• 回答数

    4

  • 浏览数

    344

全能小吃货
首页 > 学术论文 > 化工专业英语及文献检索论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

小C爱点dian评ping

已采纳

100%正确非机器翻译铅的含量测定(II)用ICP(虹膜IntrepidαXSP热电公司、美国)。测量的pH值在pH计(MP220,Meterlo)。无机阶段的吸附剂确定用x射线衍射(Rigaku D / MAX2βA)。具体的面积是用氮气吸附法下的赌注,用硅Quantachrome QUADRASORB)。 来确定最佳初步汇总内容的碳量,初步汇总(克)的初步汇总/碳纳米管与不同数量的初步汇总被引入,圆锥瓶100毫升的铅(II)溶液浓度变化(含)10-60毫克/升)pH值约是补充。解决了2小时在一个固定的温度(25◦C)。这两个阶段分离过滤通过μm微孔膜过滤。最后的铅浓度(II)中进行回顾性分析。解决剩余 这个平衡吸附capacitywas计算每个金属样品的铅(2)采用下列表达:质量是初步汇总/碳纳米管吸附能力(毫克/ g)、五样卷(l),(二)的铅浓度(毫克/升)、Ce均衡的铅(II)浓度(毫克/升),和m的重量,初步汇总/碳纳米管(g)。 初步汇总的数量和最大吸附容量大的初步汇总/碳纳米管发生被选为最优装载水平和保持不变。在接下来的adsorptions溶液的pH值在和被选出来学习的pH值影响铅(2)清除。 对于一个已知的均衡的研究,初步汇总/碳纳米管()加到一个固定的样品溶液浓度变化(含10-60毫克/升),10毫克/升100毫升、pH值区间,0)。 样品制备了吸附动力学过程中加入1号到2000毫升初步汇总/碳(),和铅(2)concentrationwas 30毫克/升,在预定的时间间隔298 .样本,利用μm滤膜,然后分析。 评估的热力学性质,首先,我们准备各种解决方案与最初的铅浓度(II)从10至60毫克/升,然后添加碳初步汇总每个方案。这些样本,然后摇动,在桃园连续2h 303、K 323。那些使用μm过滤膜、filtrates用ICP测定。 。用x射线衍射分析和性能的影响,并初步汇总加载的水平 碳纳米管的表面积和初步汇总/碳纳米管都列在表1。装运后,小的孔宽度(初步汇总)和更大的表面积(275m2 / g)进行了观察。这意味着一个潜在的更好的吸附。如图1、x射线衍射模式的原始的碳纳米管是由锋利的峰值和弱的顶峰。用x射线衍射模式的初步汇总/碳纳米管显示衍射模式的碳纳米管的结构,但展品包括一些明确晶体初步汇总(图峰。慢)。结果表明:初步汇总是一个non-stoichiometric、非晶相。

252 评论

yiliudewendu

一般程序为sulfoxidation 。催化剂的前兆2 ( 毫克, mmol )被解散, [ bmim ] pf6 ( 毫升) 和甲醇( 毫升)在20 ml安瓿。硫化物( 1 mmol ) 接着其次是过氧化氢( 30 % ,水) ( 170 íl ) 。该反应搅拌为在给定的时间(反应其次是薄层色谱法)后,甲醇被拆除和残余离子液体提取,用乙醚(三一五毫升) 。合并醚层治疗钠连二和水洗(三一○毫升) 。乙醚阶段是干超过硫酸钠,过滤,并集中在真空中。那个产品纯化常规或biotage闪光色谱法。 对甲苯基甲基亚砜( 8 B条) 。孤立的产量1 h后的反应时间, 78 % 。核磁共振数据,在根据这些以前转换(图3 )确定由气相色谱分析反应混合物:的TR (甲苯基甲基硫醚) ) 分钟;的TR (甲苯基甲基亚砜) ) 分钟。 一般程序为回收的离子液体催化剂体系。催化剂的前驱2 ( 毫克 mmol ) 被解散, [ bmim ] pf6 ( 毫升)和甲醇( 毫升)在20 ml安瓿。硫化物( 1 mmol )当时说,其次是过氧化氢( 170 íl ) 。反应搅拌为在给定的时间(反应,其次是薄层色谱法)后,其中甲醇被删除,剩余的离子液体中提取二乙酯基醚(三一五毫升) 。合并醚层治疗连二亚硫酸钠和水洗( 10毫升) 。水相回到提取用乙醚(三一○毫升) 。合并醚阶段干燥超过硫酸钠,过滤,并集中在真空。该产品被孤立的由Flash色谱法。那个离子液体相后,再用蒸发,其余乙醚。硫化物( 1 mmol )和过氧化氢( equiv )补充说: 之后,除了甲醇( 毫升) 。

291 评论

datang1201

没有什么地方可以下载免费的英文文献,除非这篇文献本来就是免费的,你在网络上搜索一下就可以。如果你的学校没有购买该期刊的版权的话,你只能用一下一些其他学校的IP代理,或者利用馆际互借或者在一些论坛上求助,比如

357 评论

米拉妹妹12

To date, aqueous solution of basic alkanolamine is the most economical and widely used process to effectively remove H2S, CO2, and other acidic components in a continuous absorption/regeneration process. Acid gases like CO2, H2S, and other acidic compounds react with an alkanolamine via an exothermic, reversible reaction in a gas/ liquid contactor. Subsequently, the absorbed acid components are removed from the alkanolamine in a regenerator by steam stripping before recycling the alkanolamine to the absorber. The ability of an alkanolamine solution to remove acidic gases is determined by the acid gas solubility, reaction rate and mass transfer properties [4]. Versteeg and Swaaij [3,5] studied the reactions between CO2 and aqueous and non-aqueous solutions of primary, secondary, and tertiary alkanolamines at various temperatures. The reaction of CO2 with primary and secondary alkanolamine was described using the Zwitterion-mechanism and Brønsted relation was used to describe the reaction of CO2 with tertiary alkanolamine. Aqueous tertiary alkano-lamine solutions, especially MDEA (methyl di-ethanol amine) and TEA (tri-ethanol amine), have been found to be very effective solvents for the selective removal of H2S. Besides MDEA, DIPA (di iso-propyl alcohol) was also reported to have greater selectivity for H2S over CO2. However, a few authors reported the simultaneous absorption of CO2 and H2S in an aqueous solution of MDEA and DIPA [6,7]. MDEA, a tertiary amine, is less basic than primary and secondary amines. MDEA is most promising because of its capacity to react with the acid gases. Moreover, the advantage is enhanced by the fact that MDEA is highly selective for H2S and less selective for CO2, whereas MEA (mono ethanol amine) and DEA (di ethanol amine) are highly selective for CO2 present in the acid gases. These beneficial characteristics of MDEA result in potential benefits, which include increased capacity for existing units, decreased capital cost for new units, and lower cost of energy required for purification. MDEA is a tertiary amine and therefore carbamate formation with CO2 does not take place.迄今为止,碱性链烷醇胺的水溶液是在经济和广泛使用的过程中,在连续吸收/再生过程中有效去除H 2 S,CO 2和其它酸性组分。酸性气体如CO 2,H 2 S和其它酸性化合物通过气/液接触器中的放热,可逆反应与烷醇胺反应。随后,在将链烷醇胺再循环到吸收器之前,通过蒸汽汽提,在再生器中将链烷醇胺中吸收的酸组分除去。链烷醇胺溶液去除酸性气体的能力取决于酸性气体的溶解度,反应速率和传质性质[4]。 Versteeg和Swaaij [3,5]研究了二氧化碳与一级,二级和三级链烷醇胺在各种温度下的水溶液和非水溶液之间的反应。使用两性离子机理描述了CO 2与伯和仲链烷醇胺的反应,并使用Brønsted关系来描述CO 2与叔链烷醇胺的反应。已经发现水性叔链烷胺溶液,特别是MDEA(甲基二乙醇胺)和TEA(三乙醇胺)是用于选择性除去H 2 S的非常有效的溶剂。除了MDEA之外,还报道了DIPA(二异丙醇)对H2S比二氧化碳具有更高的选择性。然而,一些作者报道了在MDEA和DIPA的水溶液中同时吸收CO 2和H 2 S. [6,7]。 MDEA是一种叔胺,与伯胺和仲胺的碱性相当。 MDEA是最有希望的,因为它能够与酸性气体反应。此外,由于MDEA对H 2 S具有高选择性并且对CO 2具有较少的选择性,MEA(单乙醇胺)和DEA(二乙醇胺)对于存在于酸性气体中的CO是高选择性的,所以其优点得到提高。 MDEA的这些有益特征产生潜在的好处,其中包括提高现有单位的能力,降低新单位的资本成本,降低净化所需的能源成本。 MDEA是叔胺,因此不会发生含二氧化碳的氨基甲酸酯形成。

301 评论

相关问答

  • 专业英语与文献检索课程论文

    专业英语教学论文2000字范文 在日常学习和工作生活中,大家都写过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。相信很多朋友都对写论文感

    旧在现在 4人参与回答 2023-12-09
  • 专业英语文献检索论文范文

    论文英文参考文献格式 在社会的各个领域,大家对论文都再熟悉不过了吧,通过论文写作可以培养我们的科学研究能力。如何写一篇有思想、有文采的论文呢?下面是我收集整理的

    jasmine1995 3人参与回答 2023-12-11
  • 化工文献检索论文题目及要求

    论文题目的写作要求与拟定方法 论文题目的写作要求是什么,如何拟定论文得题目呢?接下来是我为大家收集的关于论文题目的写作要求与拟定方法,欢迎大家点击登录学习! “

    灰灰poppy 4人参与回答 2023-12-10
  • 化工文献检索论文1000字

    化工类文献综述的论文或范文, 如有需要及时+wo谈.

    8luckymore8 4人参与回答 2023-12-10
  • 英语专业论文检索

    知网查询英文文献的方法 1、首先打开知网,找到检索框后面的高级检索,如图所示。 2、进入高级检索后,点击“旧版”,进入旧版界面,查询更加方便。如图所示。 3、进

    粉红蚕宝宝 5人参与回答 2023-12-07