• 回答数

    5

  • 浏览数

    356

大灵灵小乖乖
首页 > 毕业论文 > 毕业论文选题主成分分析

5个回答 默认排序
  • 默认排序
  • 按时间排序

亲爱的猪小呢

已采纳

1.选择具有现实意义的题目。我们选的题目,应是与社会生活密切相关、为众人所关心的问题,是亟待解决的问题。这类问题反映着一定历史时期和阶段社会生活的重点和热点。我们运用自己所学的理论知识对其进行研究,提出自己的见解,探讨解决问题的方法,才有意义。2.小的理论问题。学术论文要具有一定的理论性。其形式还是内容都和工作总结、调查报告有着重要区别。非学术论文是对学术论文的一种传播和宣传、介绍,而不是原始性的创造。比如报纸杂志上刊登的评论、政论等是典型的非学术性论文。非学术论文的主要功能是对学术性论文的稀释和宣解,但有时也可能会成为学术性论文的先导。注意三点:第一,非理论问题不应该选。第二,重大理论问题不好选。第三,特别敏感政治问题建议不要选。3.自己能做下来的题目。知己知彼,量力而行。所谓“知己”,首先,要充分估计到自已的知识储备情况和分析问题的能力。如果理论基础比较好,又有较强的分析概括能力,那就可以选择难度大一些、内容复杂一些的题目;如果自己觉得综合分析一个大问题比较吃力,那么题目就应定得小一些,便于集中力量抓住重点,把某一问题说深说透。所谓“知彼”,一是要考虑到是否能找到资料。资料又可分为第一手资料和第二手资料。第一手资料是指作者亲自考查获得的。第二手资料的主要来源是图书馆和资料室,或者是上网。二是要了解所选课题的研究动态和研究成果。考虑:兴趣、知识、资料、时间(1)选喜欢的题目。有兴趣才有研究的欲望,内在的动力和写作情绪就高,成功的可能性也就越大。(2)知识储备够不够。如果不够,用半年时间能否补上。(3)资料够不够。至少泛读五本书以上、精读二、三本书(近十年内)、三篇以上相关论文(期刊网上下载),研究外国问题,要参考外国的译著或原著。找资料的追踪溯源法。(4)时间够不够。尽快定题,慎重定题,然后转入资料阅读、构思。写初稿要留出至少半个月或一个月的时间。修改留出一至两个月。建议下学期开学交初稿,五一以前定稿。赶前不赶后的原则。4.中庸之道:不新不旧的题目(此处对本科生而言,博硕士最好要找别人没做过的题目)太新,没有充足的资料来源。“巧妇难为无米之炊”,在缺少相关资料的情况下,是很难写出高质量的论文的。选择一个具有丰富资料来源的课题,对课题深入研究与开展很有帮助。太旧,没有研究价值和必要,得分不会高。附:宋楚瑜提出选题的原则包括:(1)选题应依志趣;(2)对于所选题目应有相当准备;(3)题目宜切实,不宜空泛;(4)题目宜新颖致用;(5)避免争论性的题目;(6)避免高度技术性的题目;(7)避免直接概括的传记;(8)避免做摘要式的论文;(9)题目范围不宜太大;可以使用笔杆网的选题功能进行选题分析,这样写起论文来更容易。

197 评论

派飞凯特

分析课题包括下列情况: 1、寻找具体问题的确切答案或解决问题,或作为论据和引证。 2.查找特定文献,根据某文献的索引查找原文,或者认识某作者并了解——关于所有发表的文章。 3.大致了解一个问题,写一篇关于问题一个方面的小文章。 4.检查特定主题的边界和最新数据,了解研究趋势和发展趋势。 5.对某个主题进行全面调查研究,了解主题的整个发展过程。全面和详细了解国内外各种年龄的所有相关出版物,并编写综合报告或研究报告。 6.对某一主题进行深入的特别研究,提出具有一定学术水平的创新观点或结论,并根据全面掌握的材料和重要的研究成果编写研究报告或学术论文。 处理上述主题类型。前面两种只要正确选取了检索工具和参照资源,就可以找到所需的信息。实现快速恢复目标。第三种类型可能只需要浏览几个简短的摘要或参考几个一般性条款;四到六需要收集各种详细和全面的信息,强调及时性或全面性,有时还需要高质量的学术歌曲的背景材料,如专题、会议文件、研究报告、重要的论文甚至视听材料。论文查重可以参考下Papertime等工具。

226 评论

以哩哇啦

你的邮箱发不进去,请换一个,这里发部分供你参考Principal component analysisPrincipal component analysis (PCA) is a mathematical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of uncorrelated variables called principal components. The number of principal components is less than or equal to the number of original variables. This transformation is defined in such a way that the first principal component has as high a variance as possible (that is, accounts for as much of the variability in the data as possible), and each succeeding component in turn has the highest variance possible under the constraint that it be orthogonal to (uncorrelated with) the preceding components. Principal components are guaranteed to be independent only if the data set is jointly normally distributed. PCA is sensitive to the relative scaling of the original variables. Depending on the field of application, it is also named the discrete Karhunen–Loève transform (KLT), the Hotelling transform or proper orthogonal decomposition (POD).PCA was invented in 1901 by Karl Pearson.[1] Now it is mostly used as a tool in exploratory data analysis and for making predictive models. PCA can be done by eigenvalue decomposition of a data covariance matrix or singular value decomposition of a data matrix, usually after mean centering the data for each attribute. The results of a PCA are usually discussed in terms of component scores (the transformed variable values corresponding to a particular case in the data) and loadings (the weight by which each standarized original variable should be multiplied to get the component score) (Shaw, 2003).PCA is the simplest of the true eigenvector-based multivariate analyses. Often, its operation can be thought of as revealing the internal structure of the data in a way which best explains the variance in the data. If a multivariate dataset is visualised as a set of coordinates in a high-dimensional data space (1 axis per variable), PCA can supply the user with a lower-dimensional picture, a "shadow" of this object when viewed from its (in some sense) most informative viewpoint. This is done by using only the first few principal components so that the dimensionality of the transformed data is is closely related to factor analysis; indeed, some statistical packages (such as Stata) deliberately conflate the two techniques. True factor analysis makes different assumptions about the underlying structure and solves eigenvectors of a slightly different matrix.

256 评论

长平公主

发表吧小编为您解答:本科毕业论文选题分析,撰写本科毕业论文的开题报告首先要有选题。选题就是学生本科毕业论文的研究题目。选题有几种来源,要么来自于个人的生活经验或专业经验,要么来自文献阅读,要么来自于老师的建议。本科毕业论文选题分析,选题还会涉及选题的大小、选题的范围。它们都是相对而言的,这也视研究队伍的大小和研究能力强弱来确定。我们举个例子就可以说明,“课堂教学有效性研究”可以缩小为“小学课堂教学有效性研究”,还可以缩小为“小学数学课堂教学有效性研究”,甚至再缩小为“小学数学几何课堂教学有效性研究”,由此可以看到选题由大到小的变化。本科毕业论文选题分析,选题意义可以理解为研究目的,选择了一项研究到底要达到什么目的,这是研究者首先需要明确的目标,通常选题意义或研究目的可从以下几个方而来看,第一是学术意义,第二是理论价值,第三是实践价值,第四是个体目的,第五是知识发展。任何一项选题都可能从以上几个方而来设定其意义,但并不是每一个选题都要达到这些目的,这要视选题大小、范围和类型而定。在选题意义上,作为一种科学研究,论文的意义在于填补知识的空白或探索新知识、找到一些现象的起因、描述一些现象、解决一个实际问题或验证一个假设。发表吧论文发表发表论文网,是一个专门从事期刊推广、论文发表的网站。

190 评论

轻清净静的美好

这个不难,我擅长.

192 评论

相关问答

  • 毕业论文采访主题分析题目

    1、中国电视节目低俗化现象(娱乐化倾向)与规制 2、新闻炒作的道德思考 3、有偿新闻在中国当下的具体表现及其治理 4、论当下我国新闻职业道德失范现象 5、论新闻

    NDSGGS南都 4人参与回答 2023-12-09
  • 毕业论文选题全成分分析

    分析课题包括下列情况: 1、寻找具体问题的确切答案或解决问题,或作为论据和引证。 2.查找特定文献,根据某文献的索引查找原文,或者认识某作者

    熊吃吃哒掌门猫 4人参与回答 2023-12-10
  • 毕业论文主题营运能力分析

    1、首先营运能力分析参照前人研究。2、其次考虑数据的可获得性。3、最后选营运能力指标中具有典型代表性的固定资产周率即可写好营运能力分析的研究创新。

    萌萌哒蜗牛 4人参与回答 2023-12-07
  • 毕业论文主题分析

    大学生毕业论文开题报告范文1 题目:数学美在中学数学教育中的应用 一、选题的背景与意义 背景:社会的不断发展,人文素质的不断提高,人们对数学也有了更高的要求,所

    xiaoxiao765 3人参与回答 2023-12-06
  • 毕业论文主题分析什么

    因为毕业论文是关于自己所学专业有关方面的专业性知识,所以你可以找到一些自己所学专业所存在的问题,这样来写论文,还有可能会获奖

    馋嘴鱼了乐 5人参与回答 2023-12-07