首页 > 医学论文 > 医学论文中的t

医学论文中的t

发布时间:

医学论文中的t

绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。

医学论文的格式

医学论文写作是一项严肃、意义重大的工作、是交流经验,传播科技成果,不断提高临床诊治和科研水平的重要组成部分。下面是我整理的医学论文的格式,希望对大家有帮助!

1、论文标题:

医学论文标题应简明确切反映所写论文的内容,一般不要采用副标题,如有可能,也尽可能不使用代号。文章标题控制在20个字左右(以内)。同时,对与论文所使用的“英文题目”、“摘要”、“关键词”与“作者名拼音”,使用时中英文必须一致。

2、作者单位

作者单位应按照顺序写在文章标题下一行,在单位后面用括号注明邮政编码,然后空一格再写上论文作者及姓名,此处,投稿送排后应保证作者顺序不再改动。

3、论文摘要

所有论文的摘要(含医学论文)均采用结构式的文摘,按照目的、方法、结果、结论四要素写,字数应在300字左右。

4、论文关键词

多选用3-8个关键词,具体可参考MesH(即《医学主题词注释字须表》)中的主题词,如果MesH词表中空缺,则可使用自由词(自定义词)。

5、图表

凡是在论文文字中能表述或说明的'内容建议或尽量不使用表图,另外,对于正文、表和图3者中的数据不应重复。论文中涉及的统计表应在投稿时应在纸上绘出并附 在所投稿件中,以便审阅。表中要有表题(表的标题),图有图题(图的标题)以及各自的图标或序号。论文图标应采用三线表或王字表,表中数据应多加检查,务 必核实,准确无误,数字小数点后应最少保留一位。

对于表中需要说明的问题或注释可采用*,2个以上说明依次为**、***表示,在表的下方,加“注:……”。另外,对于图的坐标需刻度均匀,设计准确,坐 标轴上有数值,不用箭头。图表要用绘图笔、硫酸纸等绘制,做到曲线均匀、圆滑,图面清洁、图中数字与符号应在打印后植入,不可机打或打印前写入,纵横坐标 应同时注有量和单位,例如t/h、t/min。

另外,对于统计学上的处理结果应用用P<、P<、p>表示。

6、医学名词、药物名称

论文中使用的医学名词与药物名称要注意稿件前后统一,应使用全国自然科学名词委员会公布的各科名词,不能随意缩写、更改,如果所用名词太长,文件中又多次重复使用,可在第一次使用时,在全名后加上括号并注明缩写,如:游行性脑脊髓膜炎(流脑)。

对于在论文中使用的“药物名称”则应以《中国药典》与《中国通用药名》二者为准,不可随意使用。

7、计量单位

论文中出现的计量单位需用我国法定计量单位,而标点符号和数字用法等均按要按国家标准执行。

8、标题序号

医学论文中的标题序号应全部靠左并顶格写,按照1,,,依次排序。然后紧跟其后空一格写标题,仅限分4级,不可再分。在标题后再空一格写正文。对与正文内序号宜用①……②……等表示。

9、论文讨论

对于论文讨论部分,要求重点阐述论文中新的发现、得出的结果与观点,但请勿作文献综述,不可重复在讨论中表达己叙述过的内容。对于论述应联系本论文的与研究结果,并应该与其所报告的相联系,当理由充足时,则可恰如其分地提出论文的建议或设想。

例如:“本结果与文献(2)结果相符”则应写成“本结果与文献[2]结果相符”。

10、参考文献

论文中的参考文献部分为极易出错的地方,医务人员在投稿时务必引起重视。

论文中的参考文献应只限作者阅读过、引用的近期公开出版的主要文献,外文文献限定为近5年内,中文文限 为近3年内,不宜采用过早的文献内容。文献顺序应按文中首次出现的次序依次编号,在正文右上角部分用圆括号注明,如“王书中,李国坚,等()报 道”(()用上标!应网页排版特殊性,本处暂无法列出,请注意!)。未公开发表的资料和内部刊物均不列入参考文献中。

参考文件具体格式

“参考文献”4个字应另起新段,所列文献按次序另起新段,具体采用格式如下:

期刊 作者(0~3个作者应全部列出,3个以上作者只写前3个(作者之间用“,”分隔开),在作者后面加“,等。”或者是“,et cd”)。文章标题,所引用的刊名,出版年;卷(期):起页~结束页。

书籍名称 作者·书名·版本(第一版可不写)。出版地:出版者,年。起页~结束页。

应该不可以。不知你是指哪个T值。 如果是联通业务的,T即Text的首个字母,是文本内容的计价单位。如果是医疗方面的,T值是指睾酮同时也是检查睾丸的一种重要指标。在睾酮的指标上,正常值到之间。如果T值的变化很大就很有可能是身体内的一些疾病发生。最常见的就是男性的睾丸炎。

医学论文中常用统计分析方法的合理选择目前,不少医学论文中的统计分析存在较多的问题。有报道,经两位专家审稿认为可以发表的稿件中,其统计学误用率为90%-95%。为帮助广大医务工作者提高统计分析水平,本文将介绍医学论文中常用统计分析方法的选择原则及应用过程中的注意事项。 检验t检验是英国统计学家 1908年根据t分布原理建立起来的一种假设检验方法,常用于计量资料中两个小样本均数的比较。理论上,t检验的应用条件是要求样本来自正态分布的总体,两样本均数比较时,还要求两总体方差相等。但在实际工作中,与上述条件略有偏离,只要其分布为单峰且近似正态分布,也可应用[2]。常用的t检验有如下三类:①单个样本t检验:用于推断样本均数代表的总体均数和已知总体均数有无显著性差别。当样本例数较少(n<60)且总体标准差未知时,选用t检验;反之当样本例数较多或样本例数较少、总体标准差已知时,则可选用u检验 [3]。②配对样本t检验:适用于配对设计的两样本均数的比较,在选用时应注意两样本是否为配对设计资料。常用的配对设计资料主要有如下三种情况:两种同质受试对象分别接受两种不同的处理;同一受试对象或同一样本的两个部分,分别接受不同的处理;同一受试对象处理前后的结果比较。③两独立样本t检验:又称成组t检验,适用于完全随机设计的两样本均数的比较。与配对t检验不同的是,在进行两独立样本t检验之前,还必须对两组资料进行方差齐性检验。若为小样本且方差齐,则选用t检验;反之若方差不齐,则选用校正t检验(t’检验),或采用数据变换的方法(如取对数、开方、倒数等)使两组资料具有方差齐性后再进行t检验,或采用非参数检验[4]。此外,当两组样本例数较多(n1、n2均>50)时,这时应用t检验的计算比较繁琐,可选用u检验[5]。 2.方差分析方差分析适用于两组以上计量资料均数的比较,其应用条件是各组资料取自正态分布的总体且各组资料具有方差齐性。因此,在应用方差分析之前,同样和成组t检验一样需要对各组资料进行正态性检验、方差齐性检验。常用的方差分析有如下几类:①完全随机设计的方差分析:主要用于推断完全随机设计的多个样本均数所代表的总体均数之间有无显著性差别。完全随机设计是将观察对象随机分为两组或多组,每组接受一种处理,形成两个或多个样本。②随机区组设计的方差分析:随机区组设计首先是将全部受试对象按某种或某些特性分为若干区组,然后区组内的每个研究对象接受不同的处理,通过这种设计,既可以推断处理因素又可以推断区组因素是否对试验效应产生作用。此外,由于这种设计还使每个区组内研究对象的水平尽可能地相近,减少了个体间差异对研究结果的影响,比成组设计更容易检验出处理因素间的差别。③析因设计的方差分析:将两个或两个以上处理因素的各种浓度水平进行排列组合、交叉分组的试验设计。它不仅可以检验每个因素各水平之间是否有差异,还可以检验各因素之间是否有交互作用,同时还可以找到处理因素的各种浓度水平之间的最佳组合。此外,还有正交设计、拉丁方设计等多种方差分析法,实验者在应用时可以参考相关的统计学著作。目前,某些医学论文中有这样的情况,就是用t 检验代替方差分析对实验数据进行统计学处理,这是不可取的。t 检验只适用于推断两个小样本均数之间有无显著性差别,而采用t 检验对多组均数进行两两比较,会增加犯I 型错误的概率,即可能把本来无差别的两个总体均数判为有差别,使结论的可信度降低[6]。对多个样本均数进行比较时,正确的方法是先进行方差分析,若检验统计量有显著性意义时,再进行多个样本均数的两两(多重)比较。3.卡方检验(χ2检验)χ2检验是一种用途比较广泛的假设检验方法,但是在医学论文中常用于分类计数资料的假设检验,即用于两个样本率、多个样本率、样本内部构成情况的比较,样本率与总体率的比较,某现象的实际分布与其理论分布的比较。但是当样本满足正态近似条件时,如样本例数n与样本率p满足条件np与n(1— p)均大于5,则可以计算假设检验统计量u值来进行判断。常用的χ2检验分为如下几类:①2×2表χ2检验:适用于两个样本率或构成比的比较,在应用时,当整个试验的样本例数n≥40且某个理论频数1≤T<5时,需对χ2值进行连续性校正。因为T值太小,会导致χ2值增大,易出现假阳性结论。此外,若样本例数n<40,或有某个T值<1,此时即使采用校正公式计算的χ2值也有偏差,需要用2×2表χ2检验的确切概率检验法(Fisher确切检验法)。②配对资料χ2检验:适用于配对设计的两个样本率或构成比的比较,即通过单一样本的数据推断两种处理结果有无显著性差别。在应用时,如果甲处理结果为阳性而乙处理结果为阴性的样本例数n1与甲处理结果为阴性而乙处理结果为阳性的样本例数n2之和<40,需要对计算的χ2值进行校正。③R×C表χ2检验:适用于多个样本率或构成比的比较。在R×C表χ2检验中,若检验统计量有显著性意义时,还需要对多个样本率或构成比进行两两比较,即分割R×C表,使之成为非独立的四格表,并对每两个率之间有无显著性差别作出结论。 2×2表资料在应用时可分为如下几种类型:横断面研究设计的2×2表资料、队列研究设计的2×2表资料、病例-对照研究设计的2×2表资料、配对研究设计的2×2表资料。研究者应注意不同类型的2×2表资料的统计分析方法略有差别,比如在分析队列研究设计的2×2表资料时,如果用χ2公式计算得到P<,研究者则应再计算相对危险度(RR)并检验总体RR与1之间的差异是否具有统计学意义。此外,在进行R×C表χ2检验时,还有如下两个主要的注意事项:首先,T值最好不要<5,若有1/5的T值<5,χ2检验结论是不可靠的,解决的办法有三种:增大样本量;删去T值太小的行和列;将T值太小的行或列与性质相近的邻行或邻列的实际频数合并。其次,不同类型的R×C表资料选择的统计分析方法是不一样。①双向无序的R×C表资料:可以选用一般的χ2公式计算。②单向有序的R×C表资料:如果是原因变量为有序变量的单向有序R×C表资料,可以将其视为双向无序的R×C表资料而选用一般的χ2检验公式计算,但如果是结果变量为有序变量的单向有序R×C表资料,选用的统计分析方法有秩和检验、Radit分析和有序变量的logistic回归分析等。③双向有序且属性不同的R×C表资料:对于这类资料采用的统计分析方法不能一概而论,应根据研究者的分析目而合理选择。如果研究者只关心原因变量与结果变量之间的差异是否具有统计学意义时,此时,原因变量的有序性就显得无关紧要了,可将其视为结果变量为有序变量的单向有序R×C表资料进行分析。如果研究者希望考察原因变量与结果变量之间是否存在线性相关关系,此时需要选用处理定性资料的相关分析方法如Spearman秩相关分析方法等。如果两个有序变量之间的相关关系具有统计学意义,研究者希望进一步了解这两个有序变量之间的线性关系,此时宜选用线性趋势检验。如果研究者希望考察列联表中各行上的频数分布是否相同,此时宜选用一般的χ因此,对于适用参数检验的资料,最好还是用参数检验。秩和检验是最常用的非参数检验,它包括如下几类:①配对资料的符号秩和检验(Wilcoxon配对法):是配对设计的非参数检验。当n≤25时,可通过秩和检验对实验资料进行分析;当n>25时,样本例数超出T界值表的范围,可按近似正态分布用u检验对实验资料进行分析。②两样本比较的秩和检验(Wilcoxon Mann-Whitney检验):适用于比较两样本分别代表的总体分布位置有无差异。如果样本甲的例数为n1,样本乙的例数为n2,且n1<n2;当n1≤10、n2—n1≤10时,可通过两样本比较的秩和检验对实验资料进行分析;当n1、n2超出T界值表的范围时,同样可按近似正态分布用u检验对实验资料进行分析。③多个样本比较的秩和检验(Wilcoxon Kruskal-Wallis检验):适用于比较各样本分别代表的总体的位置有无差别,它相当于单因素方差分析的非参数检验,计算方法主要有直接法和频数表法等。此外,在进行上述3类秩和检验(前两类秩和检验实际上已经被u检验替代)时,如果相同秩次较多,则需要对计算的检验统计量进行校正。公式计算。④双向有序且属性相同的R×C表资料:这类资料实际上就是配对设计2×2表资料的延伸,在分析这类资料时,实验者的目的主要是研究两种处理方法检测结果之间是否具有一致性,因此常用的统计分析方法为一致性检验或Kappa检验。4. 非参数检验非参数检验可不考虑总体的参数、分布而对总体的分布或分布位置进行检验。它通常适用于下述资料[2]:①总体分布为偏态或分布形式未知的计量资料(尤其样本例数n<30时);②等级资料;③个别数据偏大或数据的某一端无确定的数值;④各组离散程度相差悬殊,即各总体方差不齐。该方法具有适应性强等优点,但同时也损失了部分信息,使得检验效率降低。即当资料服从正态分布时,选用非参数检验法代替参数检验法会增大犯Ⅱ类错误的概率。

医学论文中的t值

采用spss软件,单因素分组对照计算。

t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法

假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

t值是t检验的统计量值,t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

t检验注意事项

1、选用的检验方法必须符合其适用条件(注意:t检验的前提:来自正态分布总体;随机样本;均数比较时,要求两样本总体方差相等,即具有方差齐性)。理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行)。

只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。

2、区分单侧检验和双侧检验。单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大。t检验中的p值是接受两均值存在差异这个假设可能犯错的概率。

在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。一些学者认为如果差异具有特定的方向性,我们只要考虑单侧概率分布,将所得到t-检验的P值分为两半。另一些学者则认为无论何种情况下都要报告标准的双侧t检验概率。

1、t值是t检验的统计量值,t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

2、F值是F检验的统计量值 。F检验是一种在零假设(null hypothesis, H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。

3、P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 为有统计学差异, P< 为有显著统计学差异,P<为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于 、、。

扩展资料:

F值和t值是F检验和t检验的统计量值,与它们相对应的概率分布,就是F分布和t分布。

统计显著性是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率,如p=提示样本中变量关联有5%的可能是由于偶然性造成的。

参考资料:

百度百科——假设检验中的P值

百度百科——F检验

百度百科——t检验

医学论文中的t和p

采用spss软件,单因素分组对照计算。

t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法

假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

T temperature 体温P pulse 脉搏R respiration 呼吸BP blood pressure 血压

T、P、R、Bp?各代表什么?代表人体的四大生命体征分别代表体温、脉搏、呼吸、血压。管住嘴,迈开腿,养成良好的生活方式,让生命体征保持在正常范围内。中国协和医科大学 - 即,清华大学,北京协和医学院,心血管疾病的预防和控制,是全国最大的。复旦大学,华中科技大学同济医学院心血管疾病的技术也有很强的实力。其他领先的专业分布如下:四川大学(西医科大学):口腔医学;中国医科大学内科学(呼吸病),皮肤病与性病;上海交通大学:整形外科;苏州大学放射学;京,南京理工大学中国传统医药:中国传统医学。你让你自己决定哦!为了让子医药类药剂:北京理工大学,中国医学,中国传统医学的上海大学,南京理工大学中国传统医学,中国传统医药人体解剖学成都理工大学组织胚胎学:复旦大学免疫学:北京大学,中国协和医科大学病原生物学:复旦大学病理学与病理生理学:北京大学,中国协和医科大学,中南大学,复旦大学,汕头大学法医科学:西安交通大学辐射医学科学(心血管病,血液病)苏州大学学报(哲学社会科学版):北京大学科学(心血管病,血液病,消化系统疾病,内分泌和代谢性疾病):科学(呼吸系病):中国医科大学,中国协和医科大学科学(心血管病,传染病,肾病):复旦大学科学(血液病,消化系统疾病,内分泌与代谢病):上海第二医科大学科学(血液病):苏州大学科学(传染病):浙江大学学报(心血管疾病,呼吸系统疾病):华中科技大学的科学和技术科学(内分泌与代谢性疾病):中南大学科学(肾病):中山大学大学内科(传染病)重庆医科大学科学(呼吸病):四川大学儿科学:北京大学,复旦大学,上海第二医科大学,重庆医科大学神经科:吉林大学,中南大学,复旦大学,中山大学大学精神病与精神卫生学:北京大学,中南大学,皮肤病与性病:北京协和医学院,中国影像医学与核医学,中国医药大学:中国协和医科大学,复旦大学临床试验诊断:重庆医科大学手术(骨骼,泌尿系):北京大学手术(心胸):中国协和医科大学外科(脑外科):首都医科大学医疗外科(普外科,泌尿外科,外神外骨骼):复旦大学外科学(整形):上海第二医科大学外科(普外):南京理工大学,华中科技大学和技术,孙中山大学,四川大学外科学(胸心):中南大学,的手术的(泌尿外):天津医科大学妇产科:北京大学,中国协和医科大学,华中科技大学眼科学:北京大学首都医科大学,复旦大学,中山大学大学耳鼻咽喉科学:首都医科大学研究所,复旦大学肿瘤学:北京大学,中国协和医科大学,复旦大学,中山大学大学,天津中医药大学运动医学:北京大学麻醉:中国协和医科大学学院口腔基础医学:四川大学流行病学和生物统计学,北京大学,上海第二医科大学,武汉大学:北京大学山东大学劳动卫生与环境卫生:华中科技大学广州大学科学与技术,

医学里BP代表血压,T代表体温,P代表脉搏

1、血压(bloodpressure,BP)是指血液在血管内流动时作用于单位面积血管壁的侧压力,它是推动血液在血管内流动的动力。

2、人体内部的温度称体温。保持恒定的体温,是保证新陈代谢和生命活动正常进行的必要条件。体温是物质代谢转化为热能的产物。

3、脉搏(英语:Pulse)为人体表可触摸到的动脉搏动。人体循环系统由心脏、血管、血液所组成,负责人体氧气、二氧化碳、养分及废物的运送。

扩展资料

人体正常指标

温度用腋下测量正常是36-37摄氏度

心率正常是60-100次/分钟

血压正常不高于140/90mmHg,不低于90/60mmHg

总血量:65--90ml/kg,

全血比重:男女

血浆:

参考资料来源:百度百科-血压

百度百科-脉搏

百度百科-正常体温

医学论文中的t值概念

1、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(n<30),总体标准差σ未知的正态分布资料。

计算:t的检验是双侧检验,只要T值的绝对值大于临界值就是不拒绝原假设。

2、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

计算:概率定义为:P(A)=m/n,其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。

统计学是关于认识客观现象总体数量特征和数量关系的科学。它是通过搜集、整理、分析统计资料,认识客观现象数量规律性的方法论科学。由于统计学的定量研究具有客观、准确和可检验的特点,所以统计方法就成为实证研究的最重要的方法,广泛适用于自然、社会、经济、科学技术各个领域的分析研究。

参考资料:百度百科-统计学

一、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料

二、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

在相同自由度下,查t表所得t统计量值越大,其尾端概率p越小,两者是此消彼长的关系,但不是直线型负相关。

扩展资料:

T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。

t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与Z检验、卡方检验并列。

t检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家,基于Claude Guinness聘用从牛津大学和剑桥大学出来的最好的毕业生以将生物化学及统计学应用到健力士工业程序的创新政策。

戈斯特于1908年在Biometrika上公布t检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。实际上,戈斯特的真实身份不只是其它统计学家不知道,连其老板也不知道。

P值来源于六西格玛管理,是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进 行比较。由R·A·Fisher首先提出。

P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

总之,P值越小,表明结果越显著。但是检验的结果究竟是"显著的"、"中度显著的"还是"高度显著的"需要我们自己根据P值的大小和实际问题来解决。

参考资料:百科-P值  百科-t检验

T值就是这些统计检定值,与它们相对应的概率分布,就是t分布。统计显著性(sig)就是出现目前样本这结果的机率。

P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=提示样本中变量关联有5%的可能是由于偶然性造成的。

一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。

通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。

拓展资料

R·A·Fisher(1890-1962)作为一代假设检验理论的创立者,在假设检验中首先提出P值的概念。他认为假设检验是一种程序,研究人员依照这一程序可以对某一总体参数形成一种判断。也就是说,他认为假设检验是数据分析的一种形式,是人们在研究中加入的主观信息。(当时这一观点遭到了Neyman-Pearson的反对,他们认为假设检验是一种方法,决策者在不确定的条件下进行运作,利用这一方法可以在两种可能中作出明确的选择,而同时又要控制错误发生的概率。这两种方法进行长期且痛苦的论战。虽然Fisher的这一观点同样也遭到了现代统计学家的反对,但是他对现代假设检验的发展作出了巨大的贡献。)

Fisher的具体做法是:

假定某一参数的取值。

选择一个检验统计量(例如z 统计量或Z 统计量) ,该统计量的分布在假定的参数取值为真时应该是完全已知的。

从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

如果P<,说明是较强的判定结果,拒绝假定的参数取值。

如果

如果P值>,说明结果更倾向于接受假定的参数取值。

可是,那个年代,由于硬件的问题,计算P值并非易事,人们就采用了统计量检验方法,也就是我们最初学的t值和t临界值比较的方法。统计检验法是在检验之前确定显著性水平α,也就是说事先确定了拒绝域。但是,如果选中相同的,所有检验结论的可靠性都一样,无法给出观测数据与原假设之间不一致程度的精确度量。只要统计量落在拒绝域,假设的结果都是一样,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际上的显著性有较大的差异。

因此,随着计算机的发展,P值的计算不再是个难题,使得P值变成最常用的统计指标之一。

参考资料来源:百度百科-t检验百度百科-P值

医学论文中常见的t值

1、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(n<30),总体标准差σ未知的正态分布资料。

计算:t的检验是双侧检验,只要T值的绝对值大于临界值就是不拒绝原假设。

2、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

计算:概率定义为:P(A)=m/n,其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。

统计学是关于认识客观现象总体数量特征和数量关系的科学。它是通过搜集、整理、分析统计资料,认识客观现象数量规律性的方法论科学。由于统计学的定量研究具有客观、准确和可检验的特点,所以统计方法就成为实证研究的最重要的方法,广泛适用于自然、社会、经济、科学技术各个领域的分析研究。

参考资料:百度百科-统计学

1、t值是t检验的统计量值,t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

2、F值是F检验的统计量值 。F检验是一种在零假设(null hypothesis, H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。

3、P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 为有统计学差异, P< 为有显著统计学差异,P<为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于 、、。

扩展资料:

F值和t值是F检验和t检验的统计量值,与它们相对应的概率分布,就是F分布和t分布。

统计显著性是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率,如p=提示样本中变量关联有5%的可能是由于偶然性造成的。

参考资料:

百度百科——假设检验中的P值

百度百科——F检验

百度百科——t检验

采用spss软件,单因素分组对照计算。

t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。Fisher的具体做法

假定某一参数的取值,选择一个检验统计量,在该统计量的分布在假定的参数取值为真时应该是完全已知的从研究总体中抽取一个随机样本计算检验统计量的值计算概率值或者说观测的显著水平即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

你好,不知你是指哪个T值。 如果是联通业务的,T即Text的首个字母,是文本内容的计价单位。如果是医疗方面的, T值是指睾酮同时也是检查睾丸的一种重要指标。在睾酮的指标上,正常值为~之间。如果T值的变化很大就很有可能是身体内的一些疾病发生。最常见的就是男性的睾丸炎。希望对你有帮助,谢谢!

  • 索引序列
  • 医学论文中的t
  • 医学论文中的t值
  • 医学论文中的t和p
  • 医学论文中的t值概念
  • 医学论文中常见的t值
  • 返回顶部