显症状。如假肥大型肌营养不良要到儿童期才发病;慢性进行性舞蹈病一般要在中年时期才出现疾病的表现。有些遗传病需要遗传因素与环境因素共同作用才能发病,如孝喘病,遗传因素占80%,环境因素占20%;胃及十二指肠溃疡,遗传因素占30%~40%,环境因素占60%~70%。遗传病常在一个家族中有多人发病,为家族性的,但也有可能一个家系中仅有一个病人,为散发性的,如苯丙酮尿症,因其致病基因频率低,又是常染色体隐性遗传病,只有夫妇双方均带有一个导致该疾病的基因时,子女才会成为这种隐性致病基因的纯合子(同一基因座位上的两个基因都不正常)而得病,因此多为散发,特别在只有一个子女的家庭,偶有散发出现的遗传病患者,就不足为奇了。 那么,遗传病能够治疗吗? 以前,人们认为遗传病是不治之症。近年来,随着现代医学的发展,医学遗传学工作者在对遗传病的研究中,弄清了一些遗传病的发病过程,从而为遗传病的治疗和预防提供了一定的基础,并不断提出了新的治疗措施。家族遗传病 遗传性疾病是由于遗传物质改变而造成的疾病。 遗传病具有先天性、家族性、终身性、遗传性的特点。 遗传病的种类大致可分为三类: 一、单基因病。 单基因常常表现出功能性的改变,不能造出某种蛋白质,代谢功能紊乱,形成代谢性遗传病。单基因病又分为三种: 1.显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的代代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。 2.隐生遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。 3.性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。 二、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。 三、染色体异常:由于染色体数目异常或排列位置异常等产生;最常见的如先天愚型,这种孩子面部愚钝,智力低下,两眼距离宽、斜视、伸舌样痴呆、通贯手、并常合并先天性心脏病。 上述遗传病并非携带致病基因就肯定会发病。 其实几乎所有的疾病都与基因有关系,也和环境有密切联系!遗传按生物体的照性状分,还可以分为质量性状和数量性状!所谓质量性状就是白种人和黄种人的差别,这主要是遗传决定的,受环境因数影响小。也就是男女的差别!数量性状即稻谷的重量,人的身高,颜色深浅等等,这些都叫数量性状。数量性状是多基因决定的,基因数一般不易测算,因为误差可以相差一个数量级。所以主要讲基因的总效应!数量性状受环境的影响非常大。可以说超过遗传因子! 总之,绝大部分疾病是环境因子和遗传因子共同作用的结果由于受精卵形成前或形成过程中遗传物质的改变造成的疾病。有人认为只有受父母遗传因素决定的疾病才是遗传病,这一认识不够全面。例如有一些染色体畸变并非由父母遗传因素决定,而是在受精卵形成过程中产生,习惯上染色体畸变都包括在遗传病的范畴内。还有人认为凡是受遗传因素影响的疾病都是遗传病,这一概念也不确切,因为在人类所有疾病中,除了少数几种(如外伤造成骨折)完全由环境因素所致,不受遗传因素影响外,几乎绝大多数疾病都是环境和遗传两方面因素互相作用的结果,只是两者影响疾病发生的程度可不相同。即使细菌感染、外伤后癫痫等环境因素十分明显的疾病,不同个体之间也存在着易感性的差异,而这种差异也是受遗传因素影响的,不可能把这些病都包括在遗传病的范畴之中。完全由遗传因素决定的疾病(A类,如21三体综合征)和完全由环境因素决定的疾病(D类, 如外伤性骨折)都是少数,而大多数人类疾病都居于B类和C类。B类指基本上由遗传因素决定,但需要环境中一定的诱因才发病,如苯丙酮酸尿症患儿在出生后摄入苯丙氨酸就会发病。 C类指遗传因素和环境因素都对发病起作用的疾病,如高血压病、感染等;但不同疾病的遗传度不同,即遗传因素影响越大,则遗传度就越高。所以从理论上来说, A、B、C等三类均属遗传病,但C类如感染、外伤后癫痫等在习惯上不包括在遗传病的范畴中。遗传病不同于先天性疾病,后者是指出生时就已表现出来的疾病。虽然不少遗传病在出生时就已表现出来,但也有些遗传病在出生时表现正常,而是在出生数日、数月,甚至数年、数十年后才开始逐渐表现出来,这显然不属于先天性疾病。另一方面,先天性疾病也并不都是遗传因素造成的,例如孕期母亲受放射线照射时所致的先天畸形,就不属于遗传病。遗传病也不同于家族性疾病。虽然有些由于同一个家族成员具有相同的遗传基础可表现遗传病的家族发病,但是不同的遗传病在亲代、子代之间的传递规律是复杂多样的,有些遗传病(如白化病等隐性遗传病)就可能没有家族史,另一方面,家族性疾病也可能由非遗传因素(如相同的生活条件)造成,如饮食中缺乏维生素 A使多个家族成员出现夜盲。 过去认为遗传病是一个较罕见的疾病,但随着医学的发展和人民生活水平的提高,一些过去严重威胁人类健康的传染病、营养性疾病得以控制,而遗传病成为比较突出的问题。如英国1914年的一项儿童死因调查表明,非遗传性疾病(如感染、肿瘤等)占%,而遗传性疾病只占%,但到20世纪70年代后期,两类疾病各占50%。国内的情况也同样,1951年北京市儿童的死亡原因中,感染性疾病占重要地位,但在1974~1976年儿童死因分析中,先天畸形占全部死因的%,居首位,而在这些畸形中,属遗传病的达3~10名。另一方面,遗传病的病种非常多,随着生物学和医学的发展,近年发现新的遗传病更是层出不穷。表1 表明1958~1982年人类认识的单基因病的病种,至今已有4000种左右的遗传病被人们所认识。 简史 18 世纪法国人莫佩尔蒂第一个对遗传病作了家系调查,他分析了白化病的遗传方式。1814年亚当斯发表有关临床疾病遗传性质的论文,这被认为是近代最早的一篇系统论述遗传病的文章。1908年.加罗德首次提出“先天代谢异常”的概念,将遗传与代谢联系起来,并认为尿酸尿症等先天代谢异常的遗传规律可以用孟德尔定律来解释,为医学遗传学作出了划时代的贡献。1949年L.波林提出了“分子病”的概念。1944年比克尔首先提出控制新生儿营养,可有效防止苯丙酮酸尿症的发展,为遗传病的有效治疗开创了新的一章。1958年J.勒热纳发现先天愚型患儿为三条21号染色体,这是第一次报道了遗传病的染色体异常。 1969年拉布斯发现了 X染色体的脆性部位,为染色体的畸变的研究开辟了一个新的领域。从60年代起,遗传病的产前诊断开始应用于临床。1978年卡恩和多齐首次将 DNA重组技术应用于遗传病的诊断,他们诊断了一例镰刀状细胞性贫血,此后这一诊断技术发展极为迅速。 分类 按照目前对遗传物质的认识水平,可将遗传病分为单基因遗传病、多基因遗传病和染色体病三大类。 单基因遗传病 同源染色体中来自父亲或母亲的一对染色体上基因的异常所引起的遗传病。这类疾病虽然种类很多,3000种以上(见表[1958~1982年全世界报告的单基因遗传病的病种数]1958~1982年全世界报告的单基因遗传病的病种数),但是每一种病的患病率较低,多属罕见病。欧美国家统计,约1%的新生儿患有较严重的基因病。按照遗传方式又可将单基因病分为四类:①常染色体显性遗传病。人类的23对染色体中,一对与性别有关,称为性染色体,其余22对均称常染色体。同源常染色体上某一对等位基因彼此相同的,称为纯合子,一对基因彼此不同的称杂合子。如果在杂合状态下,异常基因也能完全表现出遗传病的,称为常染色体显性遗传病,如多指并指、先天性肌强直,这类遗传病的发生与性别无关,男女患病率相同。父母中有一位患此疾病,其子女中就可能出现患者。据估计,约7‰新生儿患有常显体显性遗传病。②常染色体隐性遗传病。常染色体上一对等位基因必须均是异常基因纯合子才能表现出来的遗传病。大多数先天代谢异常均属此类。父母双方虽然外表正常,但如果均为某一常显体隐性遗传基因的携带者,其子女仍有可能患该种遗传病。近亲婚配时容易产生纯合状态,所以其子女隐性遗传病的发病率也高。③常染色体不完全显性遗传病。这是当异常基因处于杂合状态时,能且仅能在一定程度上表现出症状的遗传病。如地中海贫血,引起该病的异常基因为,纯合子 表现为重症贫血,杂合子则表现为中等程度的贫血④ 伴性遗传病。分为X连锁遗传病和Y连锁遗传病两种。有些遗传病的基因位于X染色体上,Y染色体过于短小,无相应的等位基因,因此,这些异常基因将随X染色体传递,所以称为X连锁遗传病。也分为显性和隐性两种,前者是指有一个X染色体的异常基因就可表现出来的遗传病,由于女性拥有两条X染色体而男性只有一条,所以女性获得该显性基因的机会较多,发病率高于男性,但这类遗传病为数很少,至今仅知10余种。如Xg血型,又如抗维生素D佝偻病是 X连锁不完全显性遗传病。X连锁隐性遗传病是指X染色体上等位基因在纯合状态下才发病者,在女性,只有当两条X染色体上的一对等位基因都属异常时才患病,如果其中有一条 X染色体的等位基因正常就不会患有此病。但是男性只有一条X染色体,只要X染色体上的基因异常,就会表现出遗传病,所以男性发病率高于女性发病率。这种伴性隐性遗传病占伴性遗传病的绝大部分,例如红绿色盲、血友病等都比较常见。据估计约1‰新生儿患有X连锁遗传病。 Y连锁遗传病的致病基因位于Y染色体上,X染色体上则无相应的等位基因,因此这些基因随着Y染色体在上下代间传递,也叫全男性遗传。在人类中属于 Y连锁遗传病的有外耳道多毛症等。 多基因遗传病 与两对以上基因有关的遗传病。每对基因之间没有显性或隐性的关系,每对基因单独的作用微小,但各对基因的作用有积累效应。一般说来,多基因遗传病远比单基因遗传病多见。受环境因素的影响,不同的多基因遗传病,受遗传因素和环境因素影响的程度也不同。遗传因素对疾病发生的影响程度,可用遗传度来说明,一般用百分数来表示,遗传度越高,说明这种多基因遗传病受遗传因素的影响越大。例如唇裂、腭裂是多基因遗传病,其遗传度达76%,而溃疡病仅37%。多基因遗传病还包括一些糖尿病、高血压病、高脂血症、神经管缺陷、先天性心脏病、精神分裂症等。在人群中,多基因遗传病的患病率在2~3%以上。 染色体病 指由于染色体的数目或形态、结构异常引起的疾病。新生儿中染色体异常的发病率为 %。染色体异常称为染色体畸变,包括常染色体的异常和性染色体的异常。但是染色体病在全部遗传病中所占的比例不大,仅约1/10。 遗传病的研究和诊断 要研究判断某一疾病是否为遗传病可通过以下几个途径:家系调查及分析、挛生子分析、种族比较,伴随性状研究、动物模型和 DNA分析。通过家系调查、分析并与人群发病情况比较,不仅可以判断某病是否为遗传病,如果是遗传病的话,还可进一步确定其遗传方式。通过单卵孪生和双卵孪生同胞发病的一致率分析,可能判断某种病受遗传因素及环境因素影响的程度。不同种族和民族发病情况的比较,尤其是对同样生活环境不同种族的发病率的研究可能为遗传病的判断提供重要线索。在伴随症状分析中,目前应用最多的是同种白细胞抗原(HLA)系统,应用这一系统作为遗传病标志。研究作为某一遗传的伴随性状,进行连锁分析,则也能为遗传病的判断提供依据。目前已建立了数十种染色体畸变和单基因遗传病的动物模型,为遗传病的研究提供了有力手段。 DNA分析是近年来发展的重要手段,其中以限制片断长度多态性(RFLP)分析在遗传病判断中应用最多。 遗传病的临床诊断比其他疾病更困难。一方面遗传病的种类极多,另一方面每一种遗传病的单独发病率很低,所以临床医师在遗传病的诊断上不容易取得经验。除了一般疾病的诊断方法(如病史、体格检查、实验室和仪器检查)外,遗传病的诊断还可能需要依靠一些特殊的诊断手段,如染色体检查,特殊的生化学测定及系谱分析。遗传病的临床表现是最重要的诊断线索,每一种遗传病都有一些症状、体征同时存在,被称为“综合征”,这是提示诊断的最初线索,也是选择实验室检查和其他遗传学检查的依据。对遗传病患者必须要详细询问家族史并绘制准确可靠的家系谱,对家系谱的分析不仅是遗传病诊断的一项依据,而且对遗传方式的判明及进行遗传咨询也是极为重要的。皮纹分析是遗传病诊断的另一种特殊手段,主要对染色体病最有价值,对其他个别单基因遗传病也可能有一定意义,常用于临床检查的是指纹、掌纹、掌褶纹、指褶纹和脚掌纹。许多遗传病的最后诊断,还有赖于染色体检查和特殊的生化测定或DNA分析。 产前诊断是遗传病诊断的一个重要方面,在婴儿出生以前通过穿刺取得羊水或绒毛组织。进行染色体检查、特异的酶活性或代谢产物测定,或进行DNA分析对胎儿的发病情况作出判断,决定是否需要进行人工流产以终止妊娠,这在减少遗传病患儿的出生,提高人口素质方面具有重要意义,尤其在目前人类对大多数遗传病还不能进行有效治疗的条件下,用终止妊娠来防止遗传病患儿的出生更具有突出的意义。近年来由于 B型超声扫描仪的广泛应用和技术的提高,在产前诊断,尤其是发育畸形的诊断上有很大的价值。胎儿镜也开始应用于产前诊断。 基因诊断是新发展起来的一项重要技术,也能对近百种遗传病作出准确的诊断,但是由于这些遗传病大多数还不能作有效治疗,所以从医学伦理学的观点来看,除应用于产前诊断外,基因诊断的推广仍存在很大问题。 治疗和预防,要根治遗传病,应该从基因水平或染色体水平来纠正已发生的缺陷,这种方法称为基因治疗,属于基因工程的范畴。但是基因治疗在理论上、技术上还存在着极大的困难,目前谈不上临床应用。目前对遗传病所能进行的治疗只是在早期诊断的前提下,通过控制环境条件(如饮食成分等),调节代谢过程,防止症状的出现,称为“环境工程”。目前能应用于环境工程的治疗包括饮食控制疗法(如苯丙酮尿症用低或无苯丙酮酸奶粉喂养)、药物疗法(如用维生素B6治疗B6 依赖症,用别嘌呤醇治疗痛风等)、手术治疗(如脾切除术治疗遗传性球形红细胞增多症)、酶的补充(如异体骨髓移植治疗戈谢氏病)和对症疗法(如用抗癫痫药物控制苯丙酮酸尿症的惊厥)等。环境工程虽然可以减轻或消除一些遗传病的症状,对个体来说是有利的,但是治疗结果却使带有致病基因的患者不仅存活下来,甚至还能继续繁殖后代,而这些患者如果不经治疗本来可以自然淘汰,至少不会繁衍后代。所以环境工程对整个人类的影响可能是有害的,它将使致病基因的频率在人群中逐代提高,从而导致遗传病发病率的增高。 正因为目前对大多数遗传病尚无有效治疗方法,所以遗传病的预防就有特别重要的意义。预防措施包括新生儿筛查、环境保护、携带者的检出和遗传咨询等方面。新生儿筛查是指对所有出生的婴儿进行某项遗传病的简单检查,以便在症状出现以前就开始治疗,防止症状发生。只有那些在症状出现以前就可以通过检查发现生化异常,而且已有治疗措施,而不给予治疗日后又会造成严重残疾的遗传病才进行新生儿筛查。苯丙酮酸尿症和先天性甲状腺功能低下在许多国家已列为法定新生儿筛查项目。中国自1982年以来在北京、上海、天津、武汉等地也进行了一些筛查。其中1985年发表的全国12省市的苯丙酮酸尿症筛查是中国第一次报告的较大规模的新生儿筛查。生物素基酶缺陷的新生儿筛查在国际上也还是一个新课题,中国从1987年开始已在北京开始了这项筛查工作。环境保护是指减少或消除环境中的致畸剂、致癌剂、致染色体畸变剂和致基因突变剂,主要是工农业生产中产生的污染。携带者检出是指将那些外表正常,但带有致病基因或异常染色体的个体从人群中检出,对其婚姻和生育进行指导,防止其后代发生这种遗传病,检出的方法主要是染色体检查、特异的酶活性测定或代谢产物测定以及DNA分析,目前已能对染色体平衡易位及百余种单基因病作携带者的检出,对这些遗传病的预防有重要意义。遗传咨询, 1952年首先出现在美国,中国70年代以后才开展起来,是医务人员对遗传病患者及其家属对该遗传病的病因、遗传方式、防治、预后,以及提出的各项问题进行解答,并对患者的同胞子女再患此病的危险率作出估计,给予建议和指导。可以认为遗传咨询、产前诊断和终止妊娠三者为防止遗传病患者出生的“三部曲”。有人把婚姻咨询和生育咨询也纳入遗传咨询的范畴内,这些工作对优生优育具有重大意义。
有关遗传 3千字可以的 标准格式是吗 ?什么时间要, /
有些遗传病饮食可控制2001-04-20 9:22遗传学研究的迅速发展,不仅提示了许多遗传病的发病机理,而且对遗传病的预防和治疗也拟定出许多有效措施,使遗传病逐步变为“可治之症”,其中一部分可通过饮食调理来控制。蚕豆病,是由遗传性因素导致体内缺乏6-磷酸葡萄糖脱氢酶所致。故患者不能吃蚕豆及其制品,特别是新鲜的蚕豆,否则会引起急性溶血性贫血,严重时会危及生命。值得注意的是,具有6-磷酸葡萄糖脱氢酶缺陷的人,不仅可因吃蚕豆引起溶血性贫血,同时对某些药物,如伯氨喹啉、阿的平,以及磺胺、呋喃类和解热镇痛剂等药物过敏,用药时必须特别慎重。这类遗传病只要避开这些食物和药物,就不会发病。 苯丙酮尿症是由于患者肝脏内苯丙氨酸羟化酶缺乏,苯丙氨酸不能转化为酪氨酸,只能转变为苯丙酮酸,血中苯丙氨酸的浓度增高。患儿除了从小便中排出苯丙酮酸而称为苯丙酮尿症之外,主要是由于血中大量的苯丙氨酸使脑细胞的发育和功能受到影响导致智力低下。预防发病,只需尽早(出生后3个月内)采取限食疗法。婴儿确诊后饮食应以米粉及奶糕为主食,随着患儿年龄增长,可选用大米、小米、大白菜、土豆及菠菜等,如有条件,可给予特殊制备的低苯丙酸蛋白质食物。一般到8岁左右,饮食限制可适当放宽。半乳糖血症是患者体内由于缺乏葡萄糖-1-磷酸尿苷转移酶,致使患者不能利用半乳糖,所以不能喂人奶和牛奶。因为牛奶中含有乳糖,而乳糖分解后会产生半乳糖。血液中的半乳糖水平过高可能引起脑损伤、肝硬化、白内障,甚至造成死亡。但只要从出生之日起就停止进食乳类食物,改喂谷类或代奶粉等,坚持3年以上,就可以防止发病。肝豆状核变性,此病又称威尔森病,是一种常染色体隐性遗传的铜代谢障碍所引起的疾病。可分为以肝脏损害为主要症状的“肝型”患者和以神经症状为主要的“脑型”患者。因为该病是铜代谢障碍所致,故低铜饮食是治疗的有效措施之一。 此外,果糖不耐症患者需戒食含果糖的糖果和饮料。遗传性低血糖患者只要每天坚持少量多次吃糖就行。患有镰状细胞性贫血的人,当失水时,其细胞就会变成镰刀形,因此病人若每天坚持饮足够的水就有助于缓解症状。(解放日报 4月20日)